Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 761-769    https://doi.org/10.1007/s11783-012-0413-z
RESEARCH ARTICLE
Reduction of hexavalent chromium with scrap iron in a fixed bed reactor
Yin WANG, Xuejiang WANG(), Xin WANG, Mian LIU, Siqing XIA, Daqiang YIN, Yalei ZHANG, Jianfu ZHAO
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(379 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.

Keywords hexavalent chromium      scrap iron      reduction capacity      drinking water     
Corresponding Author(s): WANG Xuejiang,Email:wangxj@tongji.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Yin WANG,Xuejiang WANG,Xin WANG, et al. Reduction of hexavalent chromium with scrap iron in a fixed bed reactor[J]. Front Envir Sci Eng, 2012, 6(6): 761-769.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0413-z
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/761
Fig.1  Chromium species concentration in column effluent . time under three different influent pH (a) 3, (b) 5, (c) 7 (initial Cr(VI) concentration 4 mg·L, EBCT 2 min, and temperature 25℃)
Fig.2  Iron species concentration in column effluent . time under three different influent pHs (a) 3, (b) 5, (c) 7 (initial Cr(VI) concentration 4 mg·L, EBCT 2 min, and temperature 25℃)
Fig.3  Chromium species concentration in column effluent . time under three different influent EBCTs (a) 0.5 min, (b) 2 min, (c) 6 min (initial Cr(VI) concentration 4 mg·L, pH 5, and temperature 25℃)
Fig.4  Iron species concentration in column effluent . time under three different influent EBCTs (a) 0.5 min, (b) 2 min, (c) 6 min (initial Cr(VI) concentration 4 mg·L, pH 5, and temperature 25°C)
Fig.5  /. time under three different influent concentrations (a) 1 mg·L, (b) 4 mg·L, (c) 8 mg·L (EBCT 2 min, pH 5, and temperature 25℃)
Fig.6  Chromium species concentration in column effluent . time (EBCT 0.5 min and temperature 25℃)
Fig.7  Iron species concentration in column effluent . time (EBCT 0.5 min and temperature 25℃)
Fig.8  SEM micrographs of (a) un-reacted and (b) exhausted scrap iron fillings
elementsatomic %
un-react scrap ironexhausted scrap iron
Fe91.5745.31
O2.0152.43
C6.421.29
CrN.A.0.74
SiN.A.0.05
SN.A.0.18
Tab.1  Element concentrations of un-react and exhausted scrap iron fillings in atomic percent measured by EDS
Fig.9  XRD patterns of (a) un-reacted and (b) exhausted scrap iron fillings
1 Schlautman M A, Han I. Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research , 2001, 35(6): 1534–1546
doi: 10.1016/S0043-1354(00)00408-5 pmid:11317901
2 Wielinga B, Mizuba M M, Hansel C M, Fendorf S. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology , 2001, 35(3): 522–527
doi: 10.1021/es001457b pmid:11351723
3 Costa M. Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology , 2003, 188(1): 1–5
doi: 10.1016/S0041-008X(03)00011-5 pmid:12668116
4 Wang X J, Wang Y, Wang X, Liu M, Xia S Q, Yin D Q, Zhang Y L, Zhao J F. Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr(VI) removal. Chemical Engineering Journal , 2011, 174(1): 326–332
doi: 10.1016/j.cej.2011.09.044
5 Zhou H, He Y, Lan Y, Mao J, Chen S. Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Chemosphere , 2008, 72(6): 870–874
doi: 10.1016/j.chemosphere.2008.04.010 pmid:18486963
6 Pellerin C, Booker S M. Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental Health Perspectives , 2000, 108(9): a402–a407
doi: 10.1289/ehp.108-a402 pmid:11017901
7 Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environmental Science & Technology , 1997, 31(12): 3348–3357
doi: 10.1021/es960844b pmid:18683257
8 Puls R W, Blowes D W, Gillham R W. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials , 1999, 68(1-2): 109–124
doi: 10.1016/S0304-3894(99)00034-5 pmid:10518667
9 Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Applied Geochemistry , 1999, 14(8): 989–1000
doi: 10.1016/S0883-2927(99)00010-4
10 Blowes D W, Ptacek C J, Benner S G, McRae C W T, Bennett T A, Puls R W, Bennett T A, Puls R W. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology , 2000, 45(1-2): 123–137
doi: 10.1016/S0169-7722(00)00122-4
11 Terry P A. Characterization of Cr ion exchange with hydrotalcite. Chemosphere , 2004, 57(7): 541–546
doi: 10.1016/j.chemosphere.2004.08.006 pmid:15488915
12 Siegel S K, Clifford D A. Removal of Chromium from Ion Exchange Regenerant Solution, US EPA, Water Engineering Laboratory, EPA/600/S2–88/ 007. Houston: US Environmental Protection Agency, 1988
13 Sengupta A K, Clifford D. Important process variables in chromate ion exchange. Environmental Science & Technology , 1986, 20(2): 149–155
doi: 10.1021/es00144a006 pmid:22288802
14 ?lmez T. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials , 2009, 162(2-3): 1371–1378
doi: 10.1016/j.jhazmat.2008.06.017 pmid:18640776
15 Gode F, Pehlivan E. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials , 2005, 119(1-3): 175–182
doi: 10.1016/j.jhazmat.2004.12.004 pmid:15752863
16 Bhowal A, Datta S. Studies on transport mechanism of Cr(VI) extraction from an acidic solution using liquid surfactant membranes. Journal of Membrane Science , 2001, 188(1): 1–8
doi: 10.1016/S0376-7388(00)00586-X
17 ?engelo?lu Y, Tor A, Kir E, Ersoz M. Transport of hexavalent chromium through anion-exchange membranes. Desalination , 2003, 154(3): 239–246
doi: 10.1016/S0011-9164(03)80039-5
18 Singh D K, Bharadwaj R K, Srivastava B, Sahu A. Extraction of hexavalent chromium from aqueous solution by emulsion liquid membrane. Journal of Scientific and Industrial Research , 2002, 61(7): 538–542
19 Francisco J A, Concepción C, María I M. Transport of chromium(VI) through a Cyanex 921-supported liquid membrane from HCl solutions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2003, 78(10): 1048–1053
doi: 10.1002/jctb.903
20 Yu L J, Shukla S S, Dorris K L, Shukla A, Margrave J L. Adsorption of chromium from aqueous solutions by maple sawdust. Journal of Hazardous Materials , 2003, 100(1-3): 53–63
doi: 10.1016/S0304-3894(03)00008-6 pmid:12835012
21 Daneshvar N, Salari D, Aber S. Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. Journal of Hazardous Materials , 2002, 94(1): 49–61
doi: 10.1016/S0304-3894(02)00054-7 pmid:12141995
22 Han I, Schlautman M A, Batchelor B. Removal of hexavalent chromium from groundwater by granular activated carbon. Water Environment Research , 2000, 72(1): 29–39
doi: 10.2175/106143000X137086
23 Perezcandela M, Martinez J M M, Maciz R T. Chromium(VI) removal with activated carbons. Water Research , 1995, 29(9): 2174–2180
doi: 10.1016/0043-1354(95)00035-J pmid:19553008
24 Eary L E, Rai D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science & Technology , 1988, 22(8): 972–977
doi: 10.1021/es00173a018 pmid:22195722
25 Erdem M, Tumen F. Chromium removal from aqueous solution by the ferrite process. Journal of Hazardous Materials , 2004, 109(1-3): 71–77
doi: 10.1016/j.jhazmat.2004.02.031 pmid:15177747
26 Higgins T E, Sater V E. Combined removal of Cr, Cd and Ni from wastes. Environment and Progress , 1984, 3(1): 12–25
doi: 10.1002/ep.670030105
27 ?h B T, Just C L, Alvarez P J J. Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environmental Science & Technology , 2001, 35(21): 4341–4346
doi: 10.1021/es010852e pmid:11718353
28 Hung H M, Ling F H, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environmental Science & Technology , 2000, 34(9): 1758–1763
doi: 10.1021/es990385p
29 Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero-valent iron and modified zero-valent iron. Environmental Science & Technology , 2000, 34(10): 2014–2017
doi: 10.1021/es991129f
30 Alowitz M J, Scherer M M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology , 2002, 36(3): 299–306
doi: 10.1021/es011000h pmid:11871541
31 Chang L Y. Chromate reduction in wastewater at different Ph levels using thin iron wires-a laboratory study. Environment and Progress , 2005, 24(3): 305–316
doi: 10.1002/ep.10082
32 Lo I M C, Lam C S C, Lai K C K. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal. Water Research , 2006, 40(3): 595–605
doi: 10.1016/j.watres.2005.11.033 pmid:16406049
33 Lo I M C, Lam C S C, Lai K C K. Competitive effects of trichloroethylene on Cr(VI) removal by zero-valent iron. Journal of Environmental Engineering , 2005, 131(11): 1598–1606
doi: 10.1061/(ASCE)0733-9372(2005)131:11(1598)
34 Gheju M, Iovi A. Kinetics of hexavalent chromium reduction by scrap iron. Journal of Hazardous Materials , 2006, 135(1-3): 66–73
doi: 10.1016/j.jhazmat.2005.10.060 pmid:16386842
35 Gheju M, Iovi A, Balcu I. Hexavalent chromium reduction with scrap iron in continuous-flow system. Journal of Hazardous Materials , 2008, 153(1-2): 655–662
doi: 10.1016/j.jhazmat.2007.09.009 pmid:17933460
36 ?zer A, Altundo?an H S, Erdem M, Tümen F. A study on the Cr(VI) removal from aqueous solutions by steel wool. Environmental pollution , 1997, 97(1-2): 107–112
doi: 10.1016/S0269-7491(97)00065-1 pmid:15093383
37 American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater . 21st ed. Baltimore, MD: Americn Public Health Association, 2005
38 Chen S S, Hsu B C, Hung L W. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials , 2008, 152(3): 1092–1097
doi: 10.1016/j.jhazmat.2007.07.086 pmid:17826895
39 Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Chinese Standards for Drinking Water Quality (GB5749-2006). Beijing: Ministry of Health of the People’s Republic of China & Standardization Administration of the People’s Republic of China, 2006
40 Chen S S, Cheng C Y, Li C W, Chai P H, Chang Y M. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials , 2007, 142(1-2): 362–367
doi: 10.1016/j.jhazmat.2006.08.029 pmid:16987595
41 Melitas N, Chuffe-Moscoso O, Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environmental Science & Technology , 2001, 35(19): 3948–3953
doi: 10.1021/es001923x pmid:11642457
42 Gheju M, Balcu I. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: effect of scrap iron shape and size. Journal of Hazardous Materials , 2010, 182(1-3): 484–493
doi: 10.1016/j.jhazmat.2010.06.058 pmid:20638785
43 Liu T Z, Tsang D C W, Lo I M C. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environmental Science & Technology , 2008, 42(6): 2092–2098
doi: 10.1021/es072059c pmid:18409642
44 Erdem M, Altundogan H S, ?zer A, Tümen F. Cr(VI) reduction in aqueous solutions by using synthetic iron sulphide. Environmental Technology , 2001, 22(10): 1213–1222
doi: 10.1080/09593332208618206 pmid:11766043
[1] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[2] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[3] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[4] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[5] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[6] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[7] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[8] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[9] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[10] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[11] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[12] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[13] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[14] Chunming Wang, Huirong Lin, Chengsong Ye. Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification[J]. Front. Environ. Sci. Eng., 2016, 10(6): 8-.
[15] Xiaolong WANG,Shiming DING,Qi ZHANG,Weiping HU. Assessment on contaminations in sediments of an intake and the inflow canals in Taihu Lake, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 665-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed