Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 6    https://doi.org/10.1007/s11783-018-1020-4
RESEARCH ARTICLE
Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system
Feng Wang1, Weiying Li2,3(), Yue Li2,3, Junpeng Zhang2,3, Jiping Chen2,3, Wei Zhang4, Xuan Wu2,3
1. Institute of Water Environment Technology, MCC Huatian Engineering and Technology Corporation, Nanjing 210019, China
2. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
3. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
4. Chengdu Chuanli Intelligence Fuild Equipment Co. Ltd, Chengdu 611500, China
 Download: PDF(1194 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The increase of water ages drove the deterioration of drinking water quality.

The relative abundance of Rhizobiales uniquely increase during distributing process.

Rhizobiales order was helpful for inhibiting corrosion under high chlorine level.

New disinfecting strategies should be developed to ensure drinking water safety.

Bacterial community in the drinking water distribution system (DWDS) was regulated by multiple environmental factors, many of which varied as a function of water age. In this study, four water samples with different water ages, including finished water (FW, 0 d) and tap water (TW) [TW1 (1 d), TW2(2 d) and TW3(3 d)], were collected along with the mains of a practical DWDS, and the bacterial community was investigated by high-throughput sequencing technique. Results indicated that the residual chlorine declined with the increase of water age, accompanied by the increase of dissolved organic matter, total bacteria counts and bacterial diversity (Shannon). For bacterial community composition, although Proteobacteria phylum (84.12%-97.6%) and Alphaproteobacteria class (67.42%-93.09%) kept dominate, an evident regular was observed at the order level. In detail, the relative abundance of most of other residual orders increased with different degrees from the start to the end of the DWDS, while a downward trend was uniquely observed in terms of Rhizobiales, who was inferred to be chlorine-resistant and be helpful for inhibiting pipes corrosion. Moreover, some OTUs were found to be closely related with species possessing pathogenicity and chlorine-resistant ability, so it was recommended that the use of agents other than chlorine or agents that can act synergically with chlorine should be developed for drinking water disinfection. This paper revealed bacterial community variations along the mains of the DWDS and the result was helpful for understanding bacterial ecology in the DWDS.

Keywords Bacterial community      Water age      High-throughput sequencing technique      Drinking water distribution system     
Corresponding Author(s): Weiying Li   
Issue Date: 07 February 2018
 Cite this article:   
Feng Wang,Weiying Li,Yue Li, et al. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1020-4
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/6
Fig.1  The positions of the sampling points and the DWTP in the full-scale distribution system
Parameters FW TW1 TW2 TW3
Temperature(°C) 22.6±0.356 20.8±0.047 16.5±0.047 18.5±0.047
Turbidity(NTU) 0.300±0.011 0.517±0.057 0.5±0.028 0.477±0.034
Ammonia(mg/L) 0.031±0.007 0.184±0.010 0.184±0.012 0.109±0.009
CODMn(mg/L) 1.29±0.082 1.78±0.062 1.67±0.04 1.76±0.036
DOC(mg/L) 1.471±0.090 1.846±0.047 1.974±0.047 2.18±0.058
TBC(cells/mL) 1.50 × 102±7 1.05 × 104±148 1.46 × 104±151 4.71 × 104±211
RC(mg/L) 0.80±0.012 0.53±0.005 0.42±0.005 0.15±0.005
Tab.1  Water quality parameters of all samples
Sample ID Raw reads Average length OTU Chao Shannon
FW 37478 431bp 142 165 1.62
TW1 43185 426bp 197 230 1.68
TW2 40720 431bp 273 301 3.42
TW3 38404 432bp 312 325 4.06
Tab.2  The sequencing results and alpha diversity indices of bacterial community
Fig.2  PCoA analysis of FW and TW samples
Fig.3  Taxonomic composition of the bacterial communities of FW (a), TW1 (b), TW2(c) and TW3 (d) at the phylum level
Fig.4  The Proteobacterial composition of samples at the order level
Fig.5  RDA analysis between water quality parameters (red arrows) and the typical orders (blue arrows)
Fig.6  The phylogenetic tree of representative OTUs and several well-known opportunistic pathogens
1 Chu W, Li  X, Bond T,  Gao N, Yin  D. The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination. Chemical Engineering Journal, 2016, 285: 164–171
https://doi.org/10.1016/j.cej.2015.09.087
2 El-Chakhtoura J, Prest  E, Saikaly P,  van Loosdrecht M,  Hammes F,  Vrouwenvelder H. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research, 2015, 74: 180–190
https://doi.org/10.1016/j.watres.2015.02.015 pmid: 25732558
3 Douterelo I, Sharpe  R L, Boxall  J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Research, 2013, 47(2): 503–516
https://doi.org/10.1016/j.watres.2012.09.053 pmid: 23182667
4 Chu C, Lu  C. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water. Chemosphere, 2004, 57(7): 531–539
https://doi.org/10.1016/j.chemosphere.2004.07.013 pmid: 15488914
5 Ndiongue S, Huck  P M, Slawson  R M. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Research, 2005, 39(6): 953–964
https://doi.org/10.1016/j.watres.2004.12.019 pmid: 15766950
6 Andra S S, Makris  K C, Botsaris  G, Charisiadis P,  Kalyvas H,  Costa C N. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems. Science of the Total Environment, 2014, 472: 1145–1151
https://doi.org/10.1016/j.scitotenv.2013.11.045 pmid: 24365518
7 Lu J, Struewing  I, Vereen E,  Kirby A E,  Levy K, Moe  C, Ashbolt N. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. Journal of Applied Microbiology, 2016, 120(2): 509–521
https://doi.org/10.1111/jam.12996 pmid: 26535924
8 Thomas J M, Ashbolt  N J. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environmental Science & Technology, 2011, 45(3): 860–869
https://doi.org/10.1021/es102876y pmid: 21194220
9 Falkinham J O 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. Journal of Applied Microbiology, 2009, 107(2): 356–367
https://doi.org/10.1111/j.1365-2672.2009.04161.x pmid: 19228258
10 Wang H, Edwards  M, Falkinham J O 3rd,  Pruden A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Applied and Environmental Microbiology, 2012, 78(17): 6285–6294
https://doi.org/10.1128/AEM.01492-12 pmid: 22752174
11 von Baum H, Welte  T, Marre R,  Suttorp N,  Ewig S. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: Diagnosis, incidence and predictors. European Respiratory Journal, 2010, 35(3): 598–605
https://doi.org/10.1183/09031936.00091809 pmid: 19679601
12 Henne K, Kahlisch  L, Höfle M G,  Brettar I. Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs. Water Research, 2013, 47(15): 5614–5630
https://doi.org/10.1016/j.watres.2013.06.034 pmid: 23890873
13 Mi Z, Dai  Y, Xie S,  Chen C, Zhang  X. Impact of disinfection on drinking water biofilm bacterial community. Journal of Environmental Sciences (China), 2015, 37: 200–205
https://doi.org/10.1016/j.jes.2015.04.008 pmid: 26574105
14 Jang H J, Choi  Y J, Ka  J O. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor. Journal of Microbiology and Biotechnology, 2011, 21(2): 115–123
https://doi.org/10.4014/jmb.1010.10012 pmid: 21364292
15 Manuel C M, Nunes  O C, Melo  L F. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research, 2007, 41(3): 551–562
https://doi.org/10.1016/j.watres.2006.11.007 pmid: 17184812
16 Li M, Liu  Z, Chen Y,  Hai Y. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials. Water Research, 2016, 106: 593–603
https://doi.org/10.1016/j.watres.2016.10.044 pmid: 27776308
17 Chao Y, Ma  L, Yang Y,  Ju F, Zhang  X X, Wu  W M, Zhang  T. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Scientific Reports, 2013, 3(1): 3550
https://doi.org/10.1038/srep03550 pmid: 24352003
18 Prest E I, Hammes  F, Kötzsch S,  van Loosdrecht M C,  Vrouwenvelder J S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 2013, 47(19): 7131–7142
https://doi.org/10.1016/j.watres.2013.07.051 pmid: 24183559
19 Amato K R, Yeoman  C J, Kent  A, Righini N,  Carbonero F,  Estrada A,  Gaskins H R,  Stumpf R M,  Yildirim S,  Torralba M,  Gillis M,  Wilson B A,  Nelson K E,  White B A,  Leigh S R. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME Journal, 2013, 7(7): 1344–1353
https://doi.org/10.1038/ismej.2013.16 pmid: 23486247
20 Delafont V, Bouchon  D, Héchard Y,  Moulin L. Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. Water Research, 2016, 100: 382–392
https://doi.org/10.1016/j.watres.2016.05.044 pmid: 27219048
21 Mathieu L, Bouteleux  C, Fass S,  Angel E,  Block J C. Reversible shift in the a-, b- and g-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Research, 2009, 43(14): 3375–3386
https://doi.org/10.1016/j.watres.2009.05.005 pmid: 19539973
22 Jeong C H, Postigo  C, Richardson S D,  Simmons J E,  Kimura S Y,  Mariñas B J,  Barcelo D,  Liang P,  Wagner E D,  Plewa M J. Occurrence and comparative toxicity of Haloacetaldehyde disinfection byproducts in drinking water. Environmental Science & Technology, 2015, 49(23): 13749–13759
https://doi.org/10.1021/es506358x pmid: 25942416
23 Petterson S R,  Stenström T A. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA. Journal of Water and Health, 2015, 13(3): 625–644
https://doi.org/10.2166/wh.2015.193 pmid: 26322749
24 Dietrich J P, Loge  F J, Ginn  T R, Başağaoğlu  H. Inactivation of particle-associated microorganisms in wastewater disinfection: Modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Research, 2007, 41(10): 2189–2201
https://doi.org/10.1016/j.watres.2007.01.038 pmid: 17389144
25 Lynch F, Tomlinson  S, Palombo E A,  Harding I H. An epifluorescence-based evaluation of the effects of short-term particle association on the chlorination of surface water bacteria. Water Research, 2014, 63: 199–208
https://doi.org/10.1016/j.watres.2014.06.016 pmid: 25003212
26 Wang H, Hu  C, Zhang L,  Li X, Zhang  Y, Yang M. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems. Water Research, 2014, 65: 362–370
https://doi.org/10.1016/j.watres.2014.07.042 pmid: 25150521
27 Zarasvand K A,  Rai V R. Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration & Biodegradation, 2014, 87: 66–74
https://doi.org/10.1016/j.ibiod.2013.10.023
28 Kankaala P, Peura  S, Nykänen H,  Sonninen E,  Taipale S,  Tiirola M,  Jones R I. Impacts of added dissolved organic carbon on boreal freshwater pelagic metabolism and food webs in mesocosm experiments. Fundamental and Applied Limnology, 2010, 177(3): 161–176
https://doi.org/10.1127/1863-9135/2010/0177-0161
29 Lin W, Yu  Z, Chen X,  Liu R, Zhang  H. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system. Applied Microbiology and Biotechnology, 2013, 97(18): 8393–8401
https://doi.org/10.1007/s00253-012-4557-3 pmid: 23143469
30 Gomez-Alvarez V, Revetta  R P, Santo Domingo  J W. Metagenomic analyses of drinking water receiving different disinfection treatments. Applied and Environmental Microbiology, 2012, 78(17): 6095–6102
https://doi.org/10.1128/AEM.01018-12 pmid: 22729545
31 World Health Organization. Guidelines for Drinking-Water Quality. 4th ed. Geneva: World Health Organization. 2011, xxiii, 541 p
32 Ryan M P, Adley  C C. Sphingomonas paucimobilis: A persistent Gram-negative nosocomial infectious organism. Journal of Hospital Infection, 2010, 75(3): 153–157
https://doi.org/10.1016/j.jhin.2010.03.007 pmid: 20434794
33 Lee E S, Yoon  T H, Lee  M Y, Han  S H, Ka  J O. Inactivation of environmental mycobacteria by free chlorine and UV. Water Research, 2010, 44(5): 1329–1334
https://doi.org/10.1016/j.watres.2009.10.046 pmid: 19945731
34 Zhang M, Liu  W, Nie X,  Li C, Gu  J, Zhang C. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell. Microbes and Environments, 2012, 27(4): 443–448
https://doi.org/10.1264/jsme2.ME12035 pmid: 23059725
35 Sun W. Study on the Biological Safety of Drinking Water Following UV Disinfection. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2010
[1] FSE-17117-OF-WF_suppl_1 Download
[1] Manman Ma, Bo Zhang, Ye Chen, Wenrong Feng, Tiezhu Mi, Jianhua Qi, Wenshuai Li, Zhigang Yu, Yu Zhen. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region[J]. Front. Environ. Sci. Eng., 2021, 15(3): 42-.
[2] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[3] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[4] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[5] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[6] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[7] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[8] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[9] ZHANG Xiaojian,MI Zilong,WANG Yang,LIU Shuming,NIU Zhangbin,LU Pinpin,WANG Jun,GU Junnong,CHEN Chao. A red water occurrence in drinking water distribution systems caused by changes in water source in Beijing, China: mechanism analysis and control measures[J]. Front.Environ.Sci.Eng., 2014, 8(3): 417-426.
[10] Zhuoying WU, Qing WANG, Feng GUO, Shenghua ZHANG, Qipei JIANG, Xin YU. Responses of bacterial strains isolated from drinking water environments to N-acyl-L-homoserine lactones and their analogs during biofilm formation[J]. Front Envir Sci Eng, 2014, 8(2): 205-214.
[11] Hongyuan WANG, Xiaolu JIANG, Ya HE, Huashi GUAN. Spatial and seasonal variations in bacterial communities of the Yellow Sea by T-RFLP analysis[J]. Front Envir Sci Eng Chin, 2009, 3(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed