Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (2) : 186-192    https://doi.org/10.1007/s11783-011-0322-6
RESEARCH ARTICLE
Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue
Yuheng FENG1, Xuguang JIANG1(), Yong CHI1, Xiaodong LI1, Hongmei ZHU2
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; 2. Hangzhou Huanjie Environment Engineering Co. Ltd., Hangzhou 310027, China
 Download: PDF(247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In China, safe disposal of hazardous waste is more and more a necessity, urged by rapid economic development. The pyrolysis and combustion characteristics of a residue from producing monopotassium phosphate (monopotassium phosphate residue), considered as a hazardous waste, were studied using a thermogravimetric, coupled with Fourier transform infrared analyzer (TG-FTIR). Both pyrolysis and combustion runs can be subdivided into three stages: drying, thermal decomposition, and final devolatilization. The average weight loss rate during fast thermal decomposition stage in pyrolysis is higher than combustion. Acetic acid, methane, pentane, (acetyl) cyclopropane, 2,4,6-trichlorophenol, CO, and CO2 were distinguished in the pyrolysis process, while CO2 was the dominant combustion product.

Keywords hazardous waste      combustion      pyrolysis      thermogravimetric coupled with Fourier transform infrared analysis (TG-FTIR)      monopotassium phosphate residue     
Corresponding Author(s): JIANG Xuguang,Email:jiangxg@zju.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Yuheng FENG,Xuguang JIANG,Yong CHI, et al. Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue[J]. Front Envir Sci Eng Chin, 2011, 5(2): 186-192.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0322-6
https://academic.hep.com.cn/fese/EN/Y2011/V5/I2/186
moisturea)ashb)CHNSOFCl
8.937.1873.268.140.360.0310.120.270.63
Tab.1  Proximate and ultimate analysis of the monopotassium phosphate residue
Fig.1  Comparative weight loss curves (TG curves) and DTG curves for combustion and pyrolysis of monopotassium phosphate residue
Fig.2  FTIR spectrum of products evolving from a monopotassium phosphate residue sample, at 145℃
Fig.3  FTIR spectrum of pyrolysis products from monopotassium phosphate residue sample, at 450°C (maximum weight loss rate)
Fig.4  FTIR spectrum of combustion products in air, at 409°C (maximum weight loss rate)
Fig.5  Evolution of volatiles with temperature – TGA-FTIR (nitrogen): (a) methane; (b) pentane; (c) acetic acid; (d) cyolopropane, acetyl; (e) 2,4,6-trichlorophenol; (f) CO
Fig.6  Evolution of CO with temperature during thermal treatment– TG-FTIR (air)
1 Orloff K, Falk H. An international perspective on hazardous waste practices. International Journal of Hygiene and Environmental Health , 2003, 206(4-5): 291–302
doi: 10.1078/1438-4639-00225 pmid:12971684
2 Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludges. Fuel , 2006, 85(10-11): 1498–1508
doi: 10.1016/j.fuel.2005.12.002
3 Jiang X G, Li C Y, Chi Y, Yan J H. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. Journal of Hazardous Materials , 2010, 173(1-3): 205–210
doi: 10.1016/j.jhazmat.2009.08.070 pmid:19735979
4 Jiang X G, Li C Y, Chi Y, Yan J H. Thermal behavior characteristics of Adhesive residue. Waste Management (New York) , 2009, 29(11): 2824–2829
pmid:19660928
6 Méndez A, Fidalgo J M, Guerrero F, Gascób G. Characterization and pyrolysis behaviour of different paper mill waste materials. Journal of Analytical and Applied Pyrolysis , 2009, 86(1): 66–73
doi: 10.1016/j.jaap.2009.04.004
7 Phan A N, Ryu C, Sharifi V N, Swithenbank J. Characterisation of slow pyrolysis products from segregated wastes for energy production. Journal of Analytical and Applied Pyrolysis. Pyrolysis , 2008, 81(1): 65–71
doi: 10.1016/j.jaap.2007.09.001
8 Park E S, Kang B S, Kim J S. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy & Fuels , 2008, 22(2): 1335–1340
doi: 10.1021/ef700586d
9 Solomon P R, Serio M A, Carangelo R M, Bassilakis R, Gravel D, Baillargeon M, Baudais F, Vail G. Analysis of the Argonne Premium coal samples by thermogravimetric Fourier transform infrared spectroscopy. Energy & Fuels , 1990, 4(3): 319–333
doi: 10.1021/ef00021a017
10 Bassilakis R, Carangelo R M, Wójtowicz M A. TG-FTIR analysis of biomass pyrolysis. Fuel , 2001, 80(12): 1765–1786
doi: 10.1016/S0016-2361(01)00061-8
11 Wójtowicz M A, Bassilakis R, Smith W W, Chen Y G, Carangelo R M. Modeling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis , 2003, 66(1-2): 235–261
doi: 10.1016/S0165-2370(02)00116-X
12 de Jong W, Pironea A, Wójtowicz M A. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel , 2003, 82(9): 1139–1147
doi: 10.1016/S0016-2361(02)00419-2
13 de Jong W, Nola G D, Venneker B C H, Spliethoff H, Wójtowicz M A. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel , 2007, 86(15): 2367–2376
doi: 10.1016/j.fuel.2007.01.032
14 Nola G D, de Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen. Fuel Processing Technology , 2010, 91(1): 103–115
doi: 10.1016/j.fuproc.2009.09.001
15 Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Tang G Y, Wang Z. Wang . Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis , 2009, 85(1-2): 447–453
16 Jiang X G, Li C Y, Wang T, Liu B C, Chi Y, Yan J H. TG-FTIR study of pyrolysis products evolving from dyestuff production waste. Journal of Analytical and Applied Pyrolysis , 2009, 84(1): 103–107
doi: 10.1016/j.jaap.2008.11.027
17 Zhu H M, Yan J H, Jiang X G, Lai Y E, Cen K F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials , 2008, 153(1-2): 670–676
pmid:17936504
18 Zhu H M, Jiang X G, Yan J H, Chi Y, Cen K F. TG-FTIR analysis of PVC thermal degradation and HCl removal. Journal of Analytical and Applied Pyrolysis , 2008, 82(1): 1–9
doi: 10.1016/j.jaap.2007.11.011
19 Tao L, Zhao G B, Qian J, Qin Y K. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. Journal of Hazardous Materials , 2010, 175(1-3): 754–761
doi: 10.1016/j.jhazmat.2009.10.073 pmid:19926219
20 Marsnich K, Barontini F, Cozzani V, Petarca L. Advanced pulse calibration techniques for the quantitative analysis of TG-FTIR data. Thermochimica Acta , 2002, 390(1-2): 153–168
doi: 10.1016/S0040-6031(02)00114-4
21 Capart R, Khezami L, Burnha A K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta , 2004, 417(1): 79–89
doi: 10.1016/j.tca.2004.01.029
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[3] Jiaxue Yu, Junqing Xu, Zhenchen Li, Wenzhi He, Juwen Huang, Junshi Xu, Guangming Li. Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies[J]. Front. Environ. Sci. Eng., 2020, 14(2): 19-.
[4] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[5] V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.. Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel produced from waste engine oil and waste plastics[J]. Front. Environ. Sci. Eng., 2018, 12(4): 8-.
[6] Marika Benedetti, Lorenzo Cafiero, Doina De Angelis, Alessandro Dell’Era, Mauro Pasquali, Stefano Stendardo, Riccardo Tuffi, Stefano Vecchio Ciprioti. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification[J]. Front. Environ. Sci. Eng., 2017, 11(5): 11-.
[7] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[8] Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature[J]. Front. Environ. Sci. Eng., 2017, 11(3): 5-.
[9] Yiying JIN,Yangyang LI,Fuqiang LIU. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Front. Environ. Sci. Eng., 2016, 10(1): 201-210.
[10] Xiuning HUA,Wei WANG,Feng WANG. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1130-1138.
[11] Hongmei ZHU,Weiying CHEN,Xuguang JIANG,Jianhua YAN,Yong CHI. Study on HCl removal for medical waste pyrolysis and combustion using a TG-FTIR analyzer[J]. Front. Environ. Sci. Eng., 2015, 9(2): 230-239.
[12] Hongbo NA,Tianle ZHU,Zhiming LIU,Yifei SUN. Promoting effect of Zr on the catalytic combustion of methane over Pd/γ-Al2O3 catalyst[J]. Front.Environ.Sci.Eng., 2014, 8(5): 659-665.
[13] WU Yuehui,WANG Guoliang,WANG Zhen,LIU Yi,GU Ping,SUN Dezhi. Comparative study on the efficiency and environmental impact of two methods of utilizing polyvinyl chloride waste based on life cycle assessments[J]. Front.Environ.Sci.Eng., 2014, 8(3): 451-462.
[14] Qin WANG, Chunmei GENG, Sihua LU, Wentai CHEN, Min SHAO. Emission factors of gaseous carbonaceous species from residential combustion of coal and crop residue briquettes[J]. Front Envir Sci Eng, 2013, 7(1): 66-76.
[15] Xiangyu LI, Lu SU, Yujue WANG, Yanqing YU, Chengwen WANG, Xiaoliang LI, Zhihua WANG. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons[J]. Front Envir Sci Eng, 2012, 6(3): 295-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed