Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 8    https://doi.org/10.1007/s11783-016-0847-9
RESEARCH ARTICLE
Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives
Boran WU1,Dongyang WANG1,Xiaoli CHAI1,*(),Fumitake TAKAHASHI2,Takayuki SHIMAOKA3
1. State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
2. Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
3. Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
 Download: PDF(401 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Industrial waste mixed with MSW is the main source of heavy metal in bottom ash.

Chlorine content in bottom ash is controlled both by plastic and kitchen waste.

Insoluble chlorine in Chinese MSWI bottom ash exists primarily as AlOCl.

Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250℃) in incinerators.

Keywords Bottom ash      Chlorine      Heavy metals      Waste inputs      Synchrotron X-ray diffraction      AlOCl     
PACS:     
Fund: 
Corresponding Author(s): Xiaoli CHAI   
Issue Date: 23 May 2016
 Cite this article:   
Boran WU,Dongyang WANG,Xiaoli CHAI, et al. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0847-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I4/8
incineration plants operation starting year processing capacity/(t·d-1) furnace temperature/℃ incineration facility number of combustion chambers incineration time /h bottom ash production/(t·d-1) fly ash production/(t·d-1) region
Beijing(BJ) 2008 1600 850 grate-furnace 2 1.5 475 40 north of China
Chongqing(CQ) 2005 1350 900 grate-furnace 3 2 270 55 south-west of China
Chengdu(CD) 2009 1325 900 grate-furnace 2 2 300 60 south-west of China
Jinjiang(JJ) 2005 2100 950 grate-furnace 2 2 800 70 south-east of China
Jiangqiao(JQ) 2005 1850 950 grate-furnace 2 2 450 30 east of China
Yuqiao(YQ) 2002 1200 850 grate-furnace 3 1.2 235 26 east of China
Shenzhen(SZ) 2003 822 1050 grate-furnace 2 1.2 166 20 south of China
Tab.1  Operating conditions in incineration plants
cities food paper textile wood glass rubber plastic dust metal
Shanghai 51.9 9.4 2.8 1.5 4.3 13.5 1.1 0.9
Beijing 55.2 14.3 4.3 0.5 4.3 14.8 6.4 0.2
Shenzhen 47.8 13.7 10.3 2.9 5.1 13.9 5.8 0.7
Chongqing 55.8 15.1 3.0 2.6 1.5 15.1 13.2 0.2
Chengdu 69.0 9.8 1.8 2.7 2.6 9.1 1.8 0.7
Jinjiang 18.7 6.3 4.6 3.4 2.1 26.2 37.8 0.9
Tab.2  Refuse compositions for six cities in 2012 [15] (unit: wt.%)
elemental composition JQ YQ BJ SZ CQ CD JJ
Na2O 2.02 2.48 1.61 1.43 2.35 2.62 1.67
MgO 2.28 1.92 2.16 1.01 2.05 2.10 1.34
Al2O3 5.96 5.91 7.97 6.97 7.59 11.4 8.34
SiO2 21.3 27.4 19.9 23.2 24.4 33.1 39.3
P2O5 3.26 3.22 1.94 1.60 4.75 2.79 1.05
SO3 3.29 2.13 1.84 1.37 2.50 3.36 0.95
K2O 1.34 1.40 1.67 1.45 1.34 1.64 1.61
CaO 23.4 20.0 16.2 13.3 20.8 15.5 9.38
TiO2 0.61 0.56 0.65 0.90 0.71 0.90 0.57
MnO 0.13 0.10 0.07 0.07 0.13 0.10 0.08
Fe2O3 5.77 5.77 4.52 5.92 7.94 7.05 5.78
CuO 0.10 0.11 0.04 0.24 0.12 0.05 0.05
ZnO 0.29 0.35 0.23 0.68 0.45 0.32 0.20
BaO 0.15 0.14 0.20 0.27 0.20 0.15
Tab.3  Chemical composition of bottom ash determined by XRF (unit: wt.%)
Fig.1  Heavy metal content of bottom ash
waste As Cd Cr Cu Pb Zn
plastics 0.18 3.6 2.3 1 7 16
textiles 0.02 4.3 2 5 27
plastic film 0.2 3 2 1.2
paper 0.1 0.2 1.0
power cords 0.03 1.3 9399 37 3.0
sponge 0.02 0.7 22 12 21
electric circuit boards 0.06 2.5 1.5 1193 37 35
cans 0.1 6 0.1 0.5
rubber 0.14 0.3 4.7 12 10 98
wood 0.6 11 31 155
residuals 19.4 10787 75 1809.5
total 0.43 7.02 34.5 21436.1 216.3 2167.2
Tab.4  Metal content of shredded bulky waste [2123]
Fig.2  Chlorine content of bottom ash from different MSW incineration plants
Fig.3  XRD patterns of seven bottom ash samples
1 Xi B D, Li X G, Gao J X, Zhao Y, Liu H, Xia X, Yang T, Zhang L, Jia X. Review of challenges and strategies for balanced urban–rural environmental protection in China. Frontiers of Environmental Science & Engineering, 2015, 9(3): 371–384
https://doi.org/10.1007/s11783-014-0744-z
2 Bertolini L, Carsana M, Cassago D, Curzio A Q, Collepardi M. MSWI ashes as mineral additions in concrete. Cement and Concrete Research, 2004, 34(10): 1899–1906
https://doi.org/10.1016/j.cemconres.2004.02.001
3 Chen H X, Ma X, Dai H J. Reuse of water purification sludge as raw material in cement production. Cement and Concrete Composites, 2010, 32(6): 436–439
https://doi.org/10.1016/j.cemconcomp.2010.02.009
4 Wen Z, Chen M, Meng F. Evaluation of energy saving potential in China’s cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis. Energy Policy, 2015, 77(1): 227–237
https://doi.org/10.1016/j.enpol.2014.11.030
5 Pan J R, Huang C, Kuo J J, Lin S H. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management (New York, N.Y.), 2008, 28(7): 1113–1118
https://doi.org/10.1016/j.wasman.2007.04.009 pmid: 17627805
6 Lam C H K, Ip A W M, Barford J P, Mckay G. Use of incineration MSW ash: a review. Sustainability, 2010, 2(11): 1943–1968
https://doi.org/10.3390/su2071943
7 Ferraris M, Salvo M, Ventrella A, Buzzi L, Veglia M. Use of vitrified MSWI bottom ashes for concrete production. Waste Management (New York, N.Y.), 2009, 29(3): 1041–1047
https://doi.org/10.1016/j.wasman.2008.07.014 pmid: 18845429
8 Ginés O, Chimenos J M, Vizcarro A, Formosa J, Rosell J R. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. Journal of Hazardous Materials, 2009, 169(1–3): 643–650
https://doi.org/10.1016/j.jhazmat.2009.03.141 pmid: 19427118
9 Cioffi R, Colangelo F, Montagnaro F, Santoro L. Manufacture of artificial aggregate using MSWI bottom ash. Waste Management (New York, N.Y.), 2011, 31(2): 281–288
https://doi.org/10.1016/j.wasman.2010.05.020 pmid: 20566278
10 Ito R, Dodbiba G, Fujita T, Ahn J W. Removal of insoluble chloride from bottom ash for recycling. Waste Management (New York, N.Y.), 2008, 28(8): 1317–1323
https://doi.org/10.1016/j.wasman.2007.05.015 pmid: 17662593
11 Jakob A, Stucki S, Struis R P W J. Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates. Journal of Environmental Science & Technology, 1996, 30(30): 3275–3283
https://doi.org/10.1021/es960059z
12 Jung C H, Osako M. Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Chemosphere, 2007, 69(2): 279–288
https://doi.org/10.1016/j.chemosphere.2007.03.071 pmid: 17524456
13 Astrup T, Riber C, Pedersen A J. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues. Waste Management & Research, 2011, 29(10 Suppl): 57–68
https://doi.org/10.1177/0734242X11419893 pmid: 21930520
14 Shimaoka T, Komiya T, Takahashi F, Nakayama H, Edil T, Dean S W. Dechlorination of municipal solid waste incineration residues for beneficial reuse as a resource for cement. Journal of ASTM International, 2011, 8(10): 103671
https://doi.org/10.1520/JAI103671
15 Chai X, Wang D, Takahashi F, Shimaoka T. Physicochemical characterisitcs of typical fly ashes of solid waste incineration plants in China. Journal of Tongji University (Natural Science), 2012, 40(12): 1857–1862 (in Chinese)
16 Zhang H Q, Wu W W, Wang X F. Influencing factors of the development of China’s catering industry. In: Proceedings of International Conference on Management Science and Engineering 2014, Singapore. Lancaster: DEStech Publications Inc, 2014, 767–773
17 Funari V, Braga R, Bokhari S N H, Dinelli E, Meisel T. Solid residues from Italian municipal solid waste incinerators: a source for “critical” raw materials. Waste Management (New York, N.Y.), 2015, 45(1): 206–216
pmid: 25512234
18 Yeung Z L L, Kwok R C W, Yu K N. Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF). Applied Radiation and Isotopes, 2003, 58(3): 339–346
https://doi.org/10.1016/S0969-8043(02)00351-2 pmid: 12595012
19 Dahl O, Watkins G, Nurmesniemi H, Pöykiö R. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Processing Technology, 2009, 90(8): 871–878
https://doi.org/10.1016/j.fuproc.2009.04.013
20 Jacobs L, Buczynska A, Walgraeve C, Delcloo A, Potgieter-Vermaak S, Van Grieken R, Demeestere K, Dewulf J, Van Langenhove H, De Backer H, Nemery B, Nawrot T S. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environmental Research, 2012, 117(2): 60–67
https://doi.org/10.1016/j.envres.2012.05.003 pmid: 22717264
21 Jung C H, Matsuto T, Tanaka N, Okada T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management (New York, N.Y.), 2004, 24(4): 381–391
https://doi.org/10.1016/S0956-053X(03)00137-5 pmid: 15081066
22 Zeng X, Li J. Spent rechargeable lithium batteries in e-waste: composition and its implications. Frontiers of Environmental Science & Engineering, 2014, 8(5): 792–796
https://doi.org/10.1007/s11783-014-0705-6
23 Chao Z, Niu D, Zhao Y. A comprehensive overview of rural solid waste management in China. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1–13
24 Ma W, Hoffmann G, Schirmer M, Chen G, Rotter V S. Chlorine characterization and thermal behavior in MSW and RDF. Journal of Hazardous Materials, 2010, 178(1–3): 489–498
https://doi.org/10.1016/j.jhazmat.2010.01.108 pmid: 20171781
25 Rendek E, Ducom G, Germain P. Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Management (New York, N.Y.), 2007, 27(10): 1403–1407
https://doi.org/10.1016/j.wasman.2007.03.016 pmid: 17509859
26 Ming Y W, Jiann H H, Chen J C. The behavior of heavy metal Cr, Pb and Cd during waste incineration in fluidized bed under various chlorine additives. Journal of Chemical Engineering of Japan, 1996, 29(3): 494–500
https://doi.org/10.1252/jcej.29.494
27 Belevi H, Moench H. Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental Science & Technology, 2000, 34(12): 2501–2506
https://doi.org/10.1021/es991078m
28 Zhu F, Takaoka M, Shiota K, Oshita K, Kitajima Y. Chloride chemical form in various types of fly ash. Environmental Science & Technology, 2008, 42(11): 3932–3937
https://doi.org/10.1021/es7031168 pmid: 18589947
29 Greenbaum M A, Blauer J A, Arshadi M R, Farber M. Heat of formation of AlOCl(g). Transactions of the Faraday Society, 1964, 60(2): 1592–1597
https://doi.org/10.1039/tf9646001592
[1] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[2] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[5] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[6] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[7] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[8] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[9] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[10] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[11] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
[12] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[13] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[14] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[15] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed