Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 850-860    https://doi.org/10.1007/s11783-014-0737-y
RESEARCH ARTICLE
Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water
Rongfang YUAN1,2,Beihai ZHOU1,2,*(),Duo HUA1,2,Chunhong SHI1,2
1. Key Laboratory of Educational Ministry for High Efficient Mining and Safety in Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
2. Department of Environmental Engineering, School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(1552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of ion-doping on TiO2 nanotubes were investigated to obtain the optimal TiO2 nanotubes for the effective decomposition of humic acids (HA) through O3/UV/ion-doped TiO2 process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag+, Al3+, Cu2+, Fe3+, V5+, and Zn2+ were doped into the TiO2 nanotubes, whereas such activities decreased as a result of Mn2+- and Ni2+-doping. In the presence of 1.0 at.% Fe3+-doped TiO2 nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min−1. Fe3+ in TiO2 could increase the generation of ·OH, which could remove HA. However, Fe3+ in water cannot function as a shallow trapping site for electrons or holes.

Keywords TiO2 nanotubes      ion-doping      humic acids      pseudo-first-order      mechanism     
Corresponding Author(s): Beihai ZHOU   
Online First Date: 26 June 2014    Issue Date: 08 October 2015
 Cite this article:   
Rongfang YUAN,Beihai ZHOU,Chunhong SHI, et al. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0737-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/850
Fig.1  TEM images of Fe3+-doped TiO2 nanotubes calcined at 550°C
Fig.2  XRD patterns of the TiO2 nanotubes. (a) Un-doped TiO2 calcined at 400°C to 600°C; (b) Ion-doped TiO2 with different doped ions calcined at 550°C. “A” refers to the anatase phase, “R” refers to the rutile phase, and the words in red indicate the Bragg angles (2θ) of the characteristic peak of (101) crystal planes
calcination temperature /°C weight fractions ofanatase phase /% indirect energy band gap/eV BET surface areas/(m2·g−1)
400 450 500 550 600 400 450 500 550 600 400 450 500 550 600
un-doped 78.8 82.6 83.4 76.9 3.30 3.26 3.24 3.24 3.22 303 237 169 123 99
Ag+-doped 60.0 82.0 83.1 84.6 75.8 3.24 3.18 3.13 3.12 3.02 215 100 62 56 48
Al3+-doped 72.7 78.3 86.8 86.0 88.3 3.26 3.24 3.23 3.22 3.21 244 199 143 123 108
Cu2+-doped 61.4 83.8 84.9 91.3 86.3 3.25 3.23 3.22 3.21 3.15 269 190 132 99 85
Fe3+-doped 83.7 89.1 90.3 87.5 87.3 3.12 3.10 3.08 3.06 3.05 207 170 141 118 89
Mn2+-doped 84.8 92.1 92.2 91.3 90.8 3.06 3.05 3.02 3.00 2.90 146 84 71 61 47
Ni2+-doped 84.0 87.4 88.5 88.8 3.10 3.09 3.07 3.06 3.01 119 89 58 48 46
V5+-doped 61.0 90.6 85.3 86.5 3.22 3.21 3.21 3.20 3.20 279 264 172 123 102
Zn2+-doped 74.1 80.3 81.5 84.8 3.26 3.25 3.21 3.19 3.18 295 211 153 134 110
Tab.1  Catalytic properties of the TiO2 nanotube samples
Fig.3  XPS spectra of the TiO2 nanotubes: (a) XPS survey scan of the un-doped TiO2; (b)–(k) XPS spectra of Ag 3d, Al 2p, Cu 2p, Fe 2p, Mn 2p, Ni 2p, V 2p, Zn 2p, Ti 2p, and O 1s, respectively
Fig.4  UV-vis diffuse reflectance spectra and energy band gap of TiO2 nanotubes: (a) un-doped TiO2 calcined at 400°C to 600°C; (b) ion-doped TiO2 nanotubes with different doped ions calcined at 550°C
Fig.5  Removal of 10 mg·L−1 HA in the presence of different TiO2 nanotubes: (a) degradation of HA versus irradiation time for un-doped TiO2; (b) removal efficiency of HA after irradiation for 30 min in the presence of different TiO2. The samples were bubbled with O3 (1 L·min−1, 10%) or O2 (1 L·min−1) for 30 min prior to the degradation reaction
Fig.6  Degradation of 10 mg·L−1 HA solution via O3, O3/Fe3+-doped TiO2, O3/UV, O2/UV/Fe3+-doped TiO2, O3/UV/ Fe3+-doped TiO2 and O3/UV/Fe3+/TiO2 processes. The samples were bubbled with O3 (1 L·min−1, 10%) or O2 (1 L·min−1) for 30 min prior to the degradation reaction
1 Wiszniowski  J, Robert  D, Surmacz-Gorska  J, Miksch  K, Malato  S, Weber  J. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Applied Catalysis B: Environmental, 2004, 53(2): 127–137
https://doi.org/10.1016/j.apcatb.2004.04.017
2 Wei  M C, Wang  K S, Hsiao  T E, Lin  I C, Wu  H J, Wu  Y L, Liu  P H, Chang  S H. Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe?/air treatment: THMFP and biotoxicity evaluation. Journal of Hazardous Materials, 2011, 195: 324–331
https://doi.org/10.1016/j.jhazmat.2011.08.044 pmid: 21903325
3 Zhu  H, Wen  X, Huang  X. Membrane organic fouling and the effect of preozonation in microfiltration of secondary effluent organic matter. Journal of Membrane Science, 2010, 352(1): 213–221
https://doi.org/10.1016/j.memsci.2010.02.019
4 Imai  D, Dabwan  A H A, Kaneco  S, Katsumata  H, Suzuki  T, Kato  T, Ohta  K. Degradation of marine humic acids by ozone-initiated radical reactions. Chemical Engineering Journal, 2009, 148(2): 336–341
https://doi.org/10.1016/j.cej.2008.09.013
5 Ghouas  H, Haddou  B, Kameche  M, Derriche  Z, Gourdon  C. Extraction of humic acid by coacervate: investigation of direct and back processes. Journal of Hazardous Materials, 2012, 205–206: 171–178
https://doi.org/10.1016/j.jhazmat.2011.12.057 pmid: 22260753
6 Lin  C, Lin  K S. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 2007, 66(10): 1872–1877
https://doi.org/10.1016/j.chemosphere.2006.08.027 pmid: 17084883
7 Carp  O, Huisman  C L, Reller  A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177
https://doi.org/10.1016/j.progsolidstchem.2004.08.001
8 Adewuyi  Y G. Sonochemistry: environmental science and engineering applications. Industrial & Engineering Chemistry Research, 2001, 40(22): 4681–4715
https://doi.org/10.1021/ie010096l
9 Tachikawa  T, Tojo  S, Fujitsuka  M, Sekino  T, Majima  T. Photoinduced charge separation in titania nanotubes. The Journal of Physical Chemistry B, 2006, 110(29): 14055–14059
https://doi.org/10.1021/jp063800q pmid: 16854100
10 Pang  Y L, Abdullah  A Z. Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2. Ultrasonics Sonochemistry, 2012, 19(3): 642–651
https://doi.org/10.1016/j.ultsonch.2011.09.007 pmid: 22000097
11 Sun  L, Li  J, Wang  C L, Li  S F, Chen  H B, Lin  C J. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells, 2009, 93(10): 1875–1880
https://doi.org/10.1016/j.solmat.2009.07.001
12 Li  X, Zou  X, Qu  Z, Zhao  Q, Wang  L. Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere, 2011, 83(5): 674–679
https://doi.org/10.1016/j.chemosphere.2011.02.043 pmid: 21435692
13 Pang  Y L, Abdullah  A Z. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water. Journal of Hazardous Materials, 2012, 235: 326–335
https://doi.org/10.1016/j.jhazmat.2012.08.008 pmid: 22939090
14 Spurr  R A, Myers  H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762
https://doi.org/10.1021/ac60125a006
15 Gerenser  L J. Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: the effect of oxygen–plasma treatment. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1990, 8(5): 3682–3691
https://doi.org/10.1116/1.576480
16 Epifani  M, Giannini  C, Tapfer  L, Vasanelli  L. Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. Journal of the American Ceramic Society, 2000, 83(10): 2385–2393
https://doi.org/10.1111/j.1151-2916.2000.tb01566.x
17 Ravichandran  L, Selvam  K, Krishnakumar  B, Swaminathan  M. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2. Journal of Hazardous Materials, 2009, 167(1–3): 763–769
https://doi.org/10.1016/j.jhazmat.2009.01.048 pmid: 19211185
18 Stranak  V, Quaas  M, Bogdanowicz  R, Steffen  H, Wulff  H, Hubicka  Z, Tichy  M, Hippler  R. Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering. Journal of Physics. D, Applied Physics, 2010, 43(28): 285203
https://doi.org/10.1088/0022-3727/43/28/285203
19 Yoshida  R, Suzuki  Y, Yoshikawa  S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Materials Chemistry and Physics, 2005, 91(2): 409–416
https://doi.org/10.1016/j.matchemphys.2004.12.010
20 Leinen  D, Lassaletta  G, Fernandez  A, Caballero  A, Gonzalez-Elipe  A R, Martin  J M, Vacher  B. Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films. Journal of Vacuum Science & Technology, 1996, A14(5): 2842–2848
21 Kim  D S, Han  S J, Kwak  S Y. Synthesis and photocatalytic activity of mesoporous TiO(2) with the surface area, crystallite size, and pore size. Journal of Colloid and Interface Science, 2007, 316(1): 85–91
https://doi.org/10.1016/j.jcis.2007.07.037 pmid: 17761191
22 Zhang  G W, He  G H, Xue  W L, Xu  X F, Liu  D N, Xu  Y H. Enhanced photocatalytic performance of titania nanotubes modified with sulfuric acid. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 423–429
https://doi.org/10.1016/j.molcata.2012.07.020
23 Pang  Y L, Abdullah  A Z. Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Applied Catalysis B: Environmental, 2013, 129: 473–481
https://doi.org/10.1016/j.apcatb.2012.09.051
24 Yu  J, Xiang  Q, Zhou  M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Applied Catalysis B: Environmental, 2009, 90(3–4): 595–602
https://doi.org/10.1016/j.apcatb.2009.04.021
25 Li  A Z, Zhao  X, Liu  H J, Qu  J H. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Research, 2011, 45(18): 6131–6140
https://doi.org/10.1016/j.watres.2011.09.012 pmid: 21955983
26 Kiriakidou  F, Kondarides  D I, Verykios  X E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catalysis Today, 1999, 54(1): 119–130
https://doi.org/10.1016/S0920-5861(99)00174-1
27 Zang  L, Liu  C Y, Ren  X M. Photochemistry of semiconductor particles: Part 4.–Effects of surface condition on the photodegradation of 2,4-Dichlorophenol catalysed by TiO2 suspensions. Journal of the Chemical Society, Faraday Transactions, 1995, 91(5): 917–923
https://doi.org/10.1039/ft9959100917
28 Franzen  H F, Umaña  M X, McCreary  J R, Thorn  R J. XPS spectra of some transition metal and alkaline earth monochalcogenides. Journal of Solid State Chemistry, 1976, 18(4): 363–368
https://doi.org/10.1016/0022-4596(76)90119-5
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[6] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[7] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[8] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[9] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[10] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[11] Siqi Li, Min Zheng, Shuang Wu, Yu Xue, Yanchen Liu, Chengwen Wang, Xia Huang. The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge[J]. Front. Environ. Sci. Eng., 2019, 13(6): 82-.
[12] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[13] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[14] Yuzhou Deng, Shengpan Peng, Haidi Liu, Shuangde Li, Yunfa Chen. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21-.
[15] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed