Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 32-44    https://doi.org/10.1007/s11783-011-0375-6
REVIEW ARTICLE
Endosulfan in the Chinese environment: monitoring and modeling
Hongliang JIA1, Liyan LIU2, Yeqing SUN3, Daoji CAI4, Jianxin HU5, Nanqi REN2, Yifan LI1,2,6()
1. International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian 116026, China; 2. IJRC-PTS, State Key Laboratory for Urban Resources and Environment, Harbin Institute of Technology, Harbin 150090, China; 3. Environmental System Biology Institute, Dalian Maritime University, Dalian 116026, China; 4. Nanjing Institute of Environmental Science, Nanjing 210042, China; 5. College of Environmental Science, Peking University, Beijing 100871, China; 6. IJRC-PTS, Ryerson University, Toronto M5B 2K3, Canada
 Download: PDF(1086 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews the usage and emissions of endosulfan, the newest member of the persistent organic pollutants (POPs), in China, and its fate and behavior in Chinese environment. Endosulfan usage in China has been estimated to be approximately 25700 t between 1994 and 2004. Concentrations of endosulfan in different environmental compartments in China, such as air, soil, water, and biota, but focusing at air and surface soil, have been summarized. Concentrations of total endosulfan in surface soil across China were ranged from below detection limit (BDL) to 19000 pg·g-1 dry weight (dw), with geometric mean of 120 pg·g-1dw. The results indicated that endosulfan sulfate had highest concentration in Chinese soil, followed by β- and α-endosulfan. Air concentrations of endosulfan in China were ranged 0–340 pg·m-3 for α-endosulfan and 0–121 pg·m-3 for β-endosulfan, with high concentrations occurred in the cotton production areas. Gridded usage inventories of endosulfan on a fine gridded system with a 1/4° longitude by 1/6° latitude resolution were compiled, from which, emission to air and residues in soil of endosulfan were calculated in each grid by using a modified simplified gridded pesticide emission and residue model (SGPERM), an integrated modeling system combining mathematical model, database management system, and geographic information system. Total emissions were around 10800 t from 1994 to 2004. Based on the emission and residue inventories, concentrations of α- and β-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell, which are in general consistent with the published monitoring data.

Keywords endosulfan      monitoring      modeling      inventories      persistent organic pollutants      persistent organic pollutants (POPs)     
Corresponding Author(s): LI Yifan,Email:ijrc_pts_paper@yahoo.com   
Issue Date: 01 February 2012
 Cite this article:   
Hongliang JIA,Liyan LIU,Yeqing SUN, et al. Endosulfan in the Chinese environment: monitoring and modeling[J]. Front Envir Sci Eng, 0, (): 32-44.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0375-6
https://academic.hep.com.cn/fese/EN/Y0/V/I/32
Fig.1  Annual endosulfan usage in China from 1994 to 2004 []
Fig.2  Distribution of -, -endosulfan and endosulfan sulfate in Chinese surface soil from 141 sites, among which 6 are background sites (blue), 95 are rural sites (green) and 40 are urban sites (red)
Fig.3  Distribution of -endosulfan (red) and -endosulfan (green) in Chinese air from 37 urban sites
chemicalα-endosulfanβ-endosulfanendosulfan sulfate
molecular formulaC9H6Cl6O3SC9H6Cl6O4S
molecular mass/(g·mol-1)406.96422.96
structural formulas of the isomers and the main transformation product
water solubility (SW; mg·L-1)0.53a)0.28a)3.749b)
vapor pressure (PL; Pa)0.0044c)0.0040c)0.0013g)
SL /(mol·m-3)0.0063c)0.089c)0.089c)
lg KAW-3.55d)-4.74d)-5.22d)
Log KOW4.94c)4.78c)3.23b)
Log KOA8.49c)9.53c)10.127b)
Log KOC3.46a)3.83a)3.99b)
half-life in soil/h288e)4056e)8640b)
half-life in air/h2.5-24.8f)2.5-24.8f)45b)
Tab.1  Key physical-chemical properties for for -, -endosulfan, and endosulfan sulfate at 25°C.
Fig.4  Gridded usage inventories of (a) -endosulfan and (b) -endosulfan calculated by SGPERM in China from 1994 to 2004 with 1/4° longitude by 1/6° latitude resolution (unit: t/cell).
Fig.5  Gridded usage inventories of endosulfan (- + -endosulfan) in China for different crops with 1/4° longitude by 1/6° latitude resolution (unit: t/cell). (a) Usage on cotton from 1994 to 2004, and (b-e) usage on apple, tea, tobacco, and wheat from 1998 to 2004
Fig.6  Distribution of (a) the lowest and (b) the highest residues of endosulfan in Chinese agricultural soil in 2004 with 1/4° longitude by 1/6° latitude resolution. (unit: t/cell) []
Fig.7  Distribution of of (a) the lowest and (b) the highest concentration (ng/g dw) of -endosulfan in Chinese agricultural soil in 2004 with 1/4° longitude by 1/6° latitude resolution []
Fig.8  Distribution of of (a) the lowest and (b) the highest concentration (ng/g dw) of -endosulfan in Chinese agricultural soil in 2004 with 1/4° longitude by 1/6° latitude resolution []
Fig.9  Distribution of (a) -endosulfan and (b) -endosulfan emissions in China in 2004 with 1/4° longitude by 1/6° latitude resolution. (unit: t/cell) []
Fig.10  Distribution of annual mean concentration of (a) -endosulfan and (b) -endosulfan (pg/m) in Chinese air in 2004 with 1/4° longitude by 1/6° latitude resolution []
Fig.11  Distribution of annual mean concentration (ng/g dw) of endosulfan sulfate in Chinese agricultural soil in 2004 with a 1/4° longitude by 1/6° latitude resolution []
Fig.12  Annual endosulfan emission and residue in China from 1994 to 2004 []
Fig.13  Comparison between monitoring soil concentrations in 2005 and modeling data in 2004 for (a) -endosulfan, (b) -endosulfan []
Fig.14  Comparison between monitoring air concentrations in 2005 [] and modeling data in 2004 for (a) -endosulfan, (b) -endosulfan.
1 Maier-Bode H. Properties, effect, residues and analytics of the insecticide endosulfan. Residue Reviews , 1968, 22: 1–44
pmid:4868139
2 Sutherland T D, Horne I, Lacey M J, Harcourt R L, Russell R J, Oakeshott J G. Enrichment of an endosulfan-degrading mixed bacterial culture. Applied and Environmental Microbiology , 2000, 66(7): 2822–2828
doi: 10.1128/AEM.66.7.2822-2828.2000 pmid:10877774
3 Peterson S M, Batley G E. The fate of endosulfan in aquatic ecosystems. Environmental Pollution (Barking, Essex: 1987) , 1993, 82(2): 143–152
doi: 10.1016/0269-7491(93)90111-Z pmid:15091783
4 Chandler G T, Scott G I. Effects of sediment-bound endosulfan on survival, reproduction and larval settlement of meiobenthic polychaetes and copepods. Environmental Toxicology and Chemistry , 1991, 10(3): 375–382
doi: 10.1002/etc.5620100310
5 Miles C J, Pfeuffer R J. Pesticides in canals of South Florida. Archives of Environmental Contamination and Toxicology , 1997, 32(4): 337–345
doi: 10.1007/s002449900194 pmid:9175497
6 Chaudhuri K, Selvaraj S, Pal A K. Studies on the genotoxicity of endosulfan in bacterial systems. Mutation Research , 1999, 439(1): 63–67
pmid:10029677
7 ASTDR. Toxicological Profile for Endosulfan. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry . Atlanta: Ga., 2000
8 Verschureren K. Endosulfan. In: Handbook of environmental data on organic chemicals. New York: van Nostrand Reinhold , 1983, 604–607
9 Sunderam R I M, Thomson G B, Cheng D M H. Toxicity of endosulfan to native and introducted fish in Australia. Environmental Toxicology and Chemistry , 1992, 11(10): 1469–1476
doi: 10.1002/etc.5620111012
10 Sinha N, Narayan R, Shanker R, Saxena D K. Endosulfan-induced biochemical changes in the testis of rats. Veterinary and Human Toxicology , 1995, 37(6): 547–549
pmid:8588293
11 Sutherland T D, Weir K M, Lacey M J, Horne I, Russell R J, Oakeshott J G. Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of β-endosulfan. Applied and Environmental Microbiology , 2002, 68: 6237–6245
doi: 10.1128/AEM.68.12.6237-6245.2002 pmid:11872131
12 Southan S, Kennedy I. Dissipation of the pesticide endosulfan from cotton field run-off water using an improved apparatus for the simulation of field conditions. In: Proceedings of the 4th RACI Environmental Chemistry Conference, Darwin, Australia , 1995, 104–109
13 Devakumar C. Endosulfan aerial spray controversy in Kerela.Pesticide Research Journal , 2002, 14: 343–344
14 Rice C P, Chernyak S M, McConnell L L. Henry's Law constants for pesticides measured as a function of temperature and salinity. Journal of Agricultural and Food Chemistry , 1997, 45(6): 2291-2298
doi: 10.1021/jf960834u
15 Schmidt W F, Hapeman C J, Fettinger J C, Rice C P, Bilboulian S. Structure and asymmetry in the isomeric conversion of β- to α-endosulfan. Journal of Agricultural and Food Chemistry , 1997, 26: 1101–1106
16 Keith L, Telliard W. ES&T special report: Priority pollutants: I-a perspective view. Environmental Science & Technology , 1979, 13(4): 416–423
doi: 10.1021/es60152a601
17 Lubick N. Environment. Endosulfan’s exit: US EPA pesticide review leads to a ban. Science , 2010, 328(5985): 1466–1466
doi: 10.1126/science.328.5985.1466 pmid:20558680
18 UNEP (United Nations Environment Programme). Guidance on the Global Monitoring Plan for Persistent Organic Pollutants. Geneva: Stockholm Convention Secretariat, 2007, 147
19 http://chm.pops.int/Convention/COP/Meetings/COP5/tabid/1267/ctl/ViewDetails/EventModID/870/EventID/109/xmid/4351/language/en-US/Default.aspx
20 World Health Organization (WHO). International programme on chemical safety: Environmental health criteria 40, Endosulfan. 1984
21 http://en.wikipedia.org/wiki/Endosulfan
22 Saiyed H, Dewan A, Bhatnagar V, Shenoy U, Shenoy R, Rajmohan H, Patel K, Kashyap R, Kulkarni P, Rajan B, Lakkad B. Effect of endosulfan on male reproductive development. Environmental Health Perspectives , 2003, 111(16): 1958–1962
doi: 10.1289/ehp.6271 pmid:14644673
23 Li Y F, Macdonald R W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review. The Science of the Total Environment , 2005, 342(1-3): 87–106
doi: 10.1016/j.scitotenv.2004.12.027 pmid:15866269
24 Simonich S L, Hites R A. Global distribution of persistent organochlorine compounds. Science , 1995, 269(5232): 1851–1854
doi: 7569923" target="_blank">10.1126/science. pmid:7569923 pmid:7569923
25 Pozo K, Harner T, Wania F, Muir D C, Jones K C, Barrie L A. Toward a global network for persistent organic pollutants in air: Results from the GAPS study. Environmental Science & Technology , 2006, 40(16): 4867–4873
doi: 10.1021/es060447t pmid:16955879
26 Patton G W, Walla M D, Bidleman T F, Barrie L A. Polycyclic aromatic and organochlorine compounds in the atmosphere of northern Ellesmere Island, Canada. Journal of Geophysical Research , 1991, 96(D6): 10867–10877
doi: 10.1029/91JD00010
27 Halsall C, Bailey R, Stern G, Barrie L, Fellin P, Muir D, Rosenberg B, Rovinsky F Y, Kononov E Y, Pastukhov B. Multi-year observations of organohalogen pesticides in the Arctic atmosphere. Environmental Pollution , 1998, 102(1): 51–62
doi: 10.1016/S0269-7491(98)00074-8
28 Hung H, Halsall C J, Blanchard P, Li H H, Fellin P, Stern G, Rosenberg B. Temporal trends of organochlorine pesticides in the Canadian Arctic atmosphere. Environmental Science & Technology , 2002, 36(5): 862–868
doi: 10.1021/es011204y pmid:11918008
29 Su Y, Hung H, Blanchard P, Patton G, Kallenborn R, Konoplev A, Fellin P, Li H, Geen G, Stern G, Rosenberg B, Barrie L. A circumpolar perspective of atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in 2000-2003. Atmospheric Environment , 2008, 42(19): 4682–4698
doi: 10.1016/j.atmosenv.2008.01.054
30 Peasant Daily. June 8th, 2001 (in Chinese)
31 Chinese Network for Public Science and Technology. http://database.cpst.net.cn/
32 Jia H, Li Y F, Wang D, Cai D, Yang M, Ma J, Hu J. Endosulfan in China 1-gridded usage inventories. Environmental science and pollution research international , 2009, 16(3): 295–301
doi: 10.1007/s11356-008-0042-z pmid:18769949
33 Jia H, Liu L, Sun Y, Sun B, Wang D, Su Y, Kannan K, Li Y F. Monitoring and modeling endosulfan in Chinese surface soil. Environmental Science & Technology , 2010, 44(24): 9279–9284
doi: 10.1021/es102791n pmid:21082823
34 Liu X, Zhang G, Li J, Yu L L, Xu Y, Li X D, Kobara Y, Jones K C. Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. Environmental Science & Technology , 2009, 43(5): 1316–1321
doi: 10.1021/es802371n pmid:19350897
35 Pozo K, Harner T, Lee S C, Wania F, Muir D C, Jones K C. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environmental Science & Technology , 2009, 43(3): 796–803
doi: 10.1021/es802106a pmid:19245019
36 Zhang G, Chakraborty P, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones K C. Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. Environmental Science & Technology , 2008, 42(22): 8218–8223
doi: 10.1021/es8016667 pmid:19068797
37 Doong R A, Lee S H, Lee C C, Sun Y C, Wu S C. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan. Marine Pollution Bulletin , 2008, 57(6-12): 846–857
doi: 10.1016/j.marpolbul.2007.12.015 pmid:18289608
38 Zhang Z L, Hong H S, Zhou J L, Huang J, Yu G. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Chemosphere , 2003, 52(9): 1423–1430
doi: 10.1016/S0045-6535(03)00478-8 pmid:12867172
39 Zhang Z, Huang J, Yu G, Hong H. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution , 2004, 130(2): 249–261
doi: 10.1016/j.envpol.2003.12.002 pmid:15158038
40 Xu X, Yang H, Li Q, Yang B, Wang X, Lee F S. Residues of organochlorine pesticides in near shore waters of Laizhou Bay and Jiaozhou Bay, Shandong Peninsula, China. Chemosphere , 2007, 68(1): 126–139
doi: 10.1016/j.chemosphere.2006.12.021 pmid:17291564
41 Qiu X, Zhu T, Wang F, Hu J. Air-water gas exchange of organochlorine pesticides in Taihu Lake, China. Environmental Science & Technology , 2008, 42(6): 1928–1932
doi: 10.1021/es071825c pmid:18409615
42 Jia H, Chang Y, Sun Y, Wang D, Liu X, Yang M, Xu D, Meng B, Li Y F. Distribution and potential human risk of organochlorine pesticides in market mollusks from Dalian, China. Bulletin of Environmental Contamination and Toxicology , 2010, 84(3): 278–284
doi: 10.1007/s00128-009-9929-8 pmid:20044744
43 Guo J Y, Zeng E Y, Wu F C, Meng X Z, Mai B X, Luo X J. Organochlorine pesticides in seafood products from southern China and health risk assessment. Environmental toxicology and chemistry / SETAC , 2007, 26(6): 1109–1115
doi: 10.1897/06-446R.1 pmid:17571674
44 Liu Z, Zhang H, Tao M, Yang S, Wang L, Liu Y, Ma D, He Z. Organochlorine pesticides in consumer fish and mollusks of Liaoning province, China: Distribution and human exposure implications. Archives of Environmental Contamination and Toxicology , 2010, 59(3): 444–453
doi: 10.1007/s00244-010-9504-7 pmid:20352204
45 Jin Y, Hong S H, Li D, Shim W J, Lee S S. Distribution of persistent organic pollutants in bivalves from the northeast coast of China. Marine Pollution Bulletin , 2008, 57(6-12): 775–781
doi: 10.1016/j.marpolbul.2008.04.045 pmid:18513753
46 Mackay D, Shiu W, Ma K. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol 5, New York: Lewis, 1997
47 US-EPA. Estimation Programs Interface Suite? for Microsoft? Windows, v4.0. Washington , D C: United States Environmental Protection Agency, 2010
48 Shen L, Wania F. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. Journal of Chemical & Engineering Data , 2005, 50(3): 742–768
doi: 10.1021/je049693f
49 Ghadiri H, Rose C W. Degradation of endosulfan in a clay soil from cotton farms of western Queensland. Journal of Environmental Management , 2001, 62(2): 155–169
doi: 10.1006/jema.2001.0428 pmid:11434029
50 Atkinson R. Structure-acitivity relationship for the estimation of rate contants for gas-phase reactions of OH radicals with organic compounds. International Journal of Chemical Kinetics , 1987, 19(9): 799–828
doi: 10.1002/kin.550190903
51 Howard P. Handbook of environmental fate and exposure data for organic chemicals. Pesticides , Vol. III. Chelsea: Lewis Publishers Inc., 1991
52 Li Y, Venkatesh S, Li D. Modeling global emissions and residues of pesticides. Environmental Modeling and Assessment , 2005, 9(4): 237–243
doi: 10.1007/s10666-005-3151-9
53 Jia H, Sun Y, Li Y F, Tian C, Wang D, Yang M, Ding Y, Ma J. Endosulfan in China 2-emissions and residues. Environmental science and pollution research international , 2009, 16(3): 302–311
doi: 10.1007/s11356-009-0125-5 pmid:19308475
54 Jiang W W, Wu X M. A linked three-dimensional PBL and dispersion model in coastal regions. Boundary-layer Meteorology , 1990, 53(1-2): 43–62
doi: 10.1007/BF00122462
55 Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. The NCEP/NCAR reanalysis project. Bulletin of the American Meteorological Society , 1996, 77(3): 437–471
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
56 Desalegn B, Takasuga T, Harada K H, Hitomi T, Fujii Y, Yang H R, Wang P, Senevirathna S T, Koizumi A. Historical trends in human dietary intakes of endosulfan and toxaphene in China, Korea and Japan. Chemosphere , 2011, 83(10): 1398–1405
doi: 10.1016/j.chemosphere.2011.02.063 pmid:21470655
[1] Daniela M. Pampanin, Daniel Schlenk, Matteo Vitale, Pierre Liboureau, Magne O Sydnes. Use of DREAM to assess relative risks of presence of pharmaceuticals and personal care products from a wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2024, 18(9): 113-.
[2] Heng Chen, Zhenhua Chen, Liwen Hu, Fengzhu Tang, Dan Kuang, Jiayi Han, Yao Wang, Xiao Zhang, Yue Cheng, Jiantong Meng, Rong Lu, Lan Zhang. Application of wastewater-based epidemiological monitoring of COVID-19 for disease surveillance in the city[J]. Front. Environ. Sci. Eng., 2024, 18(8): 98-.
[3] Sanggwon An, Sangsoo Choi, Hyeong Rae Kim, Jungho Hwang. Rapid monitoring of indoor airborne influenza and coronavirus with high air flowrate electrostatic sampling and PCR analysis[J]. Front. Environ. Sci. Eng., 2024, 18(7): 85-.
[4] Wenqing Liu, Chengzhi Xing. Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 73-.
[5] Chiheng Chu, Lizhong Zhu. Paving the way toward soil safety and health: current status, challenges, and potential solutions[J]. Front. Environ. Sci. Eng., 2024, 18(6): 74-.
[6] Shuyan Zhou, Yang Zhang, Jingjing Wang, Shikun Cheng, Fuyan Zhuo, Yun Hong. Endosulfan residues and farmers’ replacement behaviors of endosulfan in the north-west inland cotton region[J]. Front. Environ. Sci. Eng., 2024, 18(4): 43-.
[7] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[8] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[9] Qiyue Wu, Yun Geng, Xinyuan Wang, Dongsheng Wang, ChangKyoo Yoo, Hongbin Liu. A novel deep learning framework with variational auto-encoder for indoor air quality prediction[J]. Front. Environ. Sci. Eng., 2024, 18(1): 8-.
[10] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[11] Seo Won Cho, Haoran Wei. Surface-enhanced Raman spectroscopy for emerging contaminant analysis in drinking water[J]. Front. Environ. Sci. Eng., 2023, 17(5): 57-.
[12] Kaixuan Zheng, Dong Xie, Yiqi Tan, Zhenjiang Zhuo, Tan Chen, Hongtao Wang, Ying Yuan, Junlong Huang, Tianwei Sun, Fangming Xu, Yuecen Dong, Ximing Liang. Numerical modeling and performance evaluation of passive convergence-permeable reactive barrier (PC-PRB)[J]. Front. Environ. Sci. Eng., 2023, 17(11): 131-.
[13] Yang Zhang, Zheng Peng, Zhaomin Dong, Mujie Wang, Chen Jiang. Twenty years of achievements in China’s implementation of the Stockholm Convention[J]. Front. Environ. Sci. Eng., 2022, 16(12): 152-.
[14] Yunpeng Xing, Boyuan Xue, Yongshu Lin, Xueqi Wu, Fang Fang, Peishi Qi, Jinsong Guo, Xiaohong Zhou. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring[J]. Front. Environ. Sci. Eng., 2022, 16(12): 155-.
[15] Heidelore Fiedler, Mohammad Sadia, Thomas Krauss, Abeer Baabish, Leo W.Y. Yeung. Perfluoroalkane acids in human milk under the global monitoring plan of the Stockholm Convention on Persistent Organic Pollutants (2008–2019)[J]. Front. Environ. Sci. Eng., 2022, 16(10): 132-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed