Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 341-355    https://doi.org/10.1007/s11783-012-0472-1
REVIEW ARTICLE
Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis
Zhen MA1(), Bei ZHOU1, Yu REN2()
1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; 2. Energy Storage Center, National Institute of Clean-and-Low-Carbon Energy, Shenhua Group, Future Science and Technology City, Beijing 102209, China
 Download: PDF(654 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N2O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

Keywords mesoporous materials      silica      metal oxide      hard-templating      environmental catalysis     
Corresponding Author(s): MA Zhen,Email:zhenma@fudan.edu.cn; REN Yu,Email:renyu3@gmail.com   
Issue Date: 01 June 2013
 Cite this article:   
Zhen MA,Bei ZHOU,Yu REN. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 341-355.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0472-1
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/341
Fig.1  Schematic illustration of the nanocasting pathway []. Reproduced with permission of Wiley-VCH
Fig.2  TEM images of crystalline mesoporous CeO prepared using KIT-6 (a) and SBA-15 (b) as hard templates []. Reproduced with permission of the Royal Society of Chemistry
Fig.3  Schematic drawing of the growth of InO particles in the pores of mesoporous KIT-6 []. After the first cycle of impregnation with In(NO) and subsequent conversion into InO, spherical “islands” are formed inside the silica pore network; additional cycles lead predominantly to the growth of existing InO particles rather than to nucleation of new ones
Fig.4  CO conversions and T over different catalysts [] (a) mesoporous CeO; (b) 10%CuO/mesoporous CeO; (c) 20%CuO/mesoporous CeO; (d) 30%CuO/mesoporous CeO; (e) CeO-D prepared by calcining Ce(NO) at 550°C.
Fig.5  CO conversions on metal oxide catalysts: () and (b) mesoporous (denoted as ) catalysts; (c) and (d) bulk (denoted as -) catalysts [].
Fig.6  Bar diagram comparing the conversions of NO on different commercial or mesoporous metal oxides at 350°C. Reaction conditions: 0.5% NO (balance He), 60 cm·min, 0.5 g catalyst
Fig.7  Variation of the catalytic activity for naphthalene oxidation (expressed as yield to CO) on nanocast CeO catalysts, as a function of reaction temperature []
Fig.8  Variation of the propane conversion (a) and toluene conversion (b) with the reaction temperature for CoO samples prepared by a nanocasting route [] Influence of the aging temperature during the synthesis of the silica template (40, 70, and 100°C). For comparison, the results of a CoO prepared by simple evaporation of Co-nitrate and calcined at 500°C has been included. Symbols: reference catalyst (?), C40-550 (○), C70-550 (●), and C100-550 (●)
Fig.9  Variation of the propane conversion with the reaction temperature for CoO samples prepared by a nanocasting route (a) Influence of the calcination temperature of the silica template on the catalytic activity and on the specific catalytic activity at 200°C (b) Symbols: C100-550 (●), C100-700 (?), C100-800 (Δ), and C100-900 (◇) []
1 Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, Mccullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society , 1992, 114(27): 10834–10843
doi: 10.1021/ja00053a020
2 Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society , 1998, 120(24): 6024–6036
doi: 10.1021/ja974025i
3 Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews , 1997, 97(6): 2373–2420
doi: 10.1021/cr960406n pmid:11848903
4 Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie International Edition , 1999, 38(1-2): 56–77
doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
5 Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews , 2007, 107(7): 2821–2860
doi: 10.1021/cr068020s pmid:17580976
6 On D T, Desplantier-Giscard D, Danumah C, Kaliaguine S. Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A, General , 2003, 253(2): 545–602
doi: 10.1016/S0926-860X(03)00195-9
7 Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials , 2005, 77(1): 1–45
doi: 10.1016/j.micromeso.2004.06.030
8 Schüth F. Non-siliceous mesostructured and mesoporous materials. Chemistry of Materials , 2001, 13(10): 3184–3195
doi: 10.1021/cm011030j
9 Kondo J N, Domen K. Crystallization of mesoporous metal oxides. Chemistry of Materials , 2008, 20(3): 835–847
doi: 10.1021/cm702176m
10 Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition , 2008, 47(16): 2930–2946
doi: 10.1002/anie.200702505 pmid:18338357
11 Ren Y, Ma Z, Bruce P G. Ordered mesoporous metal oxides: synthesis and applications. Chemical Society Reviews , 2012, 41(14): 4909–4927
doi: 10.1039/c2cs35086f pmid:22653082
12 Huo Q S, Margolese D I, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schüth F, Stucky G D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature , 1994, 368(6469): 317–321
doi: 10.1038/368317a0
13 Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized synthesis of large-pore mesoporous metal oxides with nanocrystalline walls. Nature , 1998, 396(6707): 152–155
doi: 10.1038/24132
14 Yu C Z, Tian B Z, Zhao D Y. Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science , 2003, 7(3): 191–197
doi: 10.1016/j.cossms.2003.10.004
15 Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Accounts of Chemical Research , 2007, 40(9): 784–792
doi: 10.1021/ar6000389 pmid:17461540
16 Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials , 2006, 18(14): 1793–1805
doi: 10.1002/adma.200600148
17 Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B , 1999, 103(37): 7743–7746
doi: 10.1021/jp991673a
18 Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications , 1999, 21: 2177–2178
doi: 10.1039/a906872d
19 Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network? Journal of Physical Chemistry B , 2000, 104(48): 11465–11471
doi: 10.1021/jp002597a
20 Schüth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angewandte Chemie International Edition , 2003, 42(31): 3604–3622
doi: 10.1002/anie.200300593 pmid:12916030
21 Lu A H, Schüth F. Nanocasting pathways to create ordered mesoporous solids. Comptes Rendus. Chimie , 2005, 8(3-4): 609–620
doi: 10.1016/j.crci.2004.10.020
22 Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry , 2005, 15: 1217–1231
23 Valdés-Solís T, Fuertes A B. High-surface area inorganic compounds prepared by nanocasting techniques. Materials Research Bulletin , 2006, 41(12): 2187–2197
doi: 10.1016/j.materresbull.2006.04.018
24 Wang Y G, Wang Y J, Li C L, Liu X H, Wang Y Q, Lu G Z. Synthetic methods of mesostructured metal oxides/composites. Progress in Chemistry , 2006, 18: 1338–1344
25 Tiemann M. Repeated templating. Chemistry of Materials , 2008, 20(3): 961–971
doi: 10.1021/cm702050s
26 Yue W B, Zhou W Z. Crystalline mesoporous metal oxide. Progress in Natural Science , 2008, 18(11): 1329–1338
doi: 10.1016/j.pnsc.2008.05.010
27 Rao Y X, Antonelli D M. Mesoporous transition metal oxides: Characterization and applications in heterogeneous catalysis. Journal of Materials Chemistry , 2009, 19(14): 1937–1944
doi: 10.1039/b813533a
28 Roggenbuck J, Sch?fer H, Tsoncheva T, Minchev C, Hanss J, Tiemann M. Mesoporous CeO2: Synthesis by nanocasting, characterization and catalytic properties. Microporous and Mesoporous Materials , 2007, 101(3): 335–341
doi: 10.1016/j.micromeso.2006.11.029
29 Carabineiro S A C, Bastos S S T, órf?o J J M, Pereira M F R, Delgado J J, Figueiredo J L. Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A, General , 2010, 381(1-2): 150–160
doi: 10.1016/j.apcata.2010.04.001
30 Carabineiro S A C, Bastos S S T, órf?o J J M, Pereira M F R, Delgado J J, Figueiredo J L. Carbon monoxide oxidation catalysed by exotemplated manganes oxides. Catalysis Letters , 2010, 134(3-4): 217–227
doi: 10.1007/s10562-009-0251-1
31 Bastos S S T, Carabineiro S A C, órf?o J J M, Pereira M F R, Delgado J J, Figueiredo J L. Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today , 2012, 180(1): 148–154
doi: 10.1016/j.cattod.2011.01.049
32 Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chemical Communications , 2003, 17: 2138–2139
doi: 10.1039/b305524h pmid:13678169
33 Zhu K K, Yue B, Zhou W Z, He H Y. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications , 2003, 1: 98–99
doi: 10.1039/b210065g pmid:12610984
34 Jiao K, Zhang B, Yue B, Ren Y, Liu S X, Yan S R, Dickinson C, Zhou W Z, He H Y. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chemical Communications , 2005, 45: 5618–5620
doi: 10.1039/b512080b pmid:16292367
35 Zhu K K, He H Y, Xie S H, Zhang X, Zhou W Z, Jin S, Yue B. Crystalline WO3 nanowires synthesized by templating method. Chemical Physics Letters , 2003, 377(3-4): 317–321
doi: 10.1016/S0009-2614(03)01206-5
36 Jiao F, Yue B, Zhu K K, Zhao D Y, He H Y. α-Fe2O3 nanowires. Confined synthesis and catalytic hydroxylation of phenol. Chemistry Letters , 2003, 32(8): 770–771
doi: 10.1246/cl.2003.770
37 Yue B, Tang H L, Kong Z P, Zhu K K, Dickinson C, Zhou W Z, He H Y. Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide. Chemical Physics Letters , 2005, 407(1-3): 83–86
doi: 10.1016/j.cplett.2005.03.066
38 Tian B Z, Liu X Y, Yang H F, Xie S H, Yu C Z, Tu B, Zhao D Y. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(16): 1370–1374
doi: 10.1002/adma.200305211
39 Tian B Z, Lui X, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chemical Communications , 2002, 11: 1186–1187
doi: 10.1039/b202180c pmid:12109074
40 Tian B Z, Liu X Y, Solovyov L A, Liu Z, Yang H F, Zhang Z D, Xie S H, Zhang F Q, Tu B, Yu C Z, Terasaki O, Zhao D Y. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. Journal of the American Chemical Society , 2004, 126(3): 865–875
doi: 10.1021/ja037877t pmid:14733562
41 Yang H F, Shi Q H, Tian B Z, Lu Q Y, Gao F, Xie S H, Fan J, Yu C Z, Tu B, Zhao D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. Journal of the American Chemical Society , 2003, 125(16): 4724–4725
doi: 10.1021/ja034005i pmid:12696887
42 Yue W B, Hill A H, Harrison A, Zhou W Z. Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chemical Communications , 2007, 24: 2518–2520
doi: 10.1039/b700185a pmid:17563815
43 Yue W B, Zhou W Z. Mesoporous metal oxides templated by FDU-12 using a new convient method. Studies in Surface Science and Catalysis , 2007, 170: 1755–1762
doi: 10.1016/S0167-2991(07)81056-1
44 Yue W B, Zhou W Z. Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. Journal of Materials Chemistry , 2007, 17(47): 4947–4952
doi: 10.1039/b709076e
45 Wang Y Q, Yang C M, Schmidt W, Spliethoff B, Bill E, Schüth F. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionaluzed cubic Ia3d mesoporous silica. Advanced Materials , 2005, 17: 53–56
doi: 10.1002/adma.200400777
46 Rumplecker A, Kleitz F, Salabas E L, Schüth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chemistry of Materials , 2007, 19(3): 485–496
doi: 10.1021/cm0610635
47 Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Microporous and Mesoporous Materials , 2005, 85(1-2): 157–162
doi: 10.1016/j.micromeso.2005.06.006
48 Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chemistry of Materials , 2007, 19(9): 2359–2363
doi: 10.1021/cm070124b
49 Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z, Schüth F. Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica. Journal of Nanoscience and Nanotechnology , 2008, 8(11): 5652–5658
doi: 10.1166/jnn.2008.226 pmid:19198284
50 Puertolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Aranda A, Taylor S H, Garcia T. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental , 2010, 93(3-4): 395–405
doi: 10.1016/j.apcatb.2009.10.014
51 Jin M S, Park J N, Shon J K, Li Z H, Yoon M Y, Na H J, Park Y W, Kim J M. Synthesis of highly ordered mesoporous CeO2 and low temperature CO oxidation over Pd/mesoporous CeO2. Research on Chemical Intermediates , 2011, 37(9): 1181–1192
doi: 10.1007/s11164-011-0385-9
52 Shen W H, Shi J L, Chen H R, Gu J L, Zhu Y F, Dong X P. Synthesis and CO oxidation catalytic character of high surface area ruthenium dioxide replicated by cubic mesoporous silica. Chemistry Letters , 2005, 34(3): 390–391
doi: 10.1246/cl.2005.390
53 Park J N, Shon J K, Jin M, Kong S S, Moon K, Park G O, Boo J H, Kim J M. Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst. Reaction Kinetics. Mechanism and Catalysis , 2011, 103: 87–99
54 Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesostructure synthesized by template SBA-15. Electrochimica Acta , 2006, 51(16): 3223–3227
doi: 10.1016/j.electacta.2005.09.013
55 Jiao F, Hill A H, Harrison A, Berko A, Chadwick A V, Bruce P G. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. Journal of the American Chemical Society , 2008, 130(15): 5262–5266
doi: 10.1021/ja710849r pmid:18348526
56 Kong A G, Zhu H Y, Wang W J, Zhang Q Y, Yang F, Shan Y K. Novel nanocasting method for synthesis of ordered mesoporous metal oxides. Journal of Porous Materials , 2011, 18(1): 107–112
doi: 10.1007/s10934-010-9361-9
57 Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. Ordered mesoporous Fe2O3 with crystalline walls. Journal of the American Chemical Society , 2006, 128(16): 5468–5474
doi: 10.1021/ja0584774 pmid:16620119
58 Zhou Q, Li X, Li Y G, Tian B Z, Zhao D Y, Jiang Z Y. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2. Chinese Journal of Chemistry , 2006, 24(7): 835–839
doi: 10.1002/cjoc.200690159
59 Luo J Y, Xia Y Y. Effect of pore structure on the electrochemical capacitive performance of MnO2. Journal of the Electrochemical Society , 2007, 154(11): A987–A992
doi: 10.1149/1.2775167
60 Jiao F, Bruce P G. Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(5): 657–660
doi: 10.1002/adma.200602499
61 Chandru R A, Patra S, Oommen C, Munichandraiah N, Raghunandan B N. Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. Journal of Materials Chemistry , 2012, 22(14): 6536–6538
doi: 10.1039/c2jm16169a
62 Du Y C, Meng Q, Wang J S, Yan J, Fan H G, Liu Y X, Dai H X. Three-dimensional mesoporous manganese oxides and cobalt oxides: highly-efficiency catalysts for the removal of toluene and carbon monoxide. Microporous and Mesoporous Materials , 2012, 162: 199–206
doi: 10.1016/j.micromeso.2012.06.030
63 Jiao F, Harrison A, Hill A H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(22): 4063–4066
doi: 10.1002/adma.200700336
64 Jin M, Kim J W, Kim J M, Jurng J, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology , 2011, 214(3): 458–462
doi: 10.1016/j.powtec.2011.08.046
65 Dickinson C, Zhou W Z, Hodgkins R, Shi Y F, Zhao D Y, He H Y. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chemistry of Materials , 2006, 18(13): 3088–3095
doi: 10.1021/cm060014p
66 Wang Y G, Yuan X H, Liu X H, Ren J W, Tong W Y, Wang Y Q, Lu G Z. Mesoporous single-crystal Cr2O3: Synthesis, characterization, and its activity in toluene removal. Solid State Sciences , 2008, 10(9): 1117–1123
doi: 10.1016/j.solidstatesciences.2007.11.018
67 Wang Y M, Wu Z Y, Wang H J, Zhu J H. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: the influence of host-guest interactions. Advanced Functional Materials , 2006, 16(18): 2374–2386
doi: 10.1002/adfm.200500613
68 Wang G X, Liu H, Horvat J, Wang B, Qiao S Z, Park J, Ahn H. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chemistry-A European Journal , 2010, 16(36): 11020–11027
doi: 10.1002/chem.201000562 pmid:20690118
69 Sun S J, Gao Q M, Wang H L, Zhu J K, Guo H L. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Applied Catalysis B: Environmental , 2010, 97(1-2): 284–291
doi: 10.1016/j.apcatb.2010.04.016
70 Garcia T, Agouram S, Sánchez-Royo J, Murillo R, Mastral A M, Aranda A A, Vázquez I, Dejoz A, Solsona B. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A, General , 2010, 386(1-2): 16–27
doi: 10.1016/j.apcata.2010.07.018
71 Zhang Y H, Wang A Q, Huang Y Q, Xu Q Q, Yin J Z, Zhang T. Nanocasting synthesis of mesostructured Co3O4 via a supercritical CO2 deposition method and the catalytic performance for CO oxidation. Catalysis Letters , 2012, 142(2): 275–281
doi: 10.1007/s10562-011-0748-2
72 Zhou L, Ren Q J, Zhou X F, Tang J W, Chen Z H, Yu C Z. Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous and Mesoporous Materials , 2008, 109(1-3): 248–257
doi: 10.1016/j.micromeso.2007.04.054
73 Cui X Z, Zhang H, Dong X P, Chen H R, Zhang L X, Guo L M, Shi J L. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry , 2008, 18(30): 3575–3580
doi: 10.1039/b806115g
74 Yue W B, Xu X X, Irvine J T, Attidekou P S, Liu C, He H Y, Zhao D Y, Zhou W Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties and its solid-state electrochemical properties. Chemistry of Materials , 2009, 21(12): 2540–2546
doi: 10.1021/cm900197p
75 Yue W B, Randorn C, Attidekou P S, Su Z X, Irvine J T S, Zhou W Z. Synthesis, Li insertion, and photocatalytic of mesoporous crystalline TiO2. Advanced Functional Materials , 2009, 19(17): 2826–2833
doi: 10.1002/adfm.200900658
76 Ren Y, Hardwick L J, Bruce P G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angewandte Chemie International Edition , 2010, 49(14): 2570–2574
doi: 10.1002/anie.200907099 pmid:20209547
77 Ren Y, Armstrong A R, Jiao F, Bruce P G. Influence of size on the rate of mesoporous electrodes for lithium batteries. Journal of the American Chemical Society , 2010, 132(3): 996–1004
doi: 10.1021/ja905488x pmid:20039669
78 Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Advanced Functional Materials , 2009, 19(4): 653–661
doi: 10.1002/adfm.200801458
79 Shu P, Ruan J F, Gao C B, Li H C, Che S A. Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes. Microporous and Mesoporous Materials , 2009, 123(1-3): 314–323
doi: 10.1016/j.micromeso.2009.04.017
80 Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. Preparation of mesoporous Co3O4 nanoparticles via solid-liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. Journal of Physical Chemistry C , 2009, 113(9): 3887–3894
doi: 10.1021/jp810230d
81 Jin H X, Gu X J, Hong B, Lin L S, Wang C Y, Jin D F, Peng X L, Wang X Q, Ge H L. Fabrication of mesoporous Co3O4 from LP-FDU-12 via nanocasting poute and effect of wall/pore size on their magnetic properties. Journal of Physical Chemistry C , 2012, 116(24): 13374–13381
doi: 10.1021/jp300645c
82 Ren Y, Jiao F, Bruce P G. Tailoring the pore size/wall thickness of mesoporous transition metal oxides. Microporous and Mesoporous Materials , 2009, 121(1-3): 90–94
doi: 10.1016/j.micromeso.2009.01.008
83 Wang Y G, Wang Y Q, Ren J W, Mi Y, Zhang F Y, Li C L, Liu X H, Guo Y, Guo Y L, Lu G Z. Synthesis of morphology-controllable mesoporous Co3O4 and CeO2. Journal of Solid State Chemistry , 2010, 183(2): 277–284
doi: 10.1016/j.jssc.2009.11.009
84 Haffer S, Waitz T, Tiemann M. Mesoporous In2O3 with regular morphology by nanocasting: A simple relation between defined particle shape and growth mechanism. Journal of Physical Chemistry C , 2010, 114(5): 2075–2081
doi: 10.1021/jp910336f
85 Ma Z, Ren Y, Bruce P G. Co3O4-KIT-6 composite catalysts: Synthesis, characterization, and application in catalytic decomposition of N2O. Journal of Nanoparticle Research , 2012, 14(8): 874
doi: 10.1007/s11051-012-0874-9
86 Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiMn2Ox with hematite or spinel structure: synthesis and application in electrochemical storage and catalytic conversion of N2O. CrystEngComm , 2011, 13(23): 6955–6959
doi: 10.1039/c1ce05972f
87 Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiCoMnO4: synthesis and application in energy storage and catalytic decomposition of N2O. Journal of Materials Chemistry , 2012, 22(30): 15121–15127
doi: 10.1039/c2jm31644g
88 Jiao F, Bao J L, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition , 2008, 47(50): 9711–9716
doi: 10.1002/anie.200803431 pmid:18989873
89 Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. Journal of the American Chemical Society , 2006, 128(39): 12905–12909
doi: 10.1021/ja063662i pmid:17002386
90 Ren Y, Bruce P G, Ma Z. Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere. Journal of Materials Chemistry , 2011, 21(25): 9312–9318
doi: 10.1039/c1jm10336a
91 Tüysüz H, Liu Y, Weidenthaler C, Schüth F. Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. Journal of the American Chemical Society , 2008, 130(43): 14108–14110
doi: 10.1021/ja806202v pmid:18826304
92 Tüysüz H, Weidenthaler C, Schüth F. A strategy for the synthesis of mesostructured metal oxides with lower oxidation states. Chemistry-A European Journal , 2012, 18(16): 5080–5086
doi: 10.1002/chem.201103650 pmid:22411225
93 Ren Y, Ma Z, Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol. CrystEngComm , 2012, 14(8): 2617–2620
doi: 10.1039/c2ce25045d
94 Tüysüz H, Salaba? E L, Bill E, Bongard H, Spliethoff B, Lehmann C W, Schüth F. Synthesis of hard magnetic ordered mesoporous Co3O4/CoFe2O4 nanocomposites. Chemistry of Materials , 2012, 24(13): 2493–2500
doi: 10.1021/cm3005166
95 Shi Y F, Wan Y, Zhang R Y, Zhao D Y. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Advanced Functional Materials , 2008, 18(16): 2436–2443
doi: 10.1002/adfm.200800488
96 Shi Y F, Guo B K, Corr S A, Shi Q H, Hu Y S, Heier K R, Chen L Q, Seshadri R, Stucky G D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Letters , 2009, 9(12): 4215–4220
doi: 10.1021/nl902423a pmid:19775084
97 Kang E, An S, Yoon S, Kim J K, Lee J. Ordered mesoporous WO3-x possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. Journal of Materials Chemistry , 2010, 20(35): 7416–7421
doi: 10.1039/c0jm00227e
98 Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S, Kleitz F. One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chemical Communications , 2011, 47(37): 10473–10475
doi: 10.1039/c1cc13867g pmid:21858306
99 Wang Y G, Ren J W, Wang Y Q, Zhang F Y, Liu X H, Guo Y, Lu G Z. Nanocated synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. Journal of Physical Chemistry C , 2008, 112(39): 15293–15298
doi: 10.1021/jp8048394
100 Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z. Nanocasted synthesis of the mesostructured LaCoO3 perovskite and its catalytic activity in methane combustion. Journal of Nanoscience and Nanotechnology , 2009, 9(2): 933–936
doi: 10.1166/jnn.2009.C057 pmid:19441425
101 Nair M M, Kleitz F, Kaliaguine S. Kinetics of methanol oxidation over mesoporous perovskite catalysts. ChemCatChem , 2012, 4(3): 387–394
doi: 10.1002/cctc.201100356
102 Zhu J K, Gao Q M. Mesoporous MCo2O4 (M= Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous and Mesoporous Materials , 2009, 124(1-3): 144–152
doi: 10.1016/j.micromeso.2009.05.003
103 Cabo M, Pellicer E, Rossinyol E, Castell O, Suri?ach S, Baró M D. Mesoporous NiCo2O4 spinel: influence of calcination temperature over phase purity and thermal stability. Crystal Growth & Design , 2009, 9(11): 4814–4821
doi: 10.1021/cg900648q
104 Cabo M, Pellicer E, Rossinyol E, Solsona P, Castell O, Suri?ach S, Baró M D. Influence of the preparation method on the morphology of templated NiCo2O4 spinel. Journal of Nanoparticle Research , 2011, 13(9): 3671–3681
doi: 10.1007/s11051-011-0287-1
105 Ma C Y, Mu Z, He C, Li P, Li J J, Hao Z P. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences (China) , 2011, 23(12): 2078–2086
pmid:22432341
106 Cabo M, Pellicer E, Rossinyol E, Estrader M, López-Ortega A, Nogués J, Castell O, Suri?ach S, Baró M D. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. Journal of Materials Chemistry , 2010, 20(33): 7021–7028
doi: 10.1039/c0jm00406e
107 Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D, Zhang Y. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. Journal of Materials Chemistry , 2010, 20(5): 945–952
doi: 10.1039/b919090b
108 Gu X, Zhu W M, Jia C J, Zhao R, Schmidt W, Wang Y Q. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chemical Communications , 2011, 47(18): 5337–5339
doi: 10.1039/c0cc05800a pmid:21445385
109 Hill M R, Booth J, Bourgeois L, Whitfield H J. Periodic mesoporous Lix(Mn1/3Ni1/3Co1/3)O2 spinel. Dalton Transactions (Cambridge, England) , 2010, 39(22): 5306–5309
doi: 10.1039/c005146m
110 Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH , 2002, 6(3): 102–115
doi: 10.1023/A:1020181423055
111 Ma Z, Dai S. Development of novel supported gold catalysts: A materials perspective. Nano Research , 2011, 4(1): 3–32
doi: 10.1007/s12274-010-0025-5
112 Ma Z, Dai S. Design of novel structured gold nanocatalysts. Acs Catalysis , 2011, 1(7): 805–818
doi: 10.1021/cs200100w
113 Zhu J K, Gao Q M, Chen Z. Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental , 2008, 81(3-4): 236–243
doi: 10.1016/j.apcatb.2007.12.017
114 Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Ordered crystalline mesoporous oxide as catalysts for CO oxidation. Catalysis Letters , 2009, 131(1-2): 146–154
doi: 10.1007/s10562-009-9931-0
115 Wang H J, Teng Y H, Radhakrishnan L, Nemoto Y, Imura M, Shimakawa Y, Yamauchi Y. Mesoporous Co3O4 for low temperature CO oxidation: effect of calcination temperatures on their catalytic performance. Journal of Nanoscience and Nanotechnology , 2011, 11(5): 3843–3850
doi: 10.1166/jnn.2011.3836 pmid:21780376
116 Tüysüz H, Lehmann C W, Bongard H, Tesche B, Schmidt R, Schüth F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. Journal of the American Chemical Society , 2008, 130(34): 11510–11517
doi: 10.1021/ja803362s pmid:18671351
117 Tüysüz H, Comotti M, Schüth F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chemical Communications , 2008, (34): 4022–4024
doi: 10.1039/b808815b pmid:18758613
118 Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature , 2009, 458(7239): 746–749
doi: 10.1038/nature07877 pmid:19360084
119 Yu Y B, Takei T, Ohashi H, He H, Zhang X L, Haruta M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80 °C. Journal of Catalysis , 2009, 267(2): 121–128
doi: 10.1016/j.jcat.2009.08.003
120 Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental , 1996, 9: 25–64
121 Kannan S. Catalytic applications of hydrotalcite-like materials and their derived forms. Catalysis Surveys from Asia , 2006, 10(3-4): 117–137
doi: 10.1007/s10563-006-9012-y
122 Deng J G, Zhang L, Dai H X, Xia Y S, Jiang H Y, Zhang H, He H. Ultrasound-assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. Journal of Physical Chemistry C , 2010, 114(6): 2694–2700
doi: 10.1021/jp910159b
123 Xia Y S, Dai H X, Jiang H Y, Deng J G, He H, Au C T. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environmental Science & Technology , 2009, 43(21): 8355–8360
doi: 10.1021/es901908k pmid:19924969
124 Xia Y S, Dai H X, Zhang L, Deng J G, He H, Au C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental , 2010, 100(1-2): 229–237
doi: 10.1016/j.apcatb.2010.07.037
125 Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J G, Liu Y. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials , 2011, 186(1): 84–91
doi: 10.1016/j.jhazmat.2010.10.073 pmid:21131127
126 Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society , 2010, 132(8): 2608–2613
doi: 10.1021/ja906274t pmid:20141130
127 Ma C Y, Wang D H, Xue W J, Dou B J, Wang H L, Hao Z P. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environmental Science & Technology , 2011, 45(8): 3628–3634
doi: 10.1021/es104146v pmid:21375237
128 Aranda A, Puértolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Taylor S H, Garcia T. Total oxidation of naphthalene using mesoporous CeO2 catalysts synthesized by nanocasting from two dimensional SBA-15 and three dimensional KIT-6 and MCM-48 silica templates. Catalysis Letters , 2010, 134(1-2): 110–117
doi: 10.1007/s10562-009-0203-9
129 Sun S M, Wang W Z, Zeng S Z, Shang M, Zhang L. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Journal of Hazardous Materials , 2010, 178(1-3): 427–433
doi: 10.1016/j.jhazmat.2010.01.098 pmid:20172648
130 Solsona B, Aylón E, Murillo R, Mastral A M, Monzonís A, Agouram S, Davies T E, Taylor S H, Garcia T. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials , 2011, 187(1-3): 544–552
doi: 10.1016/j.jhazmat.2011.01.073 pmid:21315508
131 Ying F, Wang S J, Au C T, Lai S Y. Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hard-template. Microporous and Mesoporous Materials , 2011, 142(1): 308–315
doi: 10.1016/j.micromeso.2010.12.017
132 Djinovi? P, Batista J, Pintar A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. International Journal of Hydrogen Energy , 2012, 37(3): 2699–2707
doi: 10.1016/j.ijhydene.2011.10.107
133 Jin M, Park J N, Shon J K, Kim J H, Li Z H, Park Y K, Kim J M. Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catalysis Today , 2012, 185(1): 183–190
doi: 10.1016/j.cattod.2011.09.019
134 Armatas G, Katsoulidis A P, Petrakis D E, Pomonis P J, Kanatzidis M G. Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks. Chemistry of Materials , 2010, 22(20): 5739–5746
doi: 10.1021/cm101972h
135 Tamiolakis I, Lykakis I N, Katsoulidis A P, Stratakis M, Armatas G S. Mesoporous Cr2O3-phosphomolybdic acid solid solution frameworks with high catalytic activity. Chemistry of Materials , 2011, 23(18): 4204–4211
doi: 10.1021/cm201547r
136 Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry , 2012, 22(14): 6919–6927
doi: 10.1039/c2jm16390j
137 Djinovi? P, Batista J, Levec J, Pintar A. Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods. Applied Catalysis A, General , 2009, 364(1-2): 156–165
doi: 10.1016/j.apcata.2009.05.044
138 Park J N, Shon J K, Jin M, Hwang S H, Park G O, Boo J H, Han T H, Kim J M. Highly ordered mesoporous α-MnO2 for catalytic decomposition of H2O2 at low temperatures. Chemistry Letters , 2010, 39(5): 493–494
doi: 10.1246/cl.2010.493
139 Cui X Z, Zhou J, Ye Z Q, Chen H R, Li L, Ruan M L, Shi J L. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-casting-replication method. Journal of Catalysis , 2010, 270(2): 310–317
doi: 10.1016/j.jcat.2010.01.005
140 Gong L, Sun L B, Sun Y H, Li T T, Liu X Q. Exploring in situ functionalization strategy in a hard template process: Preparation of sodium-modified mesoporous trtragonal zirconia with superbasicity. Journal of Physical Chemistry C , 2011, 115(23): 11633–11640
doi: 10.1021/jp2021165
141 Liu T T, Sun L B, Gong L, Liu X Y, Liu X Q. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. Journal of Molecular Catalysis A: Chemical , 2012, 352(1): 38–44
doi: 10.1016/j.molcata.2011.09.030
[1] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[2] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[3] Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
[4] Minghao SUI, Lei SHE. Review on research and application of mesoporous transitional metal oxides in water treatment[J]. Front Envir Sci Eng, 2013, 7(6): 795-802.
[5] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed