Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 154    https://doi.org/10.1007/s11783-022-1589-5
RESEARCH ARTICLE
Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework
Yuping Wang1, Jing Xia2, Yanxin Gao1()
1. Department of Environmental Science and Engineering, Fuzhou University, Minhou 350108, China
2. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(10145 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A series of mixed-LOFs and portable LOF-fibers were synthesized.

● LOF-S3 was selected as a luminescent sensor for antibiotics.

● Mixed-LOF was capable of decoding antibiotics by emission intensity ratios.

● Linear relationship between antibiotic concentration and I545nm/I618nm was observed.

Due to the potential risk of antibiotics to the environment, the development of inexpensive, simple, and reliable antibiotic detection methods is significant but also faces challenges. In this work, several lanthanide-organic frameworks (LOFs), constructed from lanthanide ions (Eu3+ and/or Tb3+) and 1,3,5-benzene-tricarboxylic acid (BTC), were synthesized by solvothermal method. LOF-S3 with comparable emission peaks of 5D47F5 (Tb3+, 545 nm) and 5D07F2 (Eu3+, 618 nm) was selected as a luminescent sensor. In this system, the highly efficient energy transferred from the organic linker to lanthanide ions and from Tb3+ to Eu3+ occurs. LOF-S3 sensor was capable of decoding antibiotics by distinguishable emission intensity ratios. Therefore, a two-dimensional decoded map of antibiotics was established. The linear relationship between antibiotic concentration and emission intensity ratio indicated the quantitative determination of antibiotics was feasible. As a typical analyte, the response mechanism of nalidixic acid (NA) was investigated in detail. The competition of NA and BTC for UV light absorption, as well as the binding propensity of NA and Tb, affected the organic linkers-to-lanthanide ions and Tb-to-Eu energy transfer, resulting in the change of fluorescence intensity ratio. The self-calibrating mixed-LOF sensor overcame the uncontrollable errors of the traditional absolute emission intensity method and generated stable luminescent signals in multiple cycles. Furthermore, the integration of LOF-S3 with polymer fibers enabled the formation of a LOF-polymer fibrous composite with fluorescence detection capability, which is a promising portable sensor for practical applications.

Keywords Antibiotics      Sensor      Luminescence      Lanthanide-organic frameworks     
Corresponding Author(s): Yanxin Gao   
Issue Date: 15 June 2022
 Cite this article:   
Yuping Wang,Jing Xia,Yanxin Gao. Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework[J]. Front. Environ. Sci. Eng., 2022, 16(12): 154.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1589-5
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/154
Fig.1  (a) XRD spectra of Ln-BTC; (b) the coordination state of the Ln ion and the structure of Ln-BTC (Tb and/or Eu, blue; O, red; C, gray); (c) fluorescence microscope photograph of mixed-Ln-BTC; (d) SEM image of mixed-Ln-BTC.
Fig.2  Emission spectra for (a) Tb(NO3)3·6H2O and Tb-BTC, (b) Eu(NO3)3·6H2O and Eu-BTC.
Fig.3  (a) Luminescent spectra of Ln-BTCs (λex = 286 nm) in the solid-state at room temperature; (b) the optical photographs for LOF samples under fluorescence microscope; (c) CIE chromaticity coordinates.
Fig.4  (a) Emission spectra and (b) intensity ratios (I545 nm/I618 nm) of LOF-S3 after the adsorption of antibiotics (λex = 286 nm).
Fig.5  (a) Emission spectra and (b) emission intensity ratios (I545 nm/I618 nm) of LOF-S3 after the adsorption of sulfonamide antibiotics (λex = 286 nm).
Fig.6  Decoded map for different antibiotics of LOF-S3 sensor (λex = 286 nm, R1 = I545 nm/I618 nm of the antibiotic, R2 = I592nm/I488nm of the antibiotic, RL1 = I545 nm/I618 nm of LOF-S3, RL2 = I592nm/I488nm of LOF-S3).
Fig.7  (a) Intensity ratios (I545 nm/I618 nm) of LOF-S3 in the presence of different concentrations of nalidixic acid (λex = 286 nm); (b) Emission spectra of LOF-S3 before and after the detection of nalidixic acid; (c) possible mechanism of LOF-S3 sensing for nalidixic acid.
Fig.8  Recycling probing of nalidixic acid by LOF-S3: the integrated emission intensity ratios (I545 nm/I618 nm) after adsorption and desorption of nalidixic acid (200 mL 100 μmol/L nalidixic acid solution, 5 mg Ln-BTC,λex = 286 nm).
Fig.9  (a) Images and (b) luminescence spectra of LOF-S3 fibers; (c) the optical photographs for mixed-LOF fibers under fluorescence microscope before and after the detection of nalidixic acid (NA 1: 50 μmol/L, NA 2: 100 μmol/L, NA 3: 200 μmol/L); (d) Schematic diagram for the detection of antibiotics using a smartphone.
1 C D Brites , P P Lima , N J Silva , A Millán , V S Amaral , F Palacio , L D Carlos . (2010). A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Advanced Materials, 22( 40): 4499– 4504
https://doi.org/10.1002/adma.201001780
2 N Chatterton , Y Bretonnière , J Pécaut , M Mazzanti . (2005). An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes. Angewandte Chemie (International ed. in English), 44( 46): 7767– 7770
https://doi.org/10.1002/anie.200502231
3 D Cheng , H H Ngo , W Guo , S W Chang , D D Nguyen , Y Liu , Q Wei , D Wei . (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387 : 121682
https://doi.org/10.1016/j.jhazmat.2019.121682
4 L Chiesa , S Panseri , E Pasquale , R Malandra , R Pavlovic , F Arioli . (2018). Validated multiclass targeted determination of antibiotics in fish with high performance liquid chromatography-benchtop quadrupole orbitrap hybrid mass spectrometry. Food Chemistry, 258 : 222– 230
https://doi.org/10.1016/j.foodchem.2018.03.072
5 E A Dolgopolova , A M Rice , C R Martin , N B Shustova . (2018). Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chemical Society Reviews, 47( 13): 4710– 4728
https://doi.org/10.1039/C7CS00861A
6 S V Eliseeva , J C G Bünzli . (2010). Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews, 39( 1): 189– 227
https://doi.org/10.1039/B905604C
7 Y Gao G Yu K Liu B (2018) Wang. Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals. Sensors and Actuators. B, Chemical, 257: 931- 935 doi:10.1016/j.snb. 2017.10.180
8 M Hernández , F Borrull , M Calull . (2003). Analysis of antibiotics in biological samples by capillary electrophoresis. Trends in Analytical Chemistry, 22( 7): 416– 427
https://doi.org/10.1016/S0165-9936(03)00702-7
9 P Horcajada , C Serre , G Maurin , N A Ramsahye , F Balas , M Vallet-Regí , M Sebban , F Taulelle , G Férey . (2008). Flexible porous metal-organic frameworks for a controlled drug delivery. Journal of the American Chemical Society, 130( 21): 6774– 6780
https://doi.org/10.1021/ja710973k
10 S L Hou , J Dong , M H Tang , X L Jiang , Z H Jiao , B Zhao . (2019). Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe. Analytical Chemistry, 91( 8): 5455– 5460
https://doi.org/10.1021/acs.analchem.9b00848
11 Y Hu , L Jin , Y Zhao , L Jiang , S Yao , W Zhou , K Lin , C Cui . (2021). Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Science of the Total Environment, 791 : 148152
https://doi.org/10.1016/j.scitotenv.2021.148152
12 S Karmakar , A Ghosh , K Prasad , F A Rahimi , D Rambabu , R Haldar , T K Maji . (2021). Multicolour lanthanide(III) porous 1D coordination polymers: Tunable wide spectrum emission and efficient CuII sensing. Dalton Trans, 50( 37): 13002– 13011
https://doi.org/10.1039/D1DT01860D
13 Ü Kökçam-Demir , A Goldman , L Esrafili , M Gharib , A Morsali , O Weingart , C Janiak . (2020). Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: Design and applications. Chemical Society Reviews, 49( 9): 2751– 2798
https://doi.org/10.1039/C9CS00609E
14 P Kovalakova , L Cizmas , T J McDonald , B Marsalek , M Feng , V K Sharma . (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251 : 126351
https://doi.org/10.1016/j.chemosphere.2020.126351
15 A Kumar , A Kumar Malik , D Kumar Tewary , B Singh . (2008). Gradient HPLC of antibiotics in urine, ground water, chicken muscle, hospital wastewater, and pharmaceutical samples using C-18 and RP-amide columns. Journal of Separation Science, 31( 2): 294– 300
https://doi.org/10.1002/jssc.200700373
16 S Monti , I Manet , F Manoli , M L Capobianco , G Marconi . (2008). Gaining an insight into the photoreactivity of a drug in a protein environment: A case study on nalidixic acid and serum albumin. Journal of Physical Chemistry. B, 112( 18): 5742– 5754
https://doi.org/10.1021/jp711261n
17 E G Moore , A P Samuel , K N Raymond . (2009). From antenna to assay: lessons learned in lanthanide luminescence. Accounts of Chemical Research, 42( 4): 542– 552
https://doi.org/10.1021/ar800211j
18 G W Peterson , D T Lee , H F Barton , T H III Epps , G N Parsons . (2021). Fibre-based composites from the integration of metal-organic frameworks and polymers. Nature Reviews. Materials, 6( 7): 605– 621
https://doi.org/10.1038/s41578-021-00291-2
19 X Rao , T Song , J Gao , Y Cui , Y Yang , C Wu , B Chen , G Qian . (2013). A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. Journal of the American Chemical Society, 135( 41): 15559– 15564
https://doi.org/10.1021/ja407219k
20 T Roth , L Weber , M Niestroj , F Cipa , A Löscher , S Mihai , H Parsch . (2021). Simultaneous determination of six antibiotics in human serum by high-performance liquid chromatography with UV detection. Biomed Chromatogr, 35( 3): e5010
https://doi.org/10.1002/bmc.5010
21 Y Shu , Q Ye , T Dai , J Guan , Z Ji , Q Xu , X Hu . (2022). Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. Journal of Hazardous Materials, 430 : 128360
https://doi.org/10.1016/j.jhazmat.2022.128360
22 R Wang , M Ji , H Zhai , Y Guo , Y Liu . (2021). Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. Science of the Total Environment, 796 : 148919
https://doi.org/10.1016/j.scitotenv.2021.148919
23 S Wu , H Min , W Shi , P Cheng . (2020). Multicenter metal-organic framework-based ratiometric fluorescent sensors. Advanced Materials, 32( 3): 1805871
https://doi.org/10.1002/adma.201805871
24 T Xia , Y Wan , Y Li , J Zhang . (2020). Highly stable lanthanide metal-organic framework as an internal calibrated luminescent sensor for glutamic acid, a neuropathy biomarker. Inorganic Chemistry, 59( 13): 8809– 8817
https://doi.org/10.1021/acs.inorgchem.0c00544
25 L Xu , H Zhang , P Xiong , Q Zhu , C Liao , G Jiang . (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the total Environment, 753 : 141975
https://doi.org/10.1016/j.scitotenv.2020.141975
26 A F Yang , S L Hou , Y Shi , G L Yang , D B Qin , B Zhao . (2019). Stable lanthanide-organic framework as a luminescent probe to detect both histidine and aspartic acid in water. Inorganic Chemistry, 58( 9): 6356– 6362
https://doi.org/10.1021/acs.inorgchem.9b00562
27 H Yu Q Liu J Li Z M Su X Li X Wang J Sun C Zhou X (2021) Hu. A dual-emitting mixed-lanthanide MOF with high water-stability for ratiometric fluorescence sensing of Fe3+ and ascorbic acid . Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 9(2): 562− 568
28 X Zeng , J Hu , M Zhang , F Wang , L Wu , X Hou . (2020). Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone. Analytical Chemistry, 92( 2): 2097– 2102
https://doi.org/10.1021/acs.analchem.9b04598
29 C Zhan , S Ou , C Zou , M Zhao , C D Wu . (2014). A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules. Analytical Chemistry, 86( 13): 6648– 6653
https://doi.org/10.1021/ac5013442
30 Y Zhang B Li H Ma L Zhang H Jiang H Song L Zhang Y (2016a) Luo. A nanoscaled lanthanide metal-organic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 4(30): 7294− 7301
31 Y Zhang , B Li , H Ma , L Zhang , Y Zheng . (2016b). Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosensors & Bioelectronics, 85 : 287– 293
https://doi.org/10.1016/j.bios.2016.05.020
32 J Zhou , H Li , H Zhang , H Li , W Shi , P Cheng . (2015). A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor. Advanced Materials, 27( 44): 7072– 7077
https://doi.org/10.1002/adma.201502760
[1] FSE-22034-OF-WYP_suppl_1 Download
[1] Junlang Li, Zhenguo Chen, Xiaoyong Li, Xiaohui Yi, Yingzhong Zhao, Xinzhong He, Zehua Huang, Mohamed A. Hassaan, Ahmed El Nemr, Mingzhi Huang. Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator[J]. Front. Environ. Sci. Eng., 2023, 17(6): 67-.
[2] Seo Won Cho, Haoran Wei. Surface-enhanced Raman spectroscopy for emerging contaminant analysis in drinking water[J]. Front. Environ. Sci. Eng., 2023, 17(5): 57-.
[3] Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang. An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor[J]. Front. Environ. Sci. Eng., 2022, 16(8): 97-.
[4] Yuwei Guo, Xian Xiao, Yuan Zhao, Jianguo Liu, Jizhong Zhou, Bo Sun, Yuting Liang. Antibiotic resistance genes in manure-amended paddy soils across eastern China: Occurrence and influencing factors[J]. Front. Environ. Sci. Eng., 2022, 16(7): 91-.
[5] Yunpeng Xing, Boyuan Xue, Yongshu Lin, Xueqi Wu, Fang Fang, Peishi Qi, Jinsong Guo, Xiaohong Zhou. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring[J]. Front. Environ. Sci. Eng., 2022, 16(12): 155-.
[6] Na Li, Boqiang Gao, Ran Yang, Hu Yang. Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water[J]. Front. Environ. Sci. Eng., 2022, 16(10): 133-.
[7] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[8] Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 47-.
[9] Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen. Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters[J]. Front. Environ. Sci. Eng., 2020, 14(6): 111-.
[10] Weihua Wang, Wanfeng Zhang, Hong Liang, Dawen Gao. Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(3): 34-.
[11] Abdul Ghaffar Memon, Xiaohong Zhou, Yunpeng Xing, Ruoyu Wang, Lanhua Liu, Mohsin Khan, Miao He. Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8–17 DNAzyme[J]. Front. Environ. Sci. Eng., 2019, 13(1): 12-.
[12] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[13] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[14] Chaojie Jiang, Lifen Liu, John C. Crittenden. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity[J]. Front. Environ. Sci. Eng., 2016, 10(4): 15-.
[15] Shiliang WANG,Hui WANG. Adsorption behavior of antibiotic in soil environment: a critical review[J]. Front. Environ. Sci. Eng., 2015, 9(4): 565-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed