Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 803-814    https://doi.org/10.1007/s11783-013-0547-7
REVIEW ARTICLE
Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals
Qing ZHANG()
National Natural Science Foundation of China, Beijing 100085, China
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photodegradation is a major abiotic transformation pathway of toxic chemicals in the environment, which in some cases might lead to photoinduced toxicities. The data on photodegradation kinetics and photoinduced toxicities of organic chemicals are essential for their risk assessment. However, the relevant data are only available for a limited number of chemicals, due to the difficulty and high cost of experimental determination. Quantitative structure-activity relationship (QSAR) models that relate photodegradation kinetics or photoinduced toxicity of organic chemicals with their physicochemical properties or molecular structural descriptors may enable simple and fast estimation of their photochemical behaviors. This paper reviews the QSAR models on photodegradation quantum yields and rate constants for toxic organic chemicals in different media including liquid phase, gaseous phase, surfaces of plant leaves, and QSAR models on photoinduced toxicity of organic chemicals to plants, bacteria, and aquatic invertebrates. Further prospects for QSAR model development on photodegradation kinetics and photoinduced toxicity of refractory organic chemicals are proposed.

Keywords quantitative structure-activity relationship (QSAR) models      photodegradation      persistent organic pollutants      environmental media      mechanisms     
Corresponding Author(s): ZHANG Qing,Email:zhangq@nsfc.gov.cn   
Issue Date: 01 December 2013
 Cite this article:   
Qing ZHANG. Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals[J]. Front Envir Sci Eng, 2013, 7(6): 803-814.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0547-7
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/803
compoundsmediaphotolysis datalight sourcesparametersalgorithmsnumber of compoundsRef. No.
PAHsmethanol/water(1:1, v/v)photolysis rate constants500W medium pressure mercury lampquantum chemical descriptorsmultiple linear regression (MLR) methodn = 17[39]
aqueous solutiondirect photolysis quantum yields450W medium pressure mercury lamp, UV light (313 nm, 366 nm, 436 nm)quantum chemical descriptorsPLS algorithmn = 13[37]
near-surface water bodyphotolysis half-life valuessunlight, latitude 40°N, midday and midsummerquantum chemical descriptorsPLS algorithmn = 13[40]
near-surface water bodyphotolysis half-life valuessunlightquantum chemical descriptorsPLS algorithmn = 13[41]
atmospheric areosolsphotolysis half-life values253.7 nmquantum chemical descriptorsPLS algorithmn = 11[42]
atmospheric areosolsphotolysis half-life values253.7 nmquantum chemical descriptorsPLS algorithmn = 11[43]
methanol/water(1:1, v/v)photolysis rate constants500W medium pressure mercury lampquantum chemical descriptorsMLR and back propagation (BP)-ANN methodn = 16[44]
fly ashphotolysis rate constantssimulated sunlightquantum chemical descriptorsPLS algorithmn = 16[45]
PCDD/Fswater/acetonitrile solutiondirect photolysis quantum yields313 nm from the Rayonet RPR 3000 ? lampsquantum chemical descriptorsPLS algorithmn = 7[32]
water/acetonitrile solutiondirect photolysis quantum yieldsrayonet RPR 3000 ? lampsquantum chemical descriptorsPLS algorithmn = 9[33]
Lemna gibbaphotoinduced toxicitysimulated sunlightphotophysical descriptorsPLS algorithmn = 16[16]
Daphnia magnaand Scenedesmus vacuolatusphotoinduced toxicitysunlightquantum chemical descriptorsMLRmethodn = 19[31]
Lemna gibbaphotoinduced toxicitysimulated sunlightquantum chemical descriptorsPLS algorithmn = 16[46]
Vibrio fischeriphotoinduced toxicitysimulated sunlightquantum chemical descriptorsMLR methodn = 16[35]
cuticular waxes of laurel cherry (Prunus laurocerasus)photolysis rate constantshigh pressure mercury lamps and sunlightquantum chemical descriptorsPLS algorithmn = 9, 10[47]
spruce (Picea abies (L.) Karst.) needle surfacesphotolysis half-life valuessunlightquantum chemical descriptorsPLS algorithmn = 70[48]
spruce (Picea abies (L.) Karst.) needle surfacesphotolysis half-life valuessunlightbond-energy-related descriptorsMLR methodn = 70[49]
spruce (Picea abies (L.) Karst.) needle surfacesphotolysis half-life valuessunlightelectrotopological state indicesPLS algorithmn = 42[50]
spruce (Picea abies (L.) Karst.) needle surfacesphotolysis half-life valuessunlightconstitutional, topological, geometric, electrostatic, and quantum chemical descriptorsMLR and projection pursuit regression (PPR) methodsn = 42[51]
fly ashphotolysis half-life valuessimulated sunlightquantum chemical descriptorsPLS algorithmn = 75[52]
PCBspure waterphotolysis half-life values15W UV (254 nm)quantum chemical descriptorsPLS algorithmn = 7[53]
n-hexanephotolysis rate constants500-W high-pressure mercury lampquantum chemical descriptorsPLS algorithmn = 16[54]
n-hexanephotolysis half-life values15W UV (254 nm)quantum chemical descriptorsPLS algorithmn = 22[55]
ClPAHs and parent PAHscyclohexanephotolysis half-life values and quantum yields450 W high-pressure mercury lamp (l>290 nm)quantum chemical and geometrical descriptorsMLR methodn = 16[56]
particulates in urban airphotolysis half-life valuessimulated sunlightquantum chemical descriptorsPLS algorithmn = 12[57]
Nitronaphthalenes and Methylnitronaphthalenesairphotolysis half-life valuesblack-lamp irradiation and natural sunlightquantum chemical descriptorsPLS algorithmn = 13[58]
PBDEsmethanol/water (8:2, v:v), Methanoldirect photolysis rate constants and quantum yieldsUV light in the sunlight regionquantum chemical descriptorsPLS algorithmn = 9, 11, 15[59]
methanol/water (8:2, v:v)direct photolysis rate constants and quantum yieldsUV light in the sunlight regionquantum chemical descriptorsPLS algorithmn = 9, 11, 15[60]
hexane and methanolphotolysis rate constants and quantum yieldsrayonet RPR 3000 ? lampsquantum chemical descriptorsPLS algorithmn = 18[61]
PBDEs, OH-PBDEs, and selected OCPsmethanol/water (8:2, v:v)photolysis half-life valuesUV light in the sunlight regionground state based size, reactivity related descriptors, fragment based descriptors, and quantum chemical descriptorsPCA, PLS and ANN approach.n = 30[62]
substituted aromatic halideswaterphotolysis quantum yieldseight RUL 3000 ? lampsquantum chemical descriptorsfactor analysis, MLR methodn = 45[63]
waterphotolysis quantum yieldseight RUL 3000 ? lampsquantum chemical descriptorsPLS algorithmn = 45[38]
dilute aqueous solution (water:acetonitrile, 90:10, v/v)photolysis quantum yieldseight RUL 3000 ? lamps (250 nm<l<350 nm)molecular structural descriptorsMLR methodn = 13[64]
waterphotolysis quantum yieldseight RUL 3000 ? lampsquantum chemical descriptorsfactor analysis and cluster analysisn = 45[65]
1,4-dihydropyridine antihypertensiveswaterphotodegradation rate constantsxenon lamptheoretical molecular descriptorsPLS algorithmn = 9[66]
Tab.1  Established QSAR models on photolysis kinetics and photoinduced toxicity of organic pollutants in different media
namechemical structuremediaanalytical QSPR equationsmain mechanistic pointsRef. No.
PAHsmethanol/water (1:1, v/v)log k = 7.2071 - 0.0044DHf - 1.0486DEL-H - 0.0006TEheat of reaction, outmost orbital electron, total bond energy[44]
methanol/water (1:1, v/v)log k = -32.738+ 9.770DEL-H - 0.715DEL-H2absolute hardness[39]
fly ashlog k = -1.902-1.556 × 10-3Mw + 8.077 × 10-5TE + 7.063 × 10-6EE-1.524 × 10-2DHf-3.569 × 10-2DEL+Hmolecular weight, total bond energy, electronic energy, heat of reaction, absolute electronegativity[45]
chlorinated PAHsparticulates in urban airlog t1/2 = -2.846+ 1.242ELUMO+1-0.843EL+H + 0.108DEL-H + 6.820 × 10-3DEL-H2-2.152 × 10-3a + 0.270EHOMO-1-21.641QH+the frontier molecular orbital energies and their combinations, the deformation of molecules, charge distribution for hydrogen[57]
PCDD/Fsspruce (Picea abies (L.) Karst.) needle surfaceslog t1/2 = -0.6733+ 3.055 × 10-3a-1.087 × 10-4TE + 9.510 × 10-4Mw + 6.920 × 10-3DEL-H2 + 1.005 × 10-1DEL-Hthe deformation of molecules, total bond energy, molecular weight, absolute hardness[48]
fly ashlog t1/2 = 1.045-7.814 × 10-2ELUMO-5.156 × 10-2EL+H-1.220 × 10-1DEL-H + 1.017 × 10-3Mw-1.637qC- + 4.121 × 10-1qO--8.116 × 10-2EHOMOthe accept electrons ability, absolute electronegativity, absolute hardness, molecular weight, electron donor ability, charge distribution for carbon and oxygen[52]
PCBspure waterlog t1/2 = -3.681+ 1.284 × 101QC--3.408 × 10-2?Hf-7.202QCl+-1.779ELUMO+1 + 6.914 × 10-1EHOMO-1.188 × 101QH+heat of reaction, electron donor ability, charge distribution for carbon, hydrogen and chlorine[53]
n-hexanelog t1/2 = 2.124 × 10-2-1.997 × 10-2?Hf-4.586 × 10-4TE + 4.012 × 10-3Mw-2.552 × 10-1μ-3.927QC-heat of reaction, the affinity for leaching, molecular weight, charge distribution for carbon, total bond energy[55]
nitronaphthalenes and methylnitronaphthalenesairlogt = -6.060-1.345 × 10-2DHf + 3.227ELUMO + 4.573QN+-0.701QC--9.050 × 10-3CCRheat of reaction, accept electrons ability, charge distribution for carbon and nitrogen[58]
PBDEsmethanollog k = -0.201+ 1.569 × 10-3Mw-3.66 × 10-4TE-3.93 × 10-4EE-6.422 × 10-1ELUMO-1.968 × 10-3CCR-61.941QH+molecular weight, total bond energy, electronic energy, accept electrons ability, charge distribution for hydrogen, core-core repulsion energy[60]
methanol/water (8:2, v:v)log k = -17.616+ 1.320 × 10-3Mw + 1.062 × 10-2DHf-3.08 × 10-4TE-1.173 × 10-3CCR-1.2939EHOMO-5.066 × 10-2DEL-H2molecular weight, heat of reaction, total bond energy, core-core repulsion energy, electron donor ability, absolute hardness
substituted aromatic halideswaterlog F = -0.010 (± 0.004)BS + 0.665 (± 0.105)ES + 1.031 (± 0.213)steric effects, electronic effects[64]
Tab.2  Selected QSPR equations on photolysis and their main mechanistic points of organic pollutants in different media
1 Zhang Q, Huang J, Yu G. Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions from open burning of crop residues in China between 1997 and 2004. Environmental Pollution , 2008, 151(1): 39-46
doi: 10.1016/j.envpol.2007.03.011 pmid:17482329
2 Wang B, Huang J, Deng S B, Yang X L, Yu G. Addressing the environmental risk of persistent organic pollutants in China. Frontiers of Environmental Science & Engineering , 2012, 6(1): 2-16
doi: 10.1007/s11783-011-0370-y
3 Niu J F, Chen J W, Martens D, Henkelmann B, Quan X, Yang F L, Seidlitz H K, Schramm K W. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles. Science of the Total Environment , 2004, 322(1-3): 231-241
doi: 10.1016/j.scitotenv.2003.09.017 pmid:15081751
4 Meharg A A, Killham K. Environment: a pre-industrial source of dioxins and furans. Nature , 2003, 421(6926): 909-910
doi: 10.1038/421909a pmid:12606987
5 Heilmann C, Budtz-J?rgensen E, Nielsen F, Heinzow B, Weihe P, Grandjean P. Serum concentrations of antibodies against vaccine toxoids in children exposed perinatally to immunotoxicants. Environmental Health Perspectives , 2010, 118(10): 1434-1438
doi: 10.1289/ehp.1001975 pmid:20562056
6 de Boer J, Wester P G, Klamer H J, Lewis W E, Boon J P. Do flame retardants threaten ocean life? Nature , 1998, 394(6688): 28-29
doi: 10.1038/27798 pmid:9665124
7 Bunge M, Adrian L, Kraus A, Opel M, Lorenz W G, Andreesen J R, G?risch H, Lechner U. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature , 2003, 421(6921): 357-360
doi: 10.1038/nature01237 pmid:12540897
8 Kim K, Kim K S, Son S H, Cho J, Kim Y C. Supercritical water oxidation of transformer oil contaminated with PCBs—A road to commercial plant from bench-scale facility. Journal of Supercritical Fluids , 2011, 58(1): 121-130
doi: 10.1016/j.supflu.2011.04.021
9 Granelli L, Eriksson J, Bergman ?. Sodium borohydride reduction of individual polybrominated diphenyl ethers. Chemosphere , 2012, 86(10): 1008-1012
doi: 10.1016/j.chemosphere.2011.11.037 pmid:22185792
10 Niu J F, Chen J W, Martens D, Quan X, Yang F L, Kettrup A, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst] needles under sunlight irradiation. Environmental Pollution , 2003, 123(1): 39-45
doi: 10.1016/S0269-7491(02)00362-7 pmid:12663204
11 Lin J, Chen J W, Wang Y, Cai X Y, Wei X, Qiao X. More toxic and photoresistant products from photodegradation of fenoxaprop-p-ethyl. Journal of Agricultural and Food Chemistry , 2008, 56(17): 8226-8230
doi: 10.1021/jf801341s pmid:18683946
12 Niu J F, Yu G. Prediction of the ability of PAHs to be photocytotoxic to a cell line from the rainbow trout (Oncorhynchus mykiss) gill. Bulletin of Environmental Contamination and Toxicology , 2004, 73(4): 659-665
doi: 10.1007/s00128-004-0477-y pmid:15389330
13 Paasivirta J, Sinkkonen S. Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions. Journal of Chemical & Engineering Data , 2009, 54(4): 1189-1213
doi: 10.1021/je800501h
14 Niu J F, Chen J W, Henkelmann B, Quan X, Yang F L, Kettrup A, Schramm K W. Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies (L.) Karst.) needles under sunlight irradiation. Chemosphere , 2003, 50(9): 1217-1225
doi: 10.1016/S0045-6535(02)00509-X pmid:12547335
15 Niu J F, Yu G, Liu X T. Advances in photolysis of persistent organic pollutants in water. Progress in Chemistry , 2005, 17(5): 938-948 (in Chinese)
16 Huang X D, Krylov S N, Ren L, McConkey B J, Dixon D G, Greenberg B M. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3. Environmental Toxicology and Chemistry , 1997, 16(11): 2296-2301
17 Foote C S. Type I and type II mechanisms in photodynamic action. ACS Symposium Series , 1987, 339:22-38
18 Huang X D, Dixon D G, Greenberg B M. Impacts of UV radiation and photomodification on the toxicity of PAHs to higher plant Lemna gibba (duckweed). Environmental Toxicology and Chemistry , 1993, 12(6): 1067-1077
19 Oris J T, Giesy J P Jr. The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology , 1985, 6(2): 133-146
doi: 10.1016/0166-445X(85)90012-8
20 Huang X D, Dixon D G, Greenberg B M. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight: impacts on the duckweed Lemna gibba L. G-3. Ecotoxicology and Environmental Safety , 1995, 32(2): 194-200
doi: 10.1006/eesa.1995.1102 pmid:8575366
21 Boese B L, Lamberson J O, Swartz R C, Ozretich R J. Photoinduced toxicity of fluoranthene to seven marine benthic crustaceans. Archives of Environmental Contamination and Toxicology , 1997, 32(4): 389-393
doi: 10.1007/s002449900201 pmid:9175504
22 Diamond S A, Mount D R, Burkhard L P, Ankley G T, Makynen E A, Leonard E N. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry , 2000, 19(5): 1389-1396
doi: 10.1002/etc.5620190522
23 Wernersson A S, Dave G. Phototoxicity identification by solid phase extraction and photoinduced toxicity to Daphnia magna. Archives of Environmental Contamination and Toxicology , 1997, 32(3): 268-273
doi: 10.1007/s002449900184 pmid:9096075
24 Zhang Q, Huang J, Yu G. Prediction of soot-water partition coefficients for selected persistent organic pollutants from theoretical molecular descriptors. Progress in Natural Science-Materials International , 2008, 18(7): 867-872
doi: 10.1016/j.pnsc.2008.02.006
25 Yang P, Chen J W, Chen S, Yuan X, Schramm K W, Kettrup A. QSPR models for physicochemical properties of polychlorinated diphenyl ethers. Science of the Total Environment , 2003, 305(1-3): 65-76
doi: 10.1016/S0048-9697(02)00467-9 pmid:12670758
26 Tao X Q, Lu G N, Fei H L, Zhou K Q. Estimation of dissolvability of chloric and alkyl benzene derivatives using quantum chemical descriptors and partial least squares. Journal of Theoretical and Computational Chemistry , 2008, 7(5): 989-999
doi: 10.1142/S0219633608004350
27 Wang B, Yu G, Huang J. Application of QSAR/QSPR in fate evaluation and risk assessment of POPs. Progress in Chemistry , 2007, 19(10): 1612-1619 (in Chinese)
28 Wang Y N, Chen J W, Li X H, Wang B, Cai X, Huang L. Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation. Atmospheric Environment , 2009, 43(5): 1131-1135
doi: 10.1016/j.atmosenv.2008.11.012
29 Zheng G, Huang W H, Lu X H. Prediction of n-octanol/water partition coefficients for polychlorinated dibenzo-p-dioxins using a general regression neural network. Analytical and Bioanalytical Chemistry , 2003, 376(5): 680-685
doi: 10.1007/s00216-003-1910-5 pmid: PMID:12761606
30 ?krbi? B, Onjia A. Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. Journal of Chromatography A , 2006, 1108(2): 279-284
doi: 10.1016/j.chroma.2006.01.080 pmid:16464457
31 Wang Y, Chen J W, Li F, Qin H, Qiao X L, Hao C. Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere , 2009, 76(7): 999-1005
doi: 10.1016/j.chemosphere.2009.04.010 pmid:19427664
32 Chen J W, Quan X, Peijnenburg W J G M, Yang F L. Quantitative structure-property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemosphere , 2001, 43(2): 235-241
doi: 10.1016/S0045-6535(00)00141-7 pmid:11297403
33 Chen J W, Quan X, Schramm K W, Kettrup A, Yang F L. Quantitative structure-property relationships (QSPRs) on direct photolysis of PCDDs. Chemosphere , 2001, 45(2): 151-159
doi: 10.1016/S0045-6535(00)00554-3 pmid:11572607
34 Newsted J L, Giesy J P. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea). Environmental Toxicology and Chemistry , 1987, 6(6): 445-461
35 El-Alawi Y S, Huang X D, Dixon D G, Greenberg B M. Quantitative structure-activity relationship for the photoinduced toxicity of polycyclic aromatic hydrocarbons to the luminescent bacteria Vibrio fischeri. Environmental Toxicology and Chemistry , 2002, 21(10): 2225-2232
pmid:12371502
36 Mezey P G, Zimpel Z, Warburton P, Walker P D, Irvine D G, Huang X D, Dixon D G, Greenbenrg B M. Use of quantitative shape-activity relationships to model the photoinduced toxicity of polycyclic aromatic hydrocarbons electron density shape features accurately predict toxicity. Environmental Toxicology and Chemistry , 1998, 17(7): 1207-1215
37 Chen J W, Peijnenburg W J G M, Quan X, Yang F L. Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science of the Total Environment , 2000, 246(1): 11-20
doi: 10.1016/S0048-9697(99)00407-6 pmid:10682373
38 Chen J W, Peijnenburg W J G M, Quan X, Chen S, Zhao Y Z, Yang F L. The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere , 2000, 40(12): 1319-1326
doi: 10.1016/S0045-6535(99)00277-5 pmid:10789971
39 Chen J W, Kong L R, Zhu C M, Huang Q G, Wang L S. Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere , 1996, 33(6): 1143-1150
doi: 10.1016/0045-6535(96)00250-0
40 Chen J W, Peijnenburg W J G M, Quan X, Chen S, Martens D, Schramm K W, Kettrup A. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution , 2001, 114(1): 137-143
doi: 10.1016/S0269-7491(00)00195-0 pmid:11444002
41 Lu G N, Dang Z, Tao X Q, Peng P A, Zhang D C. QSPR study on direct photolysis half-lives of PAHs in water surface. Journal of Theoretical and Computational Chemistry , 2005, 4(3): 811-822
doi: 10.1142/S0219633605001817
42 Lu G N, Dang Z, Tao X Q, Yang C, Yi X Y. Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors. Science of the Total Environment , 2007, 373(1): 289-296
doi: 10.1016/j.scitotenv.2006.08.045 pmid:17173954
43 Chen J W, Quan X, Yan Y, Yang F L, Peijnenburg W J G M. Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere , 2001, 42(3): 263-270
doi: 10.1016/S0045-6535(00)00077-1 pmid:11100926
44 Zhou Z M, Li X L, Jing G H. Quantitative models for the structure and photodegradation of polycyclic aromatic hydrocarbons. Chinese Journal of Structural Chemistry , 2010, 29(2): 205-212 (In Chinese)
45 Niu J F, Sun P, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry , 2007, 186(1): 93-98
doi: 10.1016/j.jphotochem.2006.07.016
46 Krylov S N, Huang X D, Zeiler L F, Dixon D G, Greenberg B M. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a two-compartment system. Environmental Toxicology and Chemistry , 1997, 16(11): 2283-2295
47 Chen J W, Quan X, Yang F L, Peijnenburg W J G M. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Science of the Total Environment , 2001, 269(1-3): 163-170
doi: 10.1016/S0048-9697(00)00827-5 pmid:11305337
48 Niu J F, Huang L P, Chen J W, Yu G, Schramm K W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere , 2005, 58(7): 917-924
doi: 10.1016/j.chemosphere.2004.09.051 pmid:15639263
49 Katritzky A R, Slavov S H, Stoyanova-Slavova I B, Karelson M. Correlation of the photolysis half-lives of polychlorinated dibenzo-p-dioxins and dibenzofurans with molecular structure. Journal of Physical Chemistry A , 2010, 114(7): 2684-2688
doi: 10.1021/jp910470e pmid:20112909
50 Wang L, Liu X H, Hou J. Prediction of photolysis half-lives of PCDFs with the electrotopological state indices. Acta Chimica Sinica , 2007, 65(3): 184-190 (in Chinese)
51 Yuan Y N, Zhang R S, Hu R J. Prediction of photolysis of PCDD/Fs adsorbed to spruce [Picea abies (L.) Karst.] needle surfaces under sunlight irradiation based on projection pursuit regression. QSAR & Combinatorial Science , 2009, 28(2): 155-162
doi: 10.1002/qsar.200860043
52 Niu J F, Chen J, Yu G, Schramm K W. Quantitative structure-property relationships on direct photolysis of PCDD/Fs on surfaces of fly ash. SAR and QSAR in Environmental Research , 2004, 15(4): 265-277
doi: 10.1080/10629360410001724932 pmid:15370417
53 Bao Y P, Huang Q Y, Wang W L, Xu J J, Jiang F, Feng C H. Application of quantum chemical descriptor in quantitative structure-property relationship for the prediction of photolysis half-life of PCBs in water. Frontiers of Environmental Science & Engineering in China , 2011, 5(4): 505-511
doi: 10.1007/s11783-011-0318-2
54 Li X, Fang L, Huang J, Yu G. Photolysis of mono- through deca-chlorinated biphenyls by ultraviolet irradiation in n-hexane and quantitative structure-property relationship analysis. Journal of Environmental Sciences-China , 2008, 20(6): 753-759
doi: 10.1016/S1001-0742(08)62123-3 pmid:18763572
55 Niu J F, Yang Z F, Shen Z Y, Wang L L. QSPRs for the prediction of photodegradation half-life of PCBs in n-hexane. SAR and QSAR in Environmental Research , 2006, 17(2): 173-182
doi: 10.1080/10659360600636170 pmid:16644556
56 Ohura T, Amagai T, Makino M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane. Chemosphere , 2008, 70(11): 2110-2117
doi: 10.1016/j.chemosphere.2007.08.064 pmid:17936329
57 Niu J F, Wang L L, Yang Z F. QSPRs on photodegradation half-lives of atmospheric chlorinated polycyclic aromatic hydrocarbons associated with particulates. Ecotoxicology and Environmental Safety , 2007, 66(2): 272-277
doi: 10.1016/j.ecoenv.2006.02.014 pmid:16618506
58 Niu J F, Yang Z F, Shen Z Y, Long X X. Estimation of photolysis lifetimes of the nitronaphthalenes and methylnitronaphthalenes. Bulletin of Environmental Contamination and Toxicology , 2005, 75(4): 813-819
doi: 10.1007/s00128-005-0823-8 pmid:16400565
59 Chen J W, Wang D G, Wang S L, Qiao X, Huang L. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers. Ecotoxicology and Environmental Safety , 2007, 66(3): 348-352
doi: 10.1016/j.ecoenv.2006.01.003 pmid:16488010
60 Niu J F, Shen Z Y, Yang Z F, Long X X, Yu G. Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere , 2006, 64(4): 658-665
doi: 10.1016/j.chemosphere.2005.10.051 pmid:16343592
61 Fang L, Huang J, Yu G, Li X. Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol. Ecotoxicology and Environmental Safety , 2009, 72(5): 1587-1593
doi: 10.1016/j.ecoenv.2008.09.013 pmid:18995905
62 Heimstad E S, Bastos P M, Eriksson J, Bergman K, Harju M. Quantitative structure- photodegradation relationships of polybrominated diphenyl ethers, phenoxyphenols and selected organochlorines. Chemosphere , 2009, 77(7): 914-921
doi: 10.1016/j.chemosphere.2009.08.037 pmid:19762064
63 Chen J W, Peijnenburg W J G M, Wang L S. Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere , 1998, 36(13): 2833-2853
doi: 10.1016/S0045-6535(97)10238-7
64 Peijnenburg W J G M, De Beer K G M, DeHaan M W A, Den Hollander H A, Stegeman M H L, Verboom H. Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. Environmental Science & Technology , 1992, 26(11): 2116-2121
doi: 10.1021/es00035a007
65 Chen J W, Peijnenburg W J G M, Quan X, Zhao Y Z, Xue D M, Yang F L. The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere , 1998, 37(6): 1169-1186
doi: 10.1016/S0045-6535(98)00112-X
66 Ioele G, De Luca M, Oliverio F, Ragno G. Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship. Talanta , 2009, 79(5): 1418-1424
doi: 10.1016/j.talanta.2009.06.009 pmid:19635379
67 Zepp R G, Schlotzhauer P F. Photoreactivity of selected aromatic hydrocarbons in water. In: Jones P R, Leber P, eds. Polynuclear Aromatic Hydrocarbons . Ann Arbor: Ann Arbor Science Publishers, 1979, 141-158
68 Mill T, Mabey W R, Lan B Y, Baraze A. Photolysis of polycyclic aromatic hydrocarbons in water. Chemosphere , 1981, 10(11-12): 1281-1290
doi: 10.1016/0045-6535(81)90045-X
69 Miller J S, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water. Water Research , 2001, 35(1): 233-243
doi: 10.1016/S0043-1354(00)00230-X pmid:11257878
70 Lehto K M, Vuorimaa E, Lemmetyinen H. Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. Journal of Photochemistry and Photobiology A Chemistry , 2000, 136(1-2): 53-60
doi: 10.1016/S1010-6030(00)00321-X
71 Smith J H, Mabey W R, Bahonos N, Holt B R, Lee S S, Chou T W, Benberger D C, Mill T. Environmental pathways of selected chemicals in fresh water systems: Part II. Laboratory studies (Interagency Energy-Environment Research Report EPA-600/7–78–074). Athenes: Environmental Reserch Office of Research and Development, US Environmental Protection Agency , 1979
72 Tysklind M, Lundgren K, Rappe C, Eriksson L, Jonsson J, Sjostrom M, Ahlborg U G. Multivariate characterization and modeling of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology , 1992, 26(5): 1023-1030
doi: 10.1021/es00029a023
73 Tysklind M, Rappe C. Photolytic transformation of polychlorinated dioxins and dibenzofurans in fly ash. Chemosphere , 1991, 23(8-10): 1365-1375
doi: 10.1016/0045-6535(91)90161-6
74 Koester C J, Hites R A. Photodegradation of polychlorinated dioxins and dibenzofurans absorbed to fly ash. Environmental Science & Technology , 1992, 26(3): 502-507
doi: 10.1021/es00027a008
75 Korfmacher W A, Natusch D F S, Taylor D R, Mamantov G, Wehry E L. Oxidative transformations of polycyclic aromatic hydrocarbons adsorbed on coal fly ash. Science , 1980, 207(4432): 763-765
doi: 7352284" target="_blank">10.1126/science. pmid:7352284 pmid:7352284
76 Korfmacher W A, Wehry E L, Mamantov G, Natusch D F S. Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environmental Science & Technology , 1980, 14(9): 1094-1099
doi: 10.1021/es60169a019
77 Yokley R A, Garrison A A, Wehry E L, Mamantov G. Photochemical transformation of pyrene and benzo[a]pyrene vapor-deposited on eight coal stack ashes. Environmental Science & Technology , 1986, 20(1): 86-90
doi: 10.1021/es00143a011 pmid:22300156
78 Schuler F, Schmid P, Schlatter C H. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofuzans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere , 1998, 36(1): 21-34
doi: 10.1016/S0045-6535(97)00349-4
79 McCrady J K, Maggard S P. Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environmental Science & Technology , 1993, 27(2): 343-350
doi: 10.1021/es00039a015
80 McConkey B J, Duxbury C L, Dixon D G, Greenberg B M. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environmental Toxicology and Chemistry , 1997, 16(5): 892-899
81 Little E E, Cleveland L, Calfee R, Barron M G. Assessment of the photoenhanced toxicity of a weathered oil to the tidewater silverside. Environmental Toxicology and Chemistry , 2000, 19(4): 926-932
doi: 10.1002/etc.5620190420
82 Huovinen P S, Soimasuo M R, Oikari A O J. Photoinduced toxicity of retene to Daphnia magna under enhanced UV-B radiation. Chemosphere , 2001, 45(4-5): 683-691
doi: 10.1016/S0045-6535(01)00014-5 pmid:11680764
83 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology , 2004, 55(1): 373-399
doi: 10.1146/annurev.arplant.55.031903.141701 pmid:15377225
84 Richard A M. Future of toxicology—predictive toxicology: an expanded view of “chemical toxicity”. Chemical Research in Toxicology , 2006, 19(10): 1257-1262
doi: 10.1021/tx060116u pmid:17040094
85 Feng J, Lurati L, Ouyang H J, Robinson T, Wang Y Y, Yuan S L, Young S S. Predictive toxicology: benchmarking molecular descriptors and statistical methods. Journal of Chemical Information and Computer Sciences , 2003, 43(5): 1463-1470
doi: 10.1021/ci034032s pmid:14502479
86 Fielden M R, Zacharewski T R. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicological Sciences , 2001, 60(1): 6-10
doi: 10.1093/toxsci/60.1.6 pmid:11222867
87 Benigni R, Giuliani A. Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics , 2003, 19(10): 1194-1200
doi: 10.1093/bioinformatics/btg099 pmid:12835261
88 Larson R A, Berenbaum M R. Environmental phototoxicity. Environmental Science & Technology , 1988, 22(4): 354-360
doi: 10.1021/es00169a001
89 Morgan D D, Warshawsky D, Atkinson T. The relationship between carcinogenic activities of polycyclic aromatic hydrocarbons and their singlet, triplet, and singlet-triplet splitting energies of phosphorescence lifetimes. Photochemistry and Photobiology , 1977, 25(1): 31-38
doi: 10.1111/j.1751-1097.1977.tb07421.x pmid:847021
90 Mekenyan O G, Ankley G T, Veith G D, Call D J. QSAR for photoinduced toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere , 1994, 28(3): 567-582
doi: 10.1016/0045-6535(94)90299-2
91 Kochevar I E. Mechanisms of drug photosensitization. Photochemistry and Photobiology , 1987, 45(6): 891-895
doi: 10.1111/j.1751-1097.1987.tb07899.x pmid:3306725
92 Ankley G T, Collyard S A, Monson P D, Kosian P A. Influence of UV light on the toxicity of sediments contaminated with PAHs. Environmental Toxicology and Chemistry , 1994, 13(11): 456-466
doi: 10.1002/etc.5620131110
93 PetiteJ M, Ormrod D P. Sulphur-dioxide and nitrogen-dioxide affect growth, gas-exchange and water relations of potato plants. Journal of the American Society for Horticultural Science , 1992, 117(1): 146-153
94 Sanderman G, B?ger P. Sites of herbicide inhibition at the photosynthetic apparatus. In: Staehelin L A, Arntzen C J, editors. Encyclopedia of Plant Physiology. New series, vol 19. Photosynthesis III . NewYork: Spinger, 1986, 595-602
95 Schmidt W, Neubauer C, Kolbowski J, Schreiber U, Urbach W. Comparison of effects of air pollutants (SO2, O3, NO2) on intact leaves by measurements of chlorophyll fluorescence and P700 absorbance changes. Photosynthesis Research , 1990, 25(3): 241-248
doi: 10.1007/BF00033165
96 Moreland D E. Mechanisms of action of herbicides. Annual Review Plant Physiology and Plant Molecular Biology , 1980, 31: 365-385
97 Greenberg B M, Huang X D, Dixon D G. Applications of the aquatic higher-plant Lemna gibba for ecotoxicological assessment. Journal of Aquatic Ecosystem Health , 1992, 1(2): 147-155
doi: 10.1007/BF00044046
98 Hebert P D N. The population biology of Daphnia (Crustacea, Daphnidae). Biological Reviews , 1978, 53(3): 387-426
doi: 10.1111/j.1469-185X.1978.tb00860.x
99 Lampi M A, Gurska J, Huang X D, Dixon D G, Greenberg B M. A predictive quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification. Environmental Toxicology and Chemistry , 2007, 26(3): 406-415
doi: 10.1897/06-295R.1 pmid:17373503
[1] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[2] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[3] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[4] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[5] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[6] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
[7] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[8] Yuan ZHANG,Chunming HU,Tao YU. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 575-582.
[9] XIA Qing,KONG Deyang,LIU Guoqiang,HUANG Qingguo,ALALEWI Aamr,LU Junhe. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
[10] Can WANG, Jinying XI, Hongying HU, Insun KANG. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
[11] Hongliang JIA, Liyan LIU, Yeqing SUN, Daoji CAI, Jianxin HU, Nanqi REN, Yifan LI. Endosulfan in the Chinese environment: monitoring and modeling[J]. Front Envir Sci Eng, 2012, 6(1): 32-44.
[12] Xiaoxia OU, Chong WANG, Fengjie ZHANG, Yan MA, He LIU, Xie QUAN, . Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution[J]. Front.Environ.Sci.Eng., 2010, 4(2): 157-163.
[13] Bingbing XU, Zhonglin CHEN, Fei QI, Jimin SHEN, Fengchang WU. Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water[J]. Front Envir Sci Eng Chin, 2009, 3(1): 91-97.
[14] YU Chunyan, QUAN Xie, OU Xiaoxia, CHEN Shuo. Effects of humic acid fractions with different polarities on photodegradation of 2,4-D in aqueous environments[J]. Front.Environ.Sci.Eng., 2008, 2(3): 291-296.
[15] LIU Zhenyu, YANG Fenglin, QUAN Xie, ZHANG Xiaohong. Dynamic fate modeling of γ-hexachlorocyclohexane in the lower reaches of the Liao River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 166-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed