Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (5) : 57    https://doi.org/10.1007/s11783-023-1657-5
REVIEW ARTICLE
Surface-enhanced Raman spectroscopy for emerging contaminant analysis in drinking water
Seo Won Cho1,2, Haoran Wei1,2()
1. Environmental Chemistry and Technology Program, University of Wisconsin–Madison, Madison, WI 53706, USA
2. Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
 Download: PDF(3331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Definition of emerging contaminants in drinking water is introduced.

● SERS and standard methods for emerging contaminant analysis are compared.

● Enhancement factor and accessibility of SERS hot spots are equally important.

● SERS sensors should be tailored according to emerging contaminant properties.

● Challenges to meet drinking water regulatory guidelines are discussed.

Emerging contaminants (ECs) in drinking water pose threats to public health due to their environmental prevalence and potential toxicity. The occurrence of ECs in our drinking water supplies depends on their physicochemical properties, discharging rate, and susceptibility to removal by water treatment processes. Uncertain health effects of long-term exposure to ECs justify their regular monitoring in drinking water supplies. In this review article, we will summarize the current status and future opportunities of surface-enhanced Raman spectroscopy (SERS) for EC analysis in drinking water. Working principles of SERS are first introduced and a comparison of SERS and liquid chromatography-tandem mass spectrometry in terms of cost, time, sensitivity, and availability is made. Subsequently, we discuss the strategies for designing effective SERS sensors for EC analysis based on five categories—per- and polyfluoroalkyl substances, novel pesticides, pharmaceuticals, endocrine-disrupting chemicals, and microplastics. In addition to maximizing the intrinsic enhancement factors of SERS substrates, strategies to improve hot spot accessibilities to the targeting ECs are equally important. This is a review article focusing on SERS analysis of ECs in drinking water. The discussions are not only guided by numerous endeavors to advance SERS technology but also by the drinking water regulatory policy.

Keywords Emerging contaminant      Surface-enhanced Raman spectroscopy      Drinking water monitoring      Sensor      Regulatory policy     
Corresponding Author(s): Haoran Wei   
Issue Date: 30 November 2022
 Cite this article:   
Seo Won Cho,Haoran Wei. Surface-enhanced Raman spectroscopy for emerging contaminant analysis in drinking water[J]. Front. Environ. Sci. Eng., 2023, 17(5): 57.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1657-5
https://academic.hep.com.cn/fese/EN/Y2023/V17/I5/57
Fig.1  Schematic illustrating the definition of emerging contaminants in drinking water.
Analytical method Advantages Disadvantages
SERS • Simple sample pretreatment• Rapid and non-destructive sample analysis• Field deployable• Lower measurement cost (~5–10 $/h)• Lower instrumental cost (~10–30 k$) • Higher LOD (> 1 μg/L for direct SERS; down to sub-ng/L level for indirect SERS)• Limited to analytes with high affinity to plasmonic nanoparticles• Mediocre reproducibility• Interference by complex water matrices
LC-MS/MS • Lower LOD (down to sub-ng/L level)• High precision• Standard methods published by the environmental regulatory authorities • Time-consuming sample pretreatment & analysis• Requiring well-trained personnel• Higher measurement cost (~50–80$/h)• Higher instrumental cost (~500 k$)
Tab.1  A summary of the advantages and disadvantages of SERS and LC-MS/MS
Fig.2  Schematic of the working principle of a typical SERS sensor for EC analysis.
EC categories ECs SERS substrates/labels Water matrices LOD (μg/L) Regulations/Advisories Ref.
PFAS PFOA, PFOS, and 6:2 FTS AgNP-graphene oxide/ethyl violet Groundwater 50 U.S. EPA HAL: PFOA 0.004 ng/L and PFOS 0.02 ng/L in drinking water Fang et al. (2016)
PFOA Ag nanoclusters on silica microspheres/crystal violet DI water 11 Bai et al. (2022)
Novel pesticides Acetamiprid Au and Ag nanostructures covered on SiO2 DI water 9 U.S. EPA DWLOC: 80 μg/L (chronic exposure for children 1–6 years old) Atanasov et al. (2020a)
AuNPs on Ti3C2/SiO2/PDMS surface DI water 2×10–6 Gao et al. (2021)
Colloidal AuNPs Acetone 10 Dowgiallo and Guenther (2019)
Clothianidin Ag layer on nanostructured PVDF film Methanol-DI water (1:1) 1 Minnesota Department of Health guidance: 200 μg/L Creedon et al. (2020)
AuNPs on Ti3C2/SiO2/PDMS surface DI Water 2×10–6 Gao et al. (2021)
Colloidal AuNPs Methanol 103 Dowgiallo and Guenther (2019)
Silver dendrite/electropolymerized molecular identifier/AgNP sandwich hybrids Ethanol 0.03 Zhao et al. (2020)
Imidacloprid Ag layer on nanostructured PVDF film Methanol-DI water (1:1) 1 Minnesota Department of Health guidance: 2 μg/L Creedon et al. (2020)
Citrate-coated AuNP colloid Methanol-DI Water (1:1) 5 Hou et al. (2015)
AuNPs on Ti3C2/SiO2/PDMS surface DI water 1×10–6 Gao et al. (2021)
Colloidal AuNP Acetone 100 Dowgiallo and Guenther (2019)
Nitenpyram Fern-like Ag dendrites on filter paper Apple surface 0.3 None Wang et al. (2019)
Ag nanospheres and nanocubes Acetone 3×105 Puente et al. (2022)
Thiacloprid Ag and Au nanostructures on alumina ceramic DI water 105 U.S. EPA DWLOC: 38 μg/L Atanasov et al. (2020b)
Cysteamine-modified silver-coated gold nanoparticles Liquid milk 23 Hussain et al. (2020)
Thiamethoxam AuNPs on Ti3C2/SiO2/PDMS surface DI water 2×10–6 Minnesota Department of Health guidance: 200 μg/L Gao et al. (2021)
Colloidal AuNP Acetone 100 Dowgiallo and Guenther (2019)
Pharmaceuticals Sulfamethoxazole Sepiolite/chitosan/AgNPs DI water 20 Minnesota Department of Health guidance: 100 μg/L Hu et al. (2022)
Ag layer on a nanostructured quartz wafer DI water/lake, river, tap water 0.05/0.6 Patze et al. (2017)
Hydroxylamine-coated AgNP colloid Human urine 2×103 Markina et al. (2020)
Diclofenac Thiocholine-functionalized AgNP colloid DI water 6×103 None Stewart et al. (2015)
Au nanogrid DI water 3×10–4 Cho et al. (2020)
Carbamazepine AuNPs within bacterial cellulose mat DI water 2 Minnesota Department of Health guidance: 40 μg/L Wei and Vikesland (2015)
Au@Ag core-shell NP colloid Saliva 0.3 Chen et al. (2021)
Endocrine-disrupting chemicals 17β-estradiol Au@Ag core-shell NP colloid/Cy3 DI water 3×10–4 Japan MRC: 0.08 μg/L (E2) and 0.02 μg/L (17α-ethinylestradiol) Pu et al. (2019)
AuNPs on a magnetic bead/MGITC Human serum 7×10–4 Wang et al. (2016)
Total steroid estrogens Au@Ag core-shell NP colloid/4-MBA Multiple surface waters 10–3 Liu et al. (2019)
Micro- and nanoplastics PS micro- and nanoplastics (50–1,000 nm) Ag nanowires KI solution 0.1 California SDWA Yang et al. (2022)
PS and PMMA micro- and nanoplastics (360–5,000 nm) Klarite DI water 2.625×104 Xu et al. (2020a)
PS, PE, and PP micro- and nanoplastics (100 nm) AgNPs Pure water and sea water 4×104 Lv et al. (2020)
PET, PE, PVC, PP, PS, and PC microplastics (80–150 µm) Sponge supported AuNPs Ultrapure water, sea water, rainwater, river water, snow water, and tap water 1×103 Yin et al. (2021)
PET microplastics AuNP doped filter paper water 105 Xu et al. (2022)
PS sub-micro- (161 nm) and nanoplastics (33 nm) AuNPs (46 nm and 14 nm) SDS and KPS solution (solution obtained from milling) 104/2 × 104 Caldwell et al. (2021)
PS and PMMA microspheres AuNPs@V-shaped anodized aluminum oxide (AAO) substrate DI water 5×107 Liu et al. (2022)
PS nanoplastics (~50 nm) AgNPs River water 5×103 Zhou et al. (2021)
PS sub-microplastics (600 nm) Au nanourchins DI water 1–5 particles Lee and Fang (2022)
PS nanoplastics (500 nm) Ag nanowire membrane Seafood market water and seawater 1 Yang et al. (2022)
Tab.2  A summary of SERS-based sensors for emerging contaminant analysis
Fig.3  SERS spectra of clothianidin and imidacloprid that were collected after deposition of their methanol-water solutions (1 μg/L) onto the Ag film@PVDF SERS substrate. Reprinted (adapted) with permission from Creedon et al. (2020). Highly sensitive SERS detection of neonicotinoid pesticides. Complete Raman spectral assignment of clothianidin and imidacloprid. Journal of Physical Chemistry A, 124(36): 7238–7247. Copyright 2020 American Chemical Society.
Fig.4  Raman spectra of carbamazepine collected from an AuNP/bacterial cellulose SERS substrate under pH of 2.0, 3.0, and 6.0 (Wei and Vikesland, 2015). This is an open access article distributed under the terms of the Creative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Fig.5  Schematics of (a) aptamer functionalization on a gold nanogrid SERS substrate and (b) strategy for labeled SERS analysis of 17β-estradiol (Pu et al., 2019; Cho et al., 2020). Reprinted with permission from (Yeon Sik Jung, et al. 2020). Selective, quantitative, and multiplexed surface-enhanced Raman spectroscopy using aptamer-functionalized monolithic plasmonic nanogrids derived from cross-point nano-welding. Advanced Functional Materials, 30: 2000612. Copyright 2020 John Wiley and Sons. Reprinted with permission from Hongbin Pu, Xiaohui Xie, Dawen Sun, et al. (2019). Double-strand DNA functionalized Au@Ag NPs for ultrasensitive detection of 17β-estradiol using surface-enhanced Raman spectroscopy. Talanta, 195: 419–425. Copyright 2019 Elsevier.
Fig.6  Schematics of (a) Klarite and (b) a bifunctional silver nanowire membrane. Reprinted (adapted) with permission from Yang Q, Zhang S, Su J, Li S, Lv X, Chen J, Lai Y, Zhan J (2022). Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes. Environmental Science & Technology, 56(15): 10818–10828. Copyright 2022 American Chemical Society. Reprinted (adapted) with permission from Xu G, Cheng H, Jones R, Feng Y, Gong K, Li K, Fang X, Tahir M A, Valev V K, Zhang L (2020). Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics < 1 μm in the Environment. Environmental Science & Technology, 54(24): 15594–15603. Copyright 2020 American Chemical Society.
1 P A Atanasov, N N Nedyalkov, N Fukata, W Jevasuwan. (2020a). Ag and Au nanostructures for surface-enhanced Raman spectroscopy of Mospilan 20 SP (acetamiprid). Journal of Raman Spectroscopy: JRS, 51(12): 2398–2407
https://doi.org/10.1002/jrs.5993
2 P A Atanasov, N N Nedyalkov, N Fukata, W Jevasuwan, T Subramani. (2020b). Surface-enhanced Raman spectroscopy (SERS) of neonicotinoid insecticide thiacloprid assisted by silver and gold nanostructures. Applied Spectroscopy, 74(3): 357–364
https://doi.org/10.1177/0003702819878267 pmid: 31617380
3 der Beek T aus, F A Weber, A Bergmann, S Hickmann, I Ebert, A Hein, A Küster. (2016). Pharmaceuticals in the environment:global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4): 823–835
https://doi.org/10.1002/etc.3339 pmid: 26666847
4 S Bai, A Hu, Y Hu, Y Ma, K Obata, K Sugioka. (2022). Plasmonic superstructure arrays fabricated by laser near-field reduction for wide-range SERS analysis of fluorescent materials. Nanomaterials (Basel, Switzerland), 12(6): 970
https://doi.org/10.3390/nano12060970 pmid: 35335783
5 C Bass, I Denholm, M S Williamson, R Nauen. (2015). The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121: 78–87
https://doi.org/10.1016/j.pestbp.2015.04.004 pmid: 26047114
6 M J Benotti, R A Trenholm, B J Vanderford, J C Holady, B D Stanford, S A Snyder. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 43(3): 597–603
https://doi.org/10.1021/es801845a pmid: 19244989
7 T Blacquière, G Smagghe, Gestel C A van, V Mommaerts. (2012). Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology (London, England), 21(4): 973–992
https://doi.org/10.1007/s10646-012-0863-x pmid: 22350105
8 B E Blake, S E Fenton. (2020). Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: a review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology, 443: 152565
https://doi.org/10.1016/j.tox.2020.152565 pmid: 32861749
9 A L Boreen, W A Arnold, K McNeill. (2004). Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environmental Science & Technology, 38(14): 3933–3940
https://doi.org/10.1021/es0353053 pmid: 15298203
10 Q Bu, X Shi, G Yu, J Huang, B Wang. (2016). Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerging Contaminants, 2(3): 145–147
https://doi.org/10.1016/j.emcon.2016.05.003
11 J Caldwell, P Taladriz-Blanco, B Rothen-Rutishauser, A Petri-Fink. (2021). Detection of sub-micro- and nanoplastic particles on gold nanoparticle-based substrates through surface-enhanced Raman scattering (SERS) spectroscopy. Nanomaterials (Basel, Switzerland), 11(5): 1149
https://doi.org/10.3390/nano11051149 pmid: 33925012
12 J P Camden, J A Dieringer, Y Wang, D J Masiello, L D Marks, G C Schatz, R P Van Duyne. (2008). Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society, 130(38): 12616–12617
https://doi.org/10.1021/ja8051427 pmid: 18761451
13 N Chen, Y Yuan, P Lu, L Wang, X Zhang, H Chen, P Ma. (2021). Detection of carbamazepine in saliva based on surface-enhanced Raman spectroscopy. Biomedical Optics Express, 12(12): 7673–7688
https://doi.org/10.1364/BOE.440939 pmid: 35003859
14 S H Cho, K M Baek, H J Han, M Kim, H Park, Y S Jung. (2020). Selective, quantitative, and multiplexed surface-enhanced Raman spectroscopy using aptamer-functionalized monolithic plasmonic nanogrids derived from cross-point nano-welding. Advanced Functional Materials, 30(19): 2000612
https://doi.org/10.1002/adfm.202000612
15 W J Cho, Y Kim, J K Kim. (2012). Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano, 6(1): 249–255
https://doi.org/10.1021/nn2035236 pmid: 22117916
16 N A Cinel, S Cakmakyapan, S Butun, G Ertas, E Ozbay. (2015). E-beam lithography designed substrates for surface enhanced Raman spectroscopy. Photonics and Nanostructures, 15: 109–115
https://doi.org/10.1016/j.photonics.2014.11.003
17 I T Cousins, J C DeWitt, J Glüge, G Goldenman, D Herzke, R Lohmann, C A Ng, M Scheringer, Z Wang. (2020). The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Science. Processes & Impacts, 22(12): 2307–2312
https://doi.org/10.1039/D0EM00355G pmid: 33230514
18 N Creedon, P Lovera, J G Moreno, M Nolan, A O’Riordan. (2020). Highly sensitive SERS detection of neonicotinoid pesticides. Complete Raman spectral assignment of clothianidin and imidacloprid. Journal of Physical Chemistry. A, 124(36): 7238–7247
https://doi.org/10.1021/acs.jpca.0c02832 pmid: 32701286
19 J A Dougan, K Faulds. (2012). Surface enhanced Raman scattering for multiplexed detection. Analyst, 137(3): 545–554
https://doi.org/10.1039/C2AN15979A pmid: 22186980
20 A M Dowgiallo, D A Guenther. (2019). Determination of the limit of detection of multiple pesticides utilizing gold nanoparticles and surface-enhanced Raman spectroscopy. Journal of Agricultural and Food Chemistry, 67(46): 12642–12651
https://doi.org/10.1021/acs.jafc.9b01544 pmid: 31188587
21 R Enevoldsen, R K Juhler. (2010). Perfluorinated compounds (PFCs) in groundwater and aqueous soil extracts: using inline SPE-LC-MS/MS for screening and sorption characterisation of perfluorooctane sulphonate and related compounds. Analytical and Bioanalytical Chemistry, 398(3): 1161–1172
https://doi.org/10.1007/s00216-010-4066-0 pmid: 20740279
22 M G Evich, M J B Davis, J P McCord, B Acrey, J A Awkerman, D R U Knappe, A B Lindstrom, T F Speth, C Tebes-Stevens, M J Strynar. et al.. (2022). Per- and polyfluoroalkyl substances in the environment. Science, 375(6580): eabg9065
https://doi.org/10.1126/science.abg9065 pmid: 35113710
23 C Fang, M Megharaj, R Naidu. (2016). Surface-enhanced Raman scattering (SERS) detection of fluorosurfactants in firefighting foams. RSC Advances, 6(14): 11140–11145
https://doi.org/10.1039/C5RA26114G
24 J Fawell, C N Ong. (2012). Emerging contaminants and the implications for drinking water. International Journal of Water Resources Development, 28(2): 247–263
https://doi.org/10.1080/07900627.2012.672394
25 S E Fenton, A Ducatman, A Boobis, J C DeWitt, C Lau, C Ng, J S Smith, S M Roberts. (2021). Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40(3): 606–630
https://doi.org/10.1002/etc.4890 pmid: 33017053
26 I Ferrer, E M Thurman. (2003). Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. Trends in Analytical Chemistry, 22(10): 750–756
https://doi.org/10.1016/S0165-9936(03)01013-6
27 S K Gahlaut, D Savargaonkar, C Sharan, S Yadav, P Mishra, J P Singh. (2020). SERS platform for dengue diagnosis from clinical samples employing a hand held Raman spectrometer. Analytical Chemistry, 92(3): 2527–2534
https://doi.org/10.1021/acs.analchem.9b04129 pmid: 31909593
28 Z F Gao, Y X Li, L M Dong, L L Zheng, J Z Li, Y Shen, F Xia. (2021). Photothermal-induced partial Leidenfrost superhydrophobic surface as ultrasensitive surface-enhanced Raman scattering platform for the detection of neonicotinoid insecticides. Sensors and Actuators. B, Chemical, 348: 130728
https://doi.org/10.1016/j.snb.2021.130728
29 D Goulson. (2013). Review: an overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4): 977–987
https://doi.org/10.1111/1365-2664.12111
30 D-B Grys, R Chikkaraddy, M Kamp, O A Scherman, J J Baumberg, Nijs B De. (2021). Eliminating irreproducibility in SERS substrates. Journal of Raman Spectroscopy: JRS, 52(2): 412–419
https://doi.org/10.1002/jrs.6008
31 A Hakonen, K Wu, Schmidt M Stenbæk, P O Andersson, A Boisen, T Rindzevicius. (2018). Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta, 189: 649–652
https://doi.org/10.1016/j.talanta.2018.07.009 pmid: 30086972
32 R C Hale, M E Seeley, M J La Guardia, L Mai, E Y Zeng. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans, 125(1): e2018JC014719
33 R A Halvorson, P J Vikesland. (2010). Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology, 44(20): 7749–7755
https://doi.org/10.1021/es101228z pmid: 20836559
34 X X Han, B Zhao, Y Ozaki. (2009). Surface-enhanced Raman scattering for protein detection. Analytical and Bioanalytical Chemistry, 394(7): 1719–1727
https://doi.org/10.1007/s00216-009-2702-3 pmid: 19267242
35 C L Haynes, A D Mcfarland, R P Van Duyne. (2005). Surface-enhanced Raman spectroscopy. Analytical Chemistry, 77(17): 338A–346A
https://doi.org/10.1021/ac053456d
36 S He, M Jia, Y Xiang, B Song, W Xiong, J Cao, H Peng, Y Yang, W Wang, Z Yang, G Zeng (2022). Biofilm on microplastics in aqueous environment: physicochemical properties and environmental implications. Journal of Hazardous Materials, 424(Pt B): 127286
https://doi.org/10.1016/j.jhazmat.2021.127286 pmid: 34879504
37 M L Hladik, A R Main, D Goulson. (2018). Environmental risks and challenges associated with neonicotinoid insecticides. Environmental Science & Technology, 52(6): 3329–3335
https://doi.org/10.1021/acs.est.7b06388 pmid: 29481746
38 R Hou, S Pang, L He. (2015). In situ SERS detection of multi-class insecticides on plant surfaces. Analytical Methods, 7(15): 6325–6330
https://doi.org/10.1039/C5AY01058F
39 C J Houtman. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4): 271–295
https://doi.org/10.1080/1943815X.2010.511648
40 W Hu, Y Chen, L Xia, Y Hu, G Li. (2022). Flexible membrane composite based on sepiolite/chitosan/(silver nanoparticles) for enrichment and surface-enhanced Raman scattering determination of sulfamethoxazole in animal-derived food. Microchimica Acta, 189(5): 199
https://doi.org/10.1007/s00604-022-05265-x pmid: 35469076
41 U Huebner, R Boucher, H Schneidewind, D Cialla, J Popp. (2008). Microfabricated SERS-arrays with sharp-edged metallic nanostructures. Microelectronic Engineering, 85(8): 1792–1794
https://doi.org/10.1016/j.mee.2008.05.005
42 A Hussain, H Pu, D W Sun. (2020). Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. Journal of Food Measurement and Characterization, 14(4): 2021–2029
https://doi.org/10.1007/s11694-020-00448-7
43 R Jansen, G Lachatre, P Marquet. (2005). LC-MS/MS systematic toxicological analysis: comparison of MS/MS spectra obtained with different instruments and settings. Clinical Biochemistry, 38(4): 362–372
https://doi.org/10.1016/j.clinbiochem.2004.11.003 pmid: 15766737
44 A Jelić, M Petrović, D Barcelo (2012). Pharmaceuticals in drinking water. Emerging Organic Contaminants and Human Health: 47–70
45 T L Jones-Lepp, C Sanchez, D A Alvarez, D C Wilson, R L Taniguchi-Fu. (2012). Point sources of emerging contaminants along the Colorado River Basin: source water for the arid Southwestern United States. The Science of the Total Environment, 430: 237–245
https://doi.org/10.1016/j.scitotenv.2012.04.053 pmid: 22684090
46 S Khan, M Naushad, M Govarthanan, J Iqbal, S M Alfadul. (2022). Emerging contaminants of high concern for the environment: current trends and future research. Environmental Research, 207: 112609
https://doi.org/10.1016/j.envres.2021.112609 pmid: 34968428
47 K Kneipp, Y Wang, H Kneipp, L T Perelman, I Itzkan, R R Dasari, M S Feld. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78(9): 1667–1670
https://doi.org/10.1103/PhysRevLett.78.1667
48 J Langer, de Aberasturi D Jimenez, J Aizpurua, R A Alvarez-Puebla, B Auguié, J J Baumberg, G C Bazan, S E J Bell, A Boisen, A G Brolo. et al.. (2020). Present and future of surface-enhanced Raman scattering. ACS Nano, 14(1): 28–117
https://doi.org/10.1021/acsnano.9b04224 pmid: 31478375
49 E C Le Ru, P G Etchegoin. (2012). Single-molecule surface-enhanced Raman spectroscopy. Annual Review of Physical Chemistry, 63(1): 65–87
https://doi.org/10.1146/annurev-physchem-032511-143757 pmid: 22224704
50 C H Lee, J K H Fang. (2022). The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. Journal of Environmental Sciences (China), 121: 58–64
https://doi.org/10.1016/j.jes.2021.08.044 pmid: 35654516
51 L Lei, M Liu, Y Song, S Lu, J Hu, C Cao, B Xie, H Shi, D He. (2018). Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science. Nano, 5(8): 2009–2020
https://doi.org/10.1039/C8EN00412A
52 Y M Lin, J N Sun, X W Yang, R Y Qin, Z Q Zhang. (2023). Fluorinated magnetic porous carbons for dispersive solid-phase extraction of perfluorinated compounds. Talanta, 252: 123860
https://doi.org/10.1016/j.talanta.2022.123860 pmid: 36029685
53 J Liu, G Xu, X Ruan, K Li, L Zhang. (2022). V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Frontiers of Environmental Science & Engineering, 16(11): 143
https://doi.org/10.1007/s11783-022-1578-8
54 S Liu, Y Chen, Y Wang, G Zhao. (2019). Group-targeting detection of total steroid estrogen using surface-enhanced Raman spectroscopy. Analytical Chemistry, 91(12): 7639–7647
https://doi.org/10.1021/acs.analchem.9b00534 pmid: 31144808
55 Z H Liu, Z Dang, Y Liu. (2021). Legislation against endocrine-disrupting compounds in drinking water: essential but not enough to ensure water safety. Environmental Science and Pollution Research International, 28(15): 19505–19510
https://doi.org/10.1007/s11356-021-12901-1 pmid: 33620688
56 D A Long. (1977). Raman spectroscopy. New York, 1
57 L Lv, L He, S Jiang, J Chen, C Zhou, J Qu, Y Lu, P Hong, S Sun, C Li. (2020). In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. The Science of the Total Environment, 728: 138449
https://doi.org/10.1016/j.scitotenv.2020.138449 pmid: 32353796
58 N E Markina, A V Markin, K Weber, J Popp, D Cialla-May. (2020). Liquid-liquid extraction-assisted SERS-based determination of sulfamethoxazole in spiked human urine. Analytica Chimica Acta, 1109: 61–68
https://doi.org/10.1016/j.aca.2020.02.067 pmid: 32252906
59 A März, K R Ackermann, D Malsch, T Bocklitz, T Henkel, J Popp. (2009). Towards a quantitative SERS approach-online monitoring of analytes in a microfluidic system with isotope-edited internal standards. Journal of Biophotonics, 2(4): 232–242
https://doi.org/10.1002/jbio.200810069 pmid: 19367591
60 Y Meng, W Liu, H Fiedler, J Zhang, X Wei, X Liu, M Peng, T Zhang. (2021). Fate and risk assessment of emerging contaminants in reclaimed water production processes. Frontiers of Environmental Science & Engineering, 15(5): 104
https://doi.org/10.1007/s11783-021-1392-8
61 M Moskovits. (2005). Surface‐enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy: JRS, 36(6–7): 485–496
https://doi.org/10.1002/jrs.1362
62 S P Mulvaney, C D Keating. (2000). Raman spectroscopy. Analytical Chemistry, 72(12): 145R–157R
https://doi.org/10.1021/a10000155 pmid: 10882205
63 L H Oakley, D M Fabian, H E Mayhew, S A Svoboda, K L Wustholz. (2012). Pretreatment strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces. Analytical Chemistry, 84(18): 8006–8012
https://doi.org/10.1021/ac301814e pmid: 22897697
64 T T X Ong, E W Blanch, O A H Jones. (2020). Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment. Science of the Total Environment, 720: 137601
https://doi.org/10.1016/j.scitotenv.2020.137601 pmid: 32145632
65 F S Ou, M Hu, I Naumov, A Kim, W Wu, A M Bratkovsky, X Li, R S Williams, Z Li. (2011). Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Letters, 11(6): 2538–2542
https://doi.org/10.1021/nl201212n pmid: 21604751
66 L Ouyang, W Ren, L Zhu, J Irudayaraj. (2017). Prosperity to challenges: recent approaches in SERS substrate fabrication. Reviews in Analytical Chemistry, 36(1): 20160027
https://doi.org/10.1515/revac-2016-0027
67 S Patze, U Huebner, F Liebold, K Weber, D Cialla-May, J Popp. (2017). SERS as an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Analytica Chimica Acta, 949: 1–7
https://doi.org/10.1016/j.aca.2016.10.009 pmid: 27876141
68 A I Pérez-Jiménez, D Lyu, Z Lu, G Liu, B Ren. (2020). Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical Science, 11(18): 4563–4577
https://doi.org/10.1039/D0SC00809E pmid: 34122914
69 M Petrović, S Gonzalez, D Barceló. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22(10): 685–696
https://doi.org/10.1016/S0165-9936(03)01105-1
70 H Pu, X Xie, D W Sun, Q Wei, Y Jiang. (2019). Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta, 195: 419–425
https://doi.org/10.1016/j.talanta.2018.10.021 pmid: 30625564
71 C Puente, C L Brosseau, I Lopez. (2022). Thiacloprid detection by silver nanocubes-based SERS sensor. IEEE Transactions on Nanobioscience, 21(1): 141–143
https://doi.org/10.1109/TNB.2021.3101187 pmid: 34329168
72 W Qiao, R Li, T Tang, A A Zuh. (2021). Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system. Frontiers of Environmental Science & Engineering, 15(2): 20
https://doi.org/10.1007/s11783-020-1312-3
73 L Qin, Z Duan, H Cheng, Y Wang, H Zhang, Z Zhu, L Wang. (2021). Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae. Environmental Pollution (Barking, Essex: 1987), 291: 118169
https://doi.org/10.1016/j.envpol.2021.118169 pmid: 34536643
74 R Qiu, Y Song, X Zhang, B Xie, D He (2020). Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges. Berlin: Springer International Publishing
75 S D Richardson. (2009). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 81(12): 4645–4677
https://doi.org/10.1021/ac9008012 pmid: 19456142
76 S Schlücker. (2014). Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angewandte Chemie (International ed. in English), 53(19): 4756–4795
https://doi.org/10.1002/anie.201205748 pmid: 24711218
77 M Schriks, M B Heringa, M M E van der Kooi, P de Voogt, A P van Wezel. (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water Research, 44(2): 461–476
https://doi.org/10.1016/j.watres.2009.08.023 pmid: 19766285
78 S K Selahle, A Mpupa, P N Nomngongo. (2021). A review of extraction, analytical, and advanced methods for the determination of neonicotinoid insecticides in environmental water matrices. Reviews in Analytical Chemistry, 40(1): 187–203
https://doi.org/10.1515/revac-2021-0134
79 W Shen, X Lin, C Jiang, C Li, H Lin, J Huang, S Wang, G Liu, X Yan, Q Zhong, B Ren. (2015). Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angewandte Chemie (International ed. in English), 54(25): 7308–7312
https://doi.org/10.1002/anie.201502171 pmid: 25939998
80 J A Shoemaker, D R Tettenhorst. (2020). Method 537.1: Determination of selected per- and polyflourinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Washington, DC
81 D Simazaki, R Kubota, T Suzuki, M Akiba, T Nishimura, S Kunikane. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Research, 76: 187–200
https://doi.org/10.1016/j.watres.2015.02.059 pmid: 25835589
82 A Stewart, S Murray, S E Bell. (2015). Simple preparation of positively charged silver nanoparticles for detection of anions by surface-enhanced Raman spectroscopy. Analyst, 140(9): 2988–2994
https://doi.org/10.1039/C4AN02305F pmid: 25750978
83 J Sun, Q Luo, D Wang, Z Wang. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117: 132–140
https://doi.org/10.1016/j.ecoenv.2015.03.032 pmid: 25847753
84 R C Thompson, Y Olsen, R P Mitchell, A Davis, S J Rowland, A W G John, D McGonigle, A E Russell (2004). Lost at sea: where is all the plastic? Science, 304(5672): 838
https://doi.org/10.1126/science.1094559 pmid: 15131299
85 United States Geological Survey (2019). Emerging Contaminants. Washington, DC: United States Geological Survey
86 U.S. EPA (2022a). Contaminants of Emerging Concern Including Pharmaceuticals and Personal Care Products.Washington, DC: U.S. EPA
87 U.S. EPA (2022b). Drinking Water Health Advisories for PFOA and PFOS.Washington, DC: U.S. EPA
88 A van Wezel, I Caris, S A Kools. (2016). Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry, 35(7): 1627–1631
https://doi.org/10.1002/etc.3316 pmid: 26627661
89 C Wang, J Zhao, B Xing. (2021a). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407: 124357
https://doi.org/10.1016/j.jhazmat.2020.124357 pmid: 33158648
90 H Wang, H Wei. (2022). Controlled citrate oxidation on gold nanoparticle surfaces for improved surface-enhanced Raman spectroscopic analysis of low-affinity organic micropollutants. Langmuir, 38(16): 4958–4968
https://doi.org/10.1021/acs.langmuir.2c00367 pmid: 35417178
91 K Wang, D W Sun, H Pu, Q Wei (2021b). Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta, 223(Pt 2): 121782
https://doi.org/10.1016/j.talanta.2020.121782 pmid: 33298287
92 Q Wang, Y Liu, Y Bai, S Yao, Z Wei, M Zhang, L Wang, L Wang. (2019). Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Analytica Chimica Acta, 1049: 170–178
https://doi.org/10.1016/j.aca.2018.10.039 pmid: 30612648
93 R Wang, H Chon, S Lee, Z Cheng, S H Hong, Y H Yoon, J Choo. (2016). Highly sensitive detection of hormone estradiol E2 using surface-enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty. ACS Applied Materials & Interfaces, 8(17): 10665–10672
https://doi.org/10.1021/acsami.5b10996 pmid: 27070977
94 S Y Wee, A Z Aris. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106: 207–233
https://doi.org/10.1016/j.envint.2017.05.004 pmid: 28552550
95 H Wei, S W Cho (2022). Emerging Nanotechnologies for Water Treatment: Royal Society of Chemistry, 30–47
96 H Wei, W Leng, J Song, C Liu, M R Willner, Q Huang, W Zhou, P J Vikesland. (2019). Real-time monitoring of ligand exchange kinetics on gold nanoparticle surfaces enabled by hot spot-normalized surface-enhanced Raman scattering. Environmental Science & Technology, 53(2): 575–585
https://doi.org/10.1021/acs.est.8b03144 pmid: 30525495
97 H Wei, W Leng, J Song, M R Willner, L C Marr, W Zhou, P J Vikesland. (2018). Improved quantitative SERS enabled by surface plasmon enhanced elastic light scattering. Analytical Chemistry, 90(5): 3227–3237
https://doi.org/10.1021/acs.analchem.7b04667 pmid: 29356519
98 H Wei, P J Vikesland. (2015). pH-triggered molecular alignment for reproducible SERS detection via an AuNP/nanocellulose platform. Scientific Reports, 5(1): 18131
https://doi.org/10.1038/srep18131 pmid: 26658696
99 T J Wood, D Goulson. (2017). The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environmental Science and Pollution Research International, 24(21): 17285–17325
https://doi.org/10.1007/s11356-017-9240-x pmid: 28593544
100 World Health Organization (2012). Pharmaceuticals in Drinking-Water. Geneva: World Health Organization
101 J Wu, J Lu, J Wu. (2022). Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics. Frontiers of Environmental Science & Engineering, 16(8): 104
https://doi.org/10.1007/s11783-022-1525-8
102 D Xu, W Su, H Lu, Y Luo, T Yi, J Wu, H Wu, C Yin, B Chen. (2022). A gold nanoparticle doped flexible substrate for microplastics SERS detection. Physical Chemistry Chemical Physics: PCCP, 24(19): 12036–12042
https://doi.org/10.1039/D1CP05870C pmid: 35537128
103 G Xu, H Cheng, R Jones, Y Feng, K Gong, K Li, X Fang, M A Tahir, V K Valev, L Zhang. (2020a). Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1 μm in the environment. Environmental Science & Technology, 54(24): 15594–15603
https://doi.org/10.1021/acs.est.0c02317 pmid: 33095569
104 Y Xu, F Y Kutsanedzie, M M Hassan, J Zhu, H Li, Q Chen. (2020b). Functionalized hollow Au@ Ag nanoflower SERS matrix for pesticide sensing in food. Sensors and Actuators. B, Chemical, 324: 128718
https://doi.org/10.1016/j.snb.2020.128718
105 Q Yang, S Zhang, J Su, S Li, X Lv, J Chen, Y Lai, J Zhan. (2022). Identification of trace polystyrene nanoplastics down to 50 nm by the hyphenated method of filtration and surface-enhanced Raman spectroscopy based on silver nanowire membranes. Environmental Science & Technology, 56(15): 10818–10828
https://doi.org/10.1021/acs.est.2c02584 pmid: 35852947
106 Y Yang, N Creedon, A O’riordan, P Lovera. (2021). Surface enhanced Raman spectroscopy: applications in agriculture and food safety. Photonics, 8(12): 568
https://doi.org/10.3390/photonics8120568
107 T Yaseen, H Pu, D W Sun. (2018). Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends in Food Science & Technology, 72: 162–174
https://doi.org/10.1016/j.tifs.2017.12.012
108 R Yin, H Ge, H Chen, J Du, Z Sun, H Tan, S Wang. (2021). Sensitive and rapid detection of trace microplastics concentrated through Au-nanoparticle-decorated sponge on the basis of surface-enhanced Raman spectroscopy. Environmental Advances, 5: 100096
https://doi.org/10.1016/j.envadv.2021.100096
109 C L Zavaleta, B R Smith, I Walton, W Doering, G Davis, B Shojaei, M J Natan, S S Gambhir. (2009). Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 106(32): 13511–13516
https://doi.org/10.1073/pnas.0813327106 pmid: 19666578
110 J Zhao, P Hinton, J Chen, J Jiang. (2019). Causal inference for the effect of environmental chemicals on chronic kidney disease. Computational and Structural Biotechnology Journal, 18: 93–99
https://doi.org/10.1016/j.csbj.2019.12.001 pmid: 31934310
111 P Zhao, H Liu, L Zhang, P Zhu, S Ge, J Yu. (2020). Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Applied Materials & Interfaces, 12(7): 8845–8854
https://doi.org/10.1021/acsami.9b20341 pmid: 31989810
112 X Zhou, Z Hu, D Yang, S Xie, Z Jiang, R Niessner, C Haisch, H Zhou, P Sun. (2020). Bacteria detection: from powerful SERS to its advanced compatible techniques. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7(23): 2001739
https://doi.org/10.1002/advs.202001739 pmid: 33304748
113 X X Zhou, R Liu, L T Hao, J F Liu. (2021). Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta, 221: 121552
https://doi.org/10.1016/j.talanta.2020.121552 pmid: 33076108
[1] Shengqi Zhang, Qian Yin, Siqin Wang, Xin Yu, Mingbao Feng. Integrated risk assessment framework for transformation products of emerging contaminants: what we know and what we should know[J]. Front. Environ. Sci. Eng., 2023, 17(7): 91-.
[2] Junlang Li, Zhenguo Chen, Xiaoyong Li, Xiaohui Yi, Yingzhong Zhao, Xinzhong He, Zehua Huang, Mohamed A. Hassaan, Ahmed El Nemr, Mingzhi Huang. Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator[J]. Front. Environ. Sci. Eng., 2023, 17(6): 67-.
[3] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
[4] Han Qu, Hongting Diao, Jiajun Han, Bin Wang, Gang Yu. Understanding and addressing the environmental risk of microplastics[J]. Front. Environ. Sci. Eng., 2023, 17(1): 12-.
[5] Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang. An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor[J]. Front. Environ. Sci. Eng., 2022, 16(8): 97-.
[6] Bin Wang, Gang Yu. Emerging contaminant control: From science to action[J]. Front. Environ. Sci. Eng., 2022, 16(6): 81-.
[7] Yuping Wang, Jing Xia, Yanxin Gao. Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework[J]. Front. Environ. Sci. Eng., 2022, 16(12): 154-.
[8] Yunpeng Xing, Boyuan Xue, Yongshu Lin, Xueqi Wu, Fang Fang, Peishi Qi, Jinsong Guo, Xiaohong Zhou. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring[J]. Front. Environ. Sci. Eng., 2022, 16(12): 155-.
[9] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[10] Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 47-.
[11] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[12] Abdul Ghaffar Memon, Xiaohong Zhou, Yunpeng Xing, Ruoyu Wang, Lanhua Liu, Mohsin Khan, Miao He. Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8–17 DNAzyme[J]. Front. Environ. Sci. Eng., 2019, 13(1): 12-.
[13] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[14] Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG. Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor[J]. Front Envir Sci Eng, 2012, 6(6): 831-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed