Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1139-1148    https://doi.org/10.1007/s11783-015-0823-9
RESEARCH ARTICLE
Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors
Lin LIU1,2,3,*(),Qiyu YOU1,Valerie GIBSON1,Xu HUANG1,Shaohua CHEN1,Zhilong YE1,Chaoxiang LIU1,*()
1. Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2. Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315000, China
3. State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua University, Beijing 100084, China
 Download: PDF(1573 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The granulation process, physic-chemical properties, pollution removal ability and bacterial communities of aerobic granules with different feed-wastewater (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine wastewater and that full granulation in R1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric substances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33 mg·g−1 VSS and 51.46 mg·g−1 VSS for R1, and 35.47 mg·g−1 VSS and 51.72 mg·g−1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.

Keywords aerobic granules      livestock wastewater      sequencing batch reactor      biological wastewater treatment      bacterial community     
Corresponding Author(s): Lin LIU,Chaoxiang LIU   
Online First Date: 09 November 2015    Issue Date: 23 November 2015
 Cite this article:   
Lin LIU,Qiyu YOU,Valerie GIBSON, et al. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0823-9
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1139
Fig.1  Images of aerobic granules in R1 and R2 during phase I (32nd day for R1, 40th day for R2) and phase II (75th day for both reactors)
Fig.2  Scanning electron microscope photographs of aerobic granules during phase I (34th day for R1, 42nd day for R2) and phase II (75th day for both reactors)
characteristics units phase I phase II
R1 R2 R1 R2
granulation progress granule appearance /d 5 8
full granulation /d 30 39
physical properties physical strength /% 98.2±0.4 97.8±1.1 97.2±0.3 97.4±0.5
specific gravity /(g·cm−3) 1.13±0.04 1.14±0.05 1.09±0.04 1.14±0.03
SVI5 /(mL·g−1) 15±1 14±1 13±1 14±1
MLVSS/MLSS /% 93.4±1.3 84.5±2.1 82.6±1.8 84.1±2.4
chemical properties proteins /(mg·g−1 VSS) 132.2±4.82 123.71±3.28 98.74±3.1 97.3±4.89
Polysaccharides /(mg·g−1 VSS) 79.43±2.53 50.1±1.34 26.71±2.4 25.9±1.72
PS/PN ratio /% 60.08 40.5 27.05 26.62
Tab.1  Physic-chemical characteristics of aerobic granules in both reactors at the end of each phase. All values include standard error of the measurements, with 3 samples
Fig.3  Operational performance of R1and R2 during phaseII(75 days). (a) COD removal efficiency; (b) ammonia nitrogen removal efficiency; (c) changes in concentration of nitrite and nitrate in effluent; (d) changes in specific rate per cycle of COD and ammonia nitrogen
Fig.4  Classification of dominant bacterial diversity (relative abundance>1%) at phylum, class, order and family level of seed flocculent sludge and aerobic granules in both reactors at the end of phase I and phase II. Component Score Coefficient Matrix of all samples at family level based on the PCA analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article)
1 Li  P, Wang  Y, Wang  Y, Liu  K, Tong  L. Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Science and Technology, 2010, 61(1): 243–252
https://doi.org/10.2166/wst.2010.807
2 Morales  N, Figueroa  M, Fra-Vázquez  A, Val del Río  A, Campos  J L, Mosquera-Corral  A, Méndez  R. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochemistry, 2013, 48(8): 1216–1221
https://doi.org/10.1016/j.procbio.2013.06.004
3 Figueroa  M, Val del Rio  A, Campos  J L, Mosquera-Corral  A, Mendez  R. Treatment of high loaded swine slurry in an aerobic granular reactor. Water Science and Technology, 2011, 63(9): 1808
https://doi.org/10.2166/wst.2011.381
4 Yan  L L, Liu  Y, Ren  Y, Wang  X H, Liang  H J, Zhang  Y. The effect of pH on the efficiency of an SBR processing piggery wastewater. Biotechnology and Bioprocess Engineering, 2013, 18(6): 1230–1237
https://doi.org/10.1007/s12257-013-0292-6
5 Gao  D W, Liu  L, Liang  H, Wu  W M. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Critical Reviews in Biotechnology, 2011, 31(2): 137–152
https://doi.org/10.3109/07388551.2010.497961
6 Zhang  X Y, Wang  B B, Han  Q Q, Zhao  H M, Peng  D C. Effects of shear force on formation and properties of anoxic granular sludge in SBR. Frontiers of Environmental Science & Engineering, 2013, 7(6): 896–905
https://doi.org/10.1007/s11783-013-0539-7
7 van Loosdrecht  M C, Brdjanovic  D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452–1453
https://doi.org/10.1126/science.1255183
8 Othman  I, Anuar  A N, Ujang  Z, Rosman  N H, Harun  H, Chelliapan  S. Livestock wastewater treatment using aerobic granular sludge. Bioresource Technology, 2013, 133(2): 630–634
https://doi.org/10.1016/j.biortech.2013.01.149
9 Jungles  M K, Figueroa  M, Morales  N, Val del Río  Á,, da Costa  R H R, Campos  J L, Mosquera-Corral  A, Méndez  R. Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2011, 86(5): 763–768
https://doi.org/10.1002/jctb.2589
10 Fang  H, Cai  L, Yu  Y, Zhang  T. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresource Technology, 2013, 129(2): 209–218
https://doi.org/10.1016/j.biortech.2012.11.054
11 Yadav  T C, Khardenavis  A A, Kapley  A. Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresource Technology, 2014, 165(8): 257–264
https://doi.org/10.1016/j.biortech.2014.03.007
12 Liang  B, Cheng  H, Van Nostrand  J D, Ma  J, Yu  H, Kong  D, Liu  W, Ren  N, Wu  L, Wang  A, Lee  D J, Zhou  J. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Research, 2014, 54(4): 137–148
https://doi.org/10.1016/j.watres.2014.01.052
13 Sheng  G, Li  A, Li  X, Yu  H. Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation. Chemical Engineering Journal, 2010, 160(1): 108–114
https://doi.org/10.1016/j.cej.2010.03.017
14 Song  Z, Pan  Y, Zhang  K, Ren  N, Wang  A. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. Journal of Environmental Sciences−China, 2010, 22(9): 1312–1318
https://doi.org/10.1016/S1001-0742(09)60256-4
15 Verawaty  M, Pijuan  M, Yuan  Z, Bond  P L. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Research, 2012, 46(3): 761–771
https://doi.org/10.1016/j.watres.2011.11.054
16 APHA. Standard Methods for the Examination for Water and Wastewater. 21th ed. Washington, D C: American Public Health Association, 1998
17 Adav  S S, Lee  D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. Journal of Hazardous Materials, 2008, 154(1−3): 1120–1126
https://doi.org/10.1016/j.jhazmat.2007.11.058
18 Liu  L, Gao  D, Zhang  M, Fu  Y. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. Journal of Hazardous Materials, 2010, 181(1−3): 382–387
https://doi.org/10.1016/j.jhazmat.2010.05.021
19 Kim  B S, Kim  B K, Lee  J H, Kim  M, Lim  Y W, Chun  J. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. Journal of Microbiology (Seoul, Korea), 2008, 46(4): 357–363
https://doi.org/10.1007/s12275-008-0071-9
20 Huse  S M, Dethlefsen  L, Huber  J A, Welch  D M, Relman  D A, Sogin  M L. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLOS Genetics, 2008, 4(11): e1000255 doi.org/10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851
21 Weber  S D, Ludwig  W, Schleifer  K H, Fried  J. Microbial composition and structure of aerobic granular sewage biofilms. Applied and Environmental Microbiology, 2007, 73(19): 6233–6240
https://doi.org/10.1128/AEM.01002-07
22 Sheng  G P, Yu  H Q, Li  X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 2010, 28(6): 882–894
https://doi.org/10.1016/j.biotechadv.2010.08.001
23 Wu  L, Peng  C, Peng  Y, Li  L, Wang  S, Ma  Y. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. Journal of Environmental Sciences−China, 2012, 24(2): 234–241
https://doi.org/10.1016/S1001-0742(11)60719-5
24 Amorim  C L, Maia  A S, Mesquita  R B, Rangel  A O, van Loosdrecht  M, Tiritan  M E, Castro  P M. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Research, 2014, 50(3): 101–113
https://doi.org/10.1016/j.watres.2013.10.043
25 Elifantz  H, Horn  G, Ayon  M, Cohen  Y, Minz  D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiology Ecology, 2013, 85(2): 348–357
https://doi.org/10.1111/1574-6941.12122
26 Liu  L, Gibson  V, Huang  X, Liu  C X, Zhu  G F. Effects of antibiotics on characteristics and microbial resistance of aerobic granules in sequencing batch reactors. Desalination and Water Treatment, 2015, (ahead-of-print): 1–10
https://doi.org/10.1080/19443994.2015.1024746
27 Liu  Y Q, Liu  Y, Tay  J H. The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology, 2004, 65(2): 143–148
https://doi.org/10.1007/s00253-004-1657-8
28 Liu  L, Gao  D W, Liang  H. Effect of sludge discharge positions on steady-state aerobic granules in sequencing batch reactor (SBR). Water Science and Technology, 2012, 66(8): 1722–1727
https://doi.org/10.2166/wst.2012.339
29 Andreadakis  A D. Anaerobic digestion of piggery wastes. Water Science and Technology, 1992, 25(1): 9–16
30 Anthonisen  A C, Loehr  R C, Prakasam  T B, Srinath  E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
31 Verawaty  M, Pijuan  M, Yuan  Z, Bond  P L. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Research, 2012, 46(3): 761–771
https://doi.org/10.1016/j.watres.2011.11.054
32 Adav  S S, Lee  D J, Lai  J Y. Microbial community of acetate utilizing denitrifiers in aerobic granules. Applied Microbiology and Biotechnology, 2010, 85(3): 753–762
https://doi.org/10.1007/s00253-009-2263-6
33 Purkhold  U, Pommerening-Röser  A, Juretschko  S, Schmid  M C, Koops  H P, Wagner  M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66(12): 5368–5382
https://doi.org/10.1128/AEM.66.12.5368-5382.2000
34 Daims  H, Nielsen  J L, Nielsen  P H, Schleifer  K H, Wagner  M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology, 2001, 67(11): 5273–5284
https://doi.org/10.1128/AEM.67.11.5273-5284.2001
35 Lv  Y, Wan  C, Lee  D J, Liu  X, Tay  J H. Microbial communities of aerobic granules: granulation mechanisms. Bioresource Technology, 2014, 169(5): 344–351
https://doi.org/10.1016/j.biortech.2014.07.005
[1] Supplementary Material Download
[1] Manman Ma, Bo Zhang, Ye Chen, Wenrong Feng, Tiezhu Mi, Jianhua Qi, Wenshuai Li, Zhigang Yu, Yu Zhen. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region[J]. Front. Environ. Sci. Eng., 2021, 15(3): 42-.
[2] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[3] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[4] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[5] Jie Liao, Chaoxiang Liu, Lin Liu, Jie Li, Hongyong Fan, Jiaqi Ye, Zhichao Zeng. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Front. Environ. Sci. Eng., 2019, 13(3): 31-.
[6] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[7] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[8] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[9] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[10] Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG. Structure and formation of anoxic granular sludge —A string-bag hypothesis[J]. Front. Environ. Sci. Eng., 2016, 10(2): 311-318.
[11] Hongwei LUO,Longfei WANG,Zhonghua TONG,Hanqing YU,Guoping SHENG. Approaching the binding between Cu(II) and aerobic granules by a modified titration and µ-XRF[J]. Front. Environ. Sci. Eng., 2016, 10(2): 362-367.
[12] Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature[J]. Front. Environ. Sci. Eng., 2014, 8(6): 937-944.
[13] Xinyan ZHANG, Binbin WANG, Qingqing HAN, Hongmei ZHAO, Dangcong PENG. Effects of shear force on formation and properties of anoxic granular sludge in SBR[J]. Front Envir Sci Eng, 2013, 7(6): 896-905.
[14] Zhaoxu PENG, Yongzhen PENG, Zhenbo YU, Xuliang LIU, Xiaoling LI, Randeng WANG. Control of sludge settleability and nitrogen removal under low dissolved oxygen condition[J]. Front Envir Sci Eng, 2012, 6(6): 884-891.
[15] Xuguang TANG, Shuying WANG, Yongzhen PENG. Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment[J]. Front Envir Sci Eng Chin, 2010, 4(4): 475-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed