Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 9    https://doi.org/10.1007/s11783-017-1004-9
RESEARCH ARTICLE
Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure
Ping He1, Guangxue Wu2, Rui Tang1, Peilun Ji1, Shoujun Yuan1,3, Wei Wang1,3(), Zhenhu Hu1,3()
1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2. Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
3. Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009, China
 Download: PDF(313 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The methanogenesis was severely inhibited with 0.46 mM ASA addition.

PO43 didn’t attenuate the methanogenesis inhibition in the existence of ASA.

ASA was transformed to As(III), As(V), MMA and DMA in anaerobic digestion.

Cu2+ mitigated the methanogenesis inhibition via impeding the degradation of ASA.

Arsanilic acid (ASA), copper ion (Cu2+) and phosphate (PO43) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine. Anaerobic digestion is often used for the management of pig manure. However, the interaction of ASA with Cu2+ or PO43 on anaerobic digestion is still not clear. In this study, the influence of ASA, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations of ASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA+ PO43 addition with the inhibition index of 97.8%, 46.6% and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA+ Cu2+ addition was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, mitigating the methanogenesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA with Cu2+.

Keywords Arsanilic acid (ASA)      Methanogenesis      Inhibition      Copper      Phosphate      Inorganic arsenics     
Corresponding Author(s): Wei Wang,Zhenhu Hu   
Issue Date: 26 September 2017
 Cite this article:   
Ping He,Guangxue Wu,Rui Tang, et al. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-1004-9
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/9
AssaysPig manureSludge (mL)CuCl2 (mM)Na3PO4 (mM)ASA (mM)
(g TS/L)
1(control)950
29502
39502
49500.46
595020.46
695020.46
Tab.1  Experimental design of the anaerobic digestion
Fig.1  Daily methane production (a) and cumulative methane production (b) with pig manure as substrate
Fig.2  Variation of volatile fatty acids concentration during anaerobic digestion of pig manure
GroupCu2+PO43-ASACH4,maxλRmax,CH4R2Inhibition index
(mM)(mM)(mM)(mL)(d)(mL/d)(%)
1(control)000334.463.4536.340.998
2200110.6317.388.550.939646.61
3020391.585.0326.310.9998-64.33
4000.462.263.160.810.998197.78
5200.46316.856.6322.030.967239.38
6020.4612.882.766.320.996382.6
Tab.2  Estimated parameters using Gompertz equation for methane production
Fig.3  Biotransformation of ASA during anaerobic digestion of pig manure
Fig.4  Generation of inorganic arsenic (a) and speciation of the degradation products of ASA in aqueous phase at the 8th day, 15th day, 24th day and 60th day (b); ? is for the assay adding ASA, ☆ is for the assay adding ASA and Cu2+, ○ is for the assay adding ASA and PO43-
Fig.5  Distribution of total arsenic in supernate and sludge: (a) the assay adding ASA, (b) the assay adding ASA and Cu2+ and (c) the assay adding ASA and PO43-
Fig.6  Arsenic species in the sludge after 60-day inoculation
1 Mata-Alvarez J, Dosta J, Romero-Güiza  M S, Fonoll X, Peces M, Astals S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable & Sustainable Energy Reviews, 2014, 36: 412–427
https://doi.org/10.1016/j.rser.2014.04.039
2 Wu G, Healy M G, Zhan X. Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresource Technology, 2009, 100(19): 4326–4331
https://doi.org/10.1016/j.biortech.2009.04.007 pmid: 19414247
3 Ministry of Agriculture of the People’s Republic of China. Scheme for promoting the utilization of agricultural wastes. 2016. Available online at  (accessed  August 11, 2016) (in Chinese)
4 Abbasi T, Tauseef S M, Abbasi S A. Anaerobic digestion for global warming control and energy generation-An overview. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3228–3242
https://doi.org/10.1016/j.rser.2012.02.046
5 Xie S H, Lawlor P G, Frost P, Dennehy C D, Hu Z H, Zhan X M. A pilot scale study on synergistic effects of co-digestion of pig manure and grass silage. International Biodeterioration & Biodegradation, 2017, 123: 244–250
https://doi.org/10.1016/j.ibiod.2017.07.005
6 Sutton A L, Brumm M C, Kelly D T, Henderson C A, Mayrose V B. Effect of dietary salt, arsenic and copper additions and waste management systems on selected microbial organisms in swine wastes. Journal of Animal Science, 1980, 51(4): 791–797
https://doi.org/10.2527/jas1980.514791x pmid: 7462108
7 Liu X, Zhang W, Hu Y, Cheng H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchemical Journal, 2013, 108(3): 38–45
https://doi.org/10.1016/j.microc.2012.12.005
8 Sierra-Alvarez R, Cortinas I, Field J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials, 2010, 175(1–3): 352–358
https://doi.org/10.1016/j.jhazmat.2009.10.010 pmid: 19889499
9 Wang H L, Hu Z H, Tong Z L, Xu Q, Wang W, Yuan S J. Effect of arsanilic acid on anaerobic methanogenic process: Kinetics, inhibition and biotransformation analysis. Biochemical Engineering Journal, 2014, 91(91): 179–185
https://doi.org/10.1016/j.bej.2014.08.011
10 Sierra-Alvarez R, Cortinas I, Yenal U, Field J A. Methanogenic inhibition by arsenic compounds. Applied and Environmental Microbiology, 2004, 70(9): 5688–5691
https://doi.org/10.1128/AEM.70.9.5688-5691.2004 pmid: 15345461
11 Shi L, Wang W, Yuan S J, Hu Z H. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environmental Science & Technology, 2014, 48(14): 7951–7958
https://doi.org/10.1021/es501398j pmid: 24937023
12 Shui M C, Ji F, Tang R, Yuan S J, Zhan X M, Wang W, Hu Z H. Impact of roxarsone on the UASB reactor performance and its degradation. Frontiers of Environmental Science & Engineering, 2016, 10(6): 4
https://doi.org/10.1007/s11783-016-0871-9
13 Stolz J F, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganathan M, Wormer L, Basu P.Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environmental Science & Technology, 2007, 41(3): 818–823
14 Bikker P, Jongbloed A W, van Baal J. Dose-dependent effects of copper supplementation of nursery diets on growth performance and fecal consistency in weaned pigs. Journal of Animal Science, 2016, 94(S3): 181–186
https://doi.org/10.2527/jas.2015-9874
15 Bolan N S, Khan M A, Donaldson J, Adriano D C, Matthew C. Distribution and bioavailability of copper in farm effluent. The Science of the Total Environment, 2003, 309(1–3): 225–236
https://doi.org/10.1016/S0048-9697(03)00052-4 pmid: 12798106
16 Li Y X, Li W, Wu J, Xu L C, Su Q H, Xiong X. Contribution of additives Cu to its accumulation in pig feces: study in Beijing and Fuxin of China. Journal of Environmental Sciences-China, 2007, 19(5): 610–615
https://doi.org/10.1016/S1001-0742(07)60101-6 pmid: 17915692
17 Guo J, Ostermann A, Siemens J, Dong R, Clemens J. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates. Waste Management (New York, N.Y.), 2012, 32(1): 131–136
https://doi.org/10.1016/j.wasman.2011.07.031 pmid: 21868210
18 Boonsawang P, Rerngnarong A, Tongurai C, Chaiprapat S. Effect of nitrogen and phosphorus on the performance of acidogenic and methanogenic reactors for treatment of biodiesel wastewater. Songklanakarin Journal of Science and Technology, 2014, 36(6): 643–649
19 Zayed G, Winter J. Inhibition of methane production from whey by heavy metals--protective effect of sulfide. Applied Microbiology and Biotechnology, 2000, 53(6): 726–731
https://doi.org/10.1007/s002530000336 pmid: 10919334
20 Tang R, Chen H, Yuan S J, Zhan X M, Wang W, Hu Z H. Arsenic accumulation and volatilization in a 260-day cultured upflow anaerobic sludge blanket (UASB) reactor. Chemical Engineering Journal, 2017, 311: 277–283
https://doi.org/10.1016/j.cej.2016.11.097
21 Mahar R B, Sahito A R, Yue D, Khan K. Modeling and simulation of landfill gas production from pretreated MSW landfill simulator. Frontiers of Environmental Science & Engineering, 2016, 10(1): 159–167
https://doi.org/10.1007/s11783-014-0685-6
22 Mu Y, Yu H Q, Wang G. A kinetic approach to anaerobic hydrogen-producing process. Water Research, 2007, 41(5): 1152–1160
https://doi.org/10.1016/j.watres.2006.11.047 pmid: 17267006
23 Zwietering M H, Jongenburger I, Rombouts F M, van ’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 1990, 56(6): 1875–1881
pmid: 16348228
24 Hu Z H, Yu H Q. Anaerobic digestion of cattail by rumen cultures. Waste Management (New York, N.Y.), 2006, 26(11): 1222–1228
https://doi.org/10.1016/j.wasman.2005.08.003 pmid: 16198552
25 Zhang F F, Wang W, Yuan S J, Hu Z H. Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials, 2014, 279(5): 562–568
https://doi.org/10.1016/j.jhazmat.2014.07.047 pmid: 25108830
26 Rosen B P, Ajees A A, McDermott T R. Life and death with arsenic. Bioessays, 2011, 33(5): 350–357
https://doi.org/10.1002/bies.201100012 pmid: 21387349
27 Li W W, Yu H Q. From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnology Advances, 2011, 29(6): 972–982
https://doi.org/10.1016/j.biotechadv.2011.08.012 pmid: 21884782
28 Mu Y, Wang G, Yu H Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology, 2006, 38(7): 905–913
https://doi.org/10.1016/j.enzmictec.2005.08.016
29 Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953
https://doi.org/10.1016/j.enzmictec.2006.07.033
30 Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field J A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials, 2015, 283: 755–763
https://doi.org/10.1016/j.jhazmat.2014.10.030 pmid: 25464319
31 Zhang M, He Z P, Yuan H, Zhu L, Guo C Z, Yin L, Wu J, Deng S J, Yuan L Y, Wen L X. DNA damage and decrease of cellular oxidase activity in piglet Sertoli cells exposed to arsanilic acid. The Journal of Veterinary Medical Science, 2011, 73(2): 199–203
https://doi.org/10.1292/jvms.10-0236 pmid: 20944440
32 Kim K W, Bang S, Zhu Y, Meharg A A, Bhattacharya P. Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environment International, 2009, 35(3): 453–454
https://doi.org/10.1016/j.envint.2009.01.001 pmid: 19217665
33 Liu R, Xu W, Wu K, Gong W, Liu H, Qu J. Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater into a river. Frontiers of Environmental Science & Engineering, 2013, 7(4): 568–578
https://doi.org/10.1007/s11783-013-0514-3
34 Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 2009, 35(4): 743–759
https://doi.org/10.1016/j.envint.2009.01.005 pmid: 19232730
35 Ronkart S N, Laurent V, Carbonnelle P, Mabon N, Copin A, Barthélemy J P. Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere, 2007, 66(4): 738–745
https://doi.org/10.1016/j.chemosphere.2006.07.056 pmid: 16956643
[1] Supplementary Material 1 Download
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[5] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[6] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[9] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[10] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[11] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[12] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[13] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[14] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[15] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed