Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (2) : 11    https://doi.org/10.1007/s11783-017-0919-5
RESEARCH ARTICLE
Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics
Xiaoyan Song1,Rui Liu1(),Lujun Chen1,2(),Tomoki Kawagishi3
1. Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University-Zhejiang, Jiaxing 314006, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Aqua Development Center, Mitsubishi Rayon Co. Ltd., Toyohashi 4408601, Japan
 Download: PDF(310 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The BF-MBR displayed higher removal rates of nitrogen, phosphorous and antibiotics.

The BF-MBR saved alkali consumption.

The removal of antibiotics was influenced significantly by HRT.

Membrane filtration greatly contributed to antibiotics removal.

A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4+-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4+-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRT of 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.

Keywords Alkalinity      Antibiotics      Biofilm      Digested piggery wastewater (DPW)      Membrane bioreactor     
Corresponding Author(s): Rui Liu,Lujun Chen   
Issue Date: 07 April 2017
 Cite this article:   
Xiaoyan Song,Rui Liu,Lujun Chen, et al. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0919-5
https://academic.hep.com.cn/fese/EN/Y2017/V11/I2/11
Fig.1  Schematic diagram of the experimental equipments: (a) BF-MBR, (b) MBR
runs days HRT
/d
COD/
TN
NLRa)
/(kg NH4+-N·m3·d1)
NLR
/(kg TN·m3·d1)
OLRb)
/(kg COD·m3·d1)
run 1 29–70 9–5 1.0±0.2 0.15±0.03 0.29±0.04 0.26±0.07
run 2 71–106 5–4 2.3±0.5 0.12±0.05 0.25±0.05 0.77±0.06
run 3 107–160 3–2 2.3±0.5 0.33±0.09 0.68±0.10 1.60±0.20
run 4 161–191 1 1.0±0.2 0.41±0.11 0.93±0.09 1.16±0.17
Tab.1  Running conditions and operating parameters
Fig.2  Removals of COD, NH4+-N, TN and TP
runs pH effluent NH4+-N
/(mg·L1)
ammoniated TON
/(mg·L1)
NaHCO3 dosage
/(g·L1)
influent BF-MBR MBR BF-MBR MBR BF-MBR MBR BF-MBR MBR
B zone M zone
run 1 8.4±0.1 8.3±0.7 7.1±0.8 7.1±1.0 109.6±53.3 71.6±72.4 429±233 387±193 2.0±0.1 2.5±0.3
run 2 8.2±0.2 8.4±0.6 7.9±1.1 6.2±0.6 17.9±24.2 101.5±74.9 716±277 671±323 2.0±0.0 2.0±0.1
run 3 8.0±0.2 8.4±0.3 8.6±0.4 7.3±0.9 4.6±1.1 8.6±11.0 680±300 635±221 1.0±0.4 1.5±0.2
run 4 7.7±0.1 7.4±0.6 5.9±0.9 6.0±0.7 47.2±28.2 28.8±16.4 577±131 546±160 2.5±0.9 3.7±0.7
Tab.2  Alkalinity consumption and pH change and in runs 1–4 in the BF-MBR and MBR
antibiotics 106 d (run 2) 145 d (run 3) 189 d (run 4)
influent
/(mg·L1)
effluent
/(mg·L1)
removal
/%
influent
/(mg·L1)
effluent /(mg·L1) removal
/%
influent
/(mg·L1)
effluent /(mg·L1) removal
/%
BF-MBR MBR BF-MBR MBR BF-MBR MBR BF-MBR MBR BF-MBR MBR BF-MBR MBR
DC 11.36 1.26 1.57 88.9 86.2 2.76 0.60 0.91 78.4 67.0 2.37 0.51 0.89 78.5 62.2
TC 3.83 0.70 0.76 81.7 80.2 1.69 0.44 0.43 74.0 74.6 1.01 0.36 0.59 64.5 41.8
OTC 0.67 0.08 0.1 88.1 85.1 1.32 0.41 0.57 68.9 57.0 2.32 1.47 2.17 36.9 6.4
CTC 0.35 0.1 0.19 71.4 45.7 2.07 0.73 1.47 64.8 29.3 3.00 2.43 2.83 19.2 5.7
SMD 5.86 0.3 0.65 94.9 88.9 5.49 0.12 0.22 97.8 96.0 8.21 0.1 0.58 98.8 92.9
SMX 0.41 0.31 0.14 24.4 65.9 0.23 0.19 0.22 16.1 4.4 0.19 0.05 0.18 73.7 3.0
ENR 4.52 0.23 0.36 94.9 92.0 0.14 0.63 0.6 44.7 47.4 1 0.73 0.49 27.2 51.6
CIP 2.21 0.08 0.14 96.4 93.9 1.79 0.30 0.37 83.2 79.1 2.91 0.51 1.59 82.5 45.2
NOR 1.13 0.50 0.99 55.8 12.4 1.91 1.43 1.83 25.1 4.2 4.25 1.35 1.88 68.2 55.8
TYL 0.07 0.04 0.06 42.9 14.3 0.15 0.07 0.09 54.6 41.5 0.07 0.04 0.07 40.0 -1.5
RTM n.d. n.d. n.d. / / n.d. n.d. n.d. / / n.d. n.d. n.d. / /
TCs 16.21 2.14 2.62 86.8 83.8 7.84 2.18 3.37 72.2 57.0 8.70 4.76 6.49 45.3 25.5
SAs 6.27 0.61 0.79 90.3 87.4 5.72 0.31 0.44 94.5 92.3 8.40 0.15 0.76 98.2 90.9
QNs 7.86 0.81 1.49 89.7 81.1 4.84 2.36 2.80 51.2 42.1 8.16 2.54 3.96 68.9 51.5
MCs 0.07 0.04 0.06 42.9 14.3 0.15 0.07 0.09 54.6 41.5 0.07 0.03 0.05 53.9 23.1
TAs 30.41 3.60 4.96 88.2 83.7 18.55 4.92 6.71 73.5 63.9 25.32 7.48 11.26 70.5 55.5
Tab.3  Antibiotics concentration and removal efficiency (%) in the BF-MBR and the MBR in runs 2–4
Fig.3  Membrane interception to antibiotics in the BF-MBR and MBR
1 Zhao B W, Li J Z, Leu S Y. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresource Technology, 2014, 173: 384–391
https://doi.org/10.1016/j.biortech.2014.09.135
2 Bernet N, Béline F. Challenges and innovations on biological treatment of livestock effluents. Bioresource Technology, 2009, 100(22): 5431–5436
https://doi.org/10.1016/j.biortech.2009.02.003
3 Vanotti M B, Szogi A A, Hunt P G, Millner P D, Humenik F J. Development of environmentally superior treatment system to replace anaerobic swine lagoons in the USA. Bioresource Technology, 2007, 98(17): 3184–3194
https://doi.org/10.1016/j.biortech.2006.07.009
4 Massé D, Rajagopal R, Singh G. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste. Applied Energy, 2014, 120: 49–55
https://doi.org/10.1016/j.apenergy.2014.01.034
5 Wei D, Wan M, Liu R, Wang G R, Zhang X D, Wen X G, Zhao Y, Chen L J. Study on the quality of digested piggery wastewater in large-scale farms in Jiaxing. Environmental Sciences, 2014, 35(7): 2650–2657 (in Chinese)
6 Deng L W, Zheng P, Chen Z A, Mahmood Q. Improvement in post-treatment of digested swine wastewater. Bioresource Technology, 2008, 99(8): 3136–3145
https://doi.org/10.1016/j.biortech.2007.05.061
7 Sui Q W, Liu C, Dong H M, Zhu Z P. Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater. Journal of Bioscience and Bioengineering, 2014, 118(3): 277–283
https://doi.org/10.1016/j.jbiosc.2014.02.017
8 Rajagopal R, Rousseau P, Bernet N, Béline F. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresource Technology, 2011, 102(3): 2185–2192
https://doi.org/10.1016/j.biortech.2010.09.112
9 Huang H M, Liu J H, Wang S F, Jiang Y, Xiao D, Ding L, Gao F M. Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component. Ecological Engineering, 2016, 92: 111–118
https://doi.org/10.1016/j.ecoleng.2016.03.023
10 Zhang M C, Lawlor P G, Hu Z H, Zhan X M. Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environmental Technology, 2013, 34(5): 645–651
https://doi.org/10.1080/09593330.2012.710406
11 Gao L H, Shi Y L, Li W H, Niu H Y, Liu J M, Cai Y Q. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 2012, 86(6): 665–671
https://doi.org/10.1016/j.chemosphere.2011.11.019
12 Wang S H, Wang H. Adsorption behavior of antibiotic in soil environment: a critical review. Frontiers of Environmental Science & Engineering, 2015, 9(4): 565–574
https://doi.org/10.1007/s11783-015-0801-2
13 Pan X, Qiang Z M, Ben W W, Chen M X. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 2011, 84(5): 695–700
https://doi.org/10.1016/j.chemosphere.2011.03.022
14 Braschi I, Blasioli S, Fellet C, Lorenzini R, Garelli A, Pori M, Giacomini D. Persistence and degradation of new b-lactam antibiotics in the soil and water environment. Chemosphere, 2013, 93(1): 152–159
https://doi.org/10.1016/j.chemosphere.2013.05.016
15 Fan X, Tao Y, Wei D, Zhang X, Lei Y, Noguchi H. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration. Frontiers of Environmental Science & Engineering, 2015, 9(1): 112–120
https://doi.org/10.1007/s11783-014-0745-y
16 Prado N, Ochoa J, Amrane A. Zero Nuisance Piggeries: Long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale. Water Research, 2009, 43(6): 1549–1558
https://doi.org/10.1016/j.watres.2008.12.043
17 Capodici M, Di Bella G, Di Trapani D, Torregrossa M. Pilot scale experiment with MBR operated in intermittent aeration condition: analysis of biological performance. Bioresource Technology, 2015, 177: 398–405
https://doi.org/10.1016/j.biortech.2014.11.075
18 Kornboonraksa T, Lee H S, Lee S H, Chiemchaisri C. Application of chemical precipitation and membrane bioreactor hybrid process for piggery wastewater treatment. Bioresource Technology, 2009, 100(6): 1963–1968
https://doi.org/10.1016/j.biortech.2008.10.033
19 Sahar E, Messalem R, Cikurel H, Aharoni A , Brenner A, Godehardt M, Jekel M, Ernst M. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Research, 2011, 45(16): 4827–4836
https://doi.org/10.1016/j.watres.2011.06.023
20 Göbel A, McArdell C, Joss A, Siegrist H, Giger W. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 2007, 372(2–3): 361–371
https://doi.org/10.1016/j.scitotenv.2006.07.039
21 Radjenovic J, Petrovic M, Barceló D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1365–1377
https://doi.org/10.1007/s00216-006-0883-6
22 MEPPRC (Ministry Environmental Protection of People’s Republic of China). Standard Methods for Water and Wastewater Monitoring and Analysis. 4th ed.Beijing: China Environmental Science Press, 2002, 238–239, 252–256, 260–263, 266–269, 345–356 (in Chinese)
23 Anthonisen A C, Loehr R C, Prakasam T B S, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
24 Luo Y, Xu L, Rysz M, Wang Y Q, Zhang H, Alvarez P J J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 2011, 45(5): 1827–1833
https://doi.org/10.1021/es104009s
25 Yang S, Yang F L, Fu Z M, Lei R B. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource Technology, 2009, 100(8): 2369–2374
https://doi.org/10.1016/j.biortech.2008.11.022
26 Rodríguez-Hernández L, Esteban-García A L, Tejero I. Comparison between a fixed bed hybrid membrane bioreactor and a conventional membrane bioreactor for municipal wastewater treatment: a pilot-scale study. Bioresource Technology, 2014, 152: 212–219
https://doi.org/10.1016/j.biortech.2013.10.081
27 Khan S J, llyas S, Javid S, Visvanathan C, Jegatheesan V. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, 2011, 102(9): 5331–5336
https://doi.org/10.1016/j.biortech.2010.09.100
28 Wei R C, Ge F, Huang S Y, Chen M, Wang R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 2011, 82(10): 1408–1414
https://doi.org/10.1016/j.chemosphere.2010.11.067
29 Brown K D, Kulis J, Thomson B, Chapman T H, Mawhinney D B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 2006, 366(2–3): 772–783
https://doi.org/10.1016/j.scitotenv.2005.10.007
30 Zorita S, Mårtensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 2009, 407(8): 2760–2770
https://doi.org/10.1016/j.scitotenv.2008.12.030
31 Choi Y J, KimL H, Zoh K D. Removal characteristics and mechanism of antibiotics using constructed wetlands. Ecological Engineering, 2016, 91: 85–92
https://doi.org/10.1016/j.ecoleng.2016.01.058
32 Carranza-Diaz O, Schultze-Nobre L, Moeder M, Nivala J, Kuschk P, Koeser H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecological Engineering, 2014, 71: 234–245
https://doi.org/10.1016/j.ecoleng.2014.07.048
33 McAdam E J, Bagnall J P, Soares A, Koh Y K K, Chiu T Y, Scrimshaw M D, Lester J N, Cartmell E. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition. Environmental Science & Technology, 2011, 45(1): 248–254
https://doi.org/10.1021/es100915j
34 Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere, 2013, 92(4): 435–444
https://doi.org/10.1016/j.chemosphere.2013.01.040
35 Yang S F, Lin C F, Wu C J, Ng K K, Lin A Y C, HongP K A. Fate of sulfonamide antibiotics in contact with activated sludge sorption and biodegradation. Water Research, 2012, 46(4): 1301–1308
https://doi.org/10.1016/j.watres.2011.12.035
[1] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[2] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[3] Ying Cui, Feng Tan, Yan Wang, Suyu Ren, Jingwen Chen. Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters[J]. Front. Environ. Sci. Eng., 2020, 14(6): 111-.
[4] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[5] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[6] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[7] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[8] Weihua Wang, Wanfeng Zhang, Hong Liang, Dawen Gao. Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(3): 34-.
[9] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[10] Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 9-.
[11] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[12] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[13] Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1-.
[14] Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16-.
[15] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed