Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (1) : 171-179    https://doi.org/10.1007/s11783-014-0750-1
RESEARCH ARTICLE
Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small drinking water systems
Roberta DYCK1(), Geneviève COOL2, Manuel RODRIGUEZ2, Rehan SADIQ1
1. School of Engineering, University of British Columbia Okanagan, Kelowna V1V 1V7, Canada
2. École supérieure d’aménagement du territoire, Université Laval, Québec G1V 0A6, Canada
 Download: PDF(111 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (<3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003–2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.

Keywords drinking water      residual chlorine      seasonal variability      small municipal systems      treatment technologies      trihalomethanes     
Corresponding Author(s): Roberta DYCK   
Online First Date: 31 July 2014    Issue Date: 31 December 2014
 Cite this article:   
Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ, et al. Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small drinking water systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 171-179.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0750-1
https://academic.hep.com.cn/fese/EN/Y2015/V9/I1/171
parameter treatment winter spring summer autumn
mean std dev mean std dev mean std dev mean std dev
chloroform /(µg·L−1) onlya) 83.0 65.2 92.1 71.0 128.7 89.4 124.7 91.2
plusb) 28.9 17.1 38.3 22.2 75.2 47.5 47.3 32.2
pc) <0.0001 <0.0001 <0.0001 <0.0001
BDCM /(µg·L−1 only 1.97 1.64 1.96 1.58 2.78 2.69 2.39 1.79
plus 2.78 2.96 2.77 3.89 8.67 15.05 3.81 5.44
p 0.0063 0.0109 <0.0001 0.0023
DBCM /(µg·L−1) only 0.17 0.47 0.11 0.31 0.23 0.95 0.10 0.32
plus 0.44 1.24 0.34 1.50 1.83 5.74 0.62 2.72
p 0.058 0.0411 <0.0001 0.0063
bromoform /(µg·L−1) only 0.19 0.39 0.18 0.41 0.23 0.91 0.17 0.43
plus 0.30 0.46 0.30 0.46 0.43 0.67 0.33 0.56
p 0.0379 0.0151 <0.0001 0.0012
TTHM /(µg·L−1) only 85.1 65.4 94.1 71.4 131.6 90.0 128.0 91.2
plus 31.7 18.3 41.3 24.0 85.5 54.6 50.9 34.0
p <0.0001 <0.0001 <0.0001 <0.0001
free residual chlorine /(mg·L−1) only 0.76 0.86 0.61 0.81 0.62 0.84 0.68 0.88
plus 0.61 0.79 0.56 0.75 0.43 0.68 0.51 0.71
p <0.0001 0.0589 <0.0001 <0.0001
total residual chlorine /(mg·L−1) only 0.96 0.99 0.82 0.97 0.83 1.02 0.86 1.02
plus 0.66 0.60 0.64 0.63 0.61 0.66 0.60 0.59
p <0.0001 0.0034 <0.0001 <0.0001
Tab.1  Results of laboratory analysis for THMs and residual chlorine by season for systems using chlorination only and chlorination plus additional treatment
chlorination only chlorination plus treatment
spring summer autumn spring summer autumn
hloroform /(µg·L−1) winter 0.325 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
spring 0.0007 0.0031 <0.0001 <0.0001
summer 0.646 <0.0001
BDCM /(µg·L−1) winter 0.988 0.0044 0.0278 0.994 <0.0001 0.0034
spring 0.0102 0.0422 <0.0001 0.0052
summer 0.468 <0.0001
DBCM /(µg·L−1) winter 0.381 0.807 0.162 0.3701 0.0345 0.437
spring 0.528 0.594 0.0036 0.896
summer 0.249 0.0037
bromoform /(µg·L−1) winter 0.772 0.617 0.449 0.959 0.0882 0.719
spring 0.833 0.636 0.107 0.765
summer 0.791 0.168
TTHM /(µg·L−1) winter 0.320 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
spring 0.0005 0.0020 <0.0001 0.0050
summer 0.6947 <0.0001
free residual chlorine /(mg·L−1) winter <0.0001 <0.0001 <0.0001 0.0034 <0.0001 <0.0001
spring 0.769 0.00877 <0.0001 0.0064
summer 0.0032 <0.0001
total residual chlorine /(mg·L−1) winter <0.0001 <0.0001 <0.0001 0.282 0.00061 0.0020
spring 0.336 0.366 0.0164 0.0436
summer 0.0652 0.656
Tab.2  Mann–Whitney p values for pairwise comparison between seasons
parameter treatment (chlorination only or plus other treatment) F-ratio p-value
chloroform only 10.99 <0.0001
plus 72.12 <0.0001
BDCM only 5.34 0.00125
plus 20.96 <0.0001
DBCM only 1.61 0.186
plus 7.91 <0.0001
bromoform only 0.266 0.85
plus 2.39 0.068
TTHM only 11.4 <0.0001
plus 79.0 <0.0001
free residual chlorine only 18.8 <0.0001
plus 42.3 <0.0001
total residual chlorine only 9.09 <0.0001
plus 3.87 0.0089
Tab.3  Variation between seasons and within seasons – results of one-way ANOVA
linear correlation chloroform /(µg·L−1) BDCM /(µg·L−1) DBCM /(µg·L−1) bromoform /(µg·L−1) TTHM /(µg·L−1) free residual chlorine /(mg·L−1) total residual chlorine /(mg·L−1)
chloroform /(µg·L−1) 1.00 0.166 −0.016 0.112 0.998 0.332 0.329
BDCM /(µg·L−1) 1.00 0.004 0.133 0.198 0.061 0.107
DBCM /(µg·L−1) 1.00 0.096 −0.058 0.005 −0.067
bromoform /(µg·L−1) 1.00 0.117 −0.018 −0.011
TTHM /(µg·L−1) 1.00 0.331 0.330
free residual chlorine /(mg·L−1) 1.00 0.762
total residual chlorine /(mg·L−1) 1.00
Tab.4  Correlation between parameters
1 Environment Canada. National Climate Data and Information Archive Canadian Climate Normal. 2012.
2 J L Kormos. Occurrence and Seasonal Variability of Selected Pharmaceuticals in Southern Ontario Drinking Water. Thesis for Master. Waterloo Ontario Canada: University of Waterloo, 2007
3 A Llopis-González, M Morales-Suárez-Varela, S Sagrado-Vives, N Gimeno-Clemente, V Yusà-Pelecha, P Martí-Requena, L Monforte-Monleán. Long-term characterization of trihalomethane levels in drinking water. Toxicological and Environmental Chemistry, 2010, 92(4): 683–696
https://doi.org/10.1080/02772240903090524
4 D Baytak, A Sofuoglu, F Inal, S C Sofuoglu. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks. The Science of the Total Environment, 2008, 407(1): 286–296
https://doi.org/10.1016/j.scitotenv.2008.08.019 pmid: 18805568
5 V Uyak, I Toroz, S Merric. Monitoring and modelling of trihalomethanes (THMs) for a water treatment plant in Istanbul. Desalination, 2005, 176(1–3): 91–101
6 N Giannoulis, V Maipa, T Albanis, I Konstantinou, I Dimoliatis. The quality of drinking water supplies in north-western Greece: A three year follow-up. International Journal of Environmental Analytical Chemistry, 2004, 84(1–3): 217–229
https://doi.org/10.1080/030673101593765
7 S K Golfinopoulos, N K Xilourgidis, M Kostopouou, T D Lekkas. Use of a multiple regression model for predicting trihalomethanes formation. Water Research, 1998, 32(9): 2821–2829
8 R Fabris, C W K Chow, M Drikas, B Eikebrokk. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research, 2008, 42(15): 4188–4196
https://doi.org/10.1016/j.watres.2008.06.023 pmid: 18706670
9 M J Rodriguez, J B Sérodes, P Levallois, F Proulx. Chlorinated disinfection by-products in drinking water according to source, treatment, season and distribution location. Journal of Environmental Engineering and Science, 2007, 6(4): 355–365
https://doi.org/10.1139/s06-055
10 A A Tesfamichael, J J Kaluarachchi. Uncertainty analysis of pesticide residues in drinking water risk assessment. Human and Ecological Risk Assessment, 2004, 10(6): 1129–1153
https://doi.org/10.1080/10807030490887195
11 A V Vecchia, J D Martin, R J Gilliom. Modeling variability and trends in pesticide concentrations in streams. Journal of the American Water Resources Association, 2008, 44(5): 1308–1324
https://doi.org/10.1111/j.1752-1688.2008.00225.x
12 World Health Organization. Climate and Health Fact Sheet. 2005.
13 H Moffatt, S Struck. Water-borne disease outbreaks in Canadian small drinking water systems. Report for: National Collaborating Centres for Public Health. 2011.
14 M J Rodriguez, Y Vinette, J Sérodes, C Bouchard. Trihalomethanes in drinking water of greater Québec Region (Canada): occurrence, variations and modelling. Environmental Monitoring and Assessment, 2003, 89(1): 69–93
15 J Rook. Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 1974, 23(4): 234–243
16 C M Villanueva, M Kogevinas, S Cordier, M R Templeton, R Vermeulen, J R Nuckols, M J Nieuwenhuijsen, P Levallois. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environmental Health Perspectives, 2014, 122(3): 213–221
17 European Union (EU) Council. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. 1998.
18 Health Canada. Guidelines for Canadian Drinking Water Quality. 2012.
19 U.S. Environmental Protection Agency (U.S. EPA). National Primary Drinking Water Regulations. 2009.
20 M Espigares, P Lardelli, P Ortega. Evaluating trihalomethane content in drinking water on the basis of common monitoring parameters regression models. Journal of Environmental Health, 2003, 66(3): 9–13
21 A Adin, J Katzhender, D Alkaslassy, Ch Rav-Acha. Trihalomethane formation in chlorinated drinking water: a kinetic model. Water Research, 1991, 25(7): 797–805
22 Gouvernement du Québec. Lignes Directrices Concernant l’Échantillonnage de l’eau potable. Ministère du développement durable, de l’environnement et des parcs. DR-12-SCA-07, 2012.
23 Palisade Corporation. StatTools® for Excel Add-in for Microsoft Excel Version 5.5.1: Industrial Edition. 2010. Ithaca, NY USA
24 S K Golfinopoulos. The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 2000, 41(11): 1761–1767
25 W J Chen, C P Weisel. Halogenated DBP concentrations in a distribution system. Journal of the American Water Works Association, 1998, 90(4): 151–163
26 P C Singer, A Obolensky, A Greiner. DBPs in chlorinated North Carolina drinking water. Journal of the American Water Works Association, 1995, 87(10): 83–92
27 Gouvernement du Québec Guide d’Interprétation du Règlement sur la qualité de l’eau potable. Ministère du développement durable, de l’environnement et des parcs. 2014.
28 B Cancho, F Ventura, M T Galceran. Behavior of halogenated disinfection by-products in the water treatment plant of Barcelona, Spain. Bulletin of Environmental Contamination and Toxicology, 1999, 63(5): 610–617
[1] Weiying Li, Yu Tian, Jiping Chen, Xinmin Wang, Yu Zhou, Nuo Shi. Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes[J]. Front. Environ. Sci. Eng., 2022, 16(6): 72-.
[2] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[3] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[4] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[5] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[6] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[7] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[8] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[9] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[10] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[11] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
[12] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[13] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[14] Chunming Wang, Huirong Lin, Chengsong Ye. Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification[J]. Front. Environ. Sci. Eng., 2016, 10(6): 8-.
[15] Xiaolong WANG,Shiming DING,Qi ZHANG,Weiping HU. Assessment on contaminations in sediments of an intake and the inflow canals in Taihu Lake, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 665-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed