Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 311-318    https://doi.org/10.1007/s11783-014-0748-8
RESEARCH ARTICLE
Structure and formation of anoxic granular sludge —A string-bag hypothesis
Binbin WANG(),Dangcong PENG,Xinyan ZHANG,Xiaochang WANG
School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
 Download: PDF(1535 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anoxic granular sludge was developed in a laboratory-scale sequencing batch reactor which was fed with sodium acetate and sodium nitrate as electron donor and accepter. The sludge in the reactor was almost granulated after approximately 90 days of cultivation. In the present study, a detailed examination of surface morphology and internal structure of anoxic granular sludge was conducted using scanning electron microscope. It showed that the bacteria inside the granules had a uniform, coccus-like shape. By contrast, filamentous bacteria were predominant outside the granules. These bacteria were woven and had wrapped the coccus bacteria together to form granules. The small amounts of DO in the liquid bulk promoted the growth of filamentous bacteria on the surface of the granules. A string-bag hypothesis was proposed to elucidate the structure and formation of the anoxic granular sludge. It suggested that micro-aeration could be a method to promote granulation in practical anoxic treatment systems.

Keywords granulation      sequencing batch reactor      anoxic sludge      scanning electron microscope      filamentous bacteria     
Corresponding Author(s): Binbin WANG   
Online First Date: 25 July 2014    Issue Date: 01 February 2016
 Cite this article:   
Dangcong PENG,Xinyan ZHANG,Xiaochang WANG, et al. Structure and formation of anoxic granular sludge —A string-bag hypothesis[J]. Front. Environ. Sci. Eng., 2016, 10(2): 311-318.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0748-8
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/311
Fig.1  The profiles of MLSS, SV30, SVI during the entire experiment
Fig.2  Evolution of granular sludge particle size distribution in the laboratory-scale SBR
Fig.3  Anoxic granular sludge in the reactor on 120 day: (a) digital image of granules; (b) close distance image of granules; (c) microscopic image of granule
Fig.4  Surface morphology of anoxic granular sludge: (a) Flocculent sludge collected from the reactor on day 6, bar= 100 mm; (b) Pseudo-granular sludge collected from the reactor on day 45, bar= 100 µm; (c) Mature granular sludge collected from the reactor on day 92, bar= 100 µm; (d, e, f) Granular sludge collected from the reactor on day 200, bar= 100 µm; (g, h) Filament “net” on the surface of the granules, bar= 5 µm
Fig.5  Internal structure of anoxic granular sludge: (a, b, c, e) Cross section of the granules collected from the reactor on day 200, bar in a, b, e= 100 µm, bar in c= 50 µm; (d, g) Inorganic crystal like material in the center of the granules, bar= 10 µm; (f) Coccus layer with compact bacterial aggregate inside the granules, bar= 1 µm; (h, i) Filamentous structure on the surface of the granules, bar= 5 µm
Fig.6  Scheme of anoxic granular formation process according to the hypothesis
1 Lettinga  G, Pette  K C, de Vletter  R, Wind  E. Anaerobic treatment of beet sugar wastewater on semi-technical scale. CSM-report, Amsterdam, The Netherlands, 1977
2 Lettinga  G, van Velsen  A F M, Hobma  S W, de Zeeuw  W, Klapwijk  A. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment. Biotechnology and Bioengineering, 1980, 22(4): 699–734
https://doi.org/10.1002/bit.260220402
3 Morgenroth  E, Sherden  T, van Loosdrecht  M C M, Heijnen  J J, Wilderer  P A. Aerobic granular sludge in a sequencing batch reactor. Water Research, 1997, 31(12): 3191–3194
https://doi.org/10.1016/S0043-1354(97)00216-9
4 Beun  J J, Hendriks  A, van Loosdrecht  M C M, Morgenroth  E, Wilderer  P A, Heijnen  J J. Aerobic granulation in a sequencing batch reactor. Water Research, 1999, 33(10): 2283–2290
https://doi.org/10.1016/S0043-1354(98)00463-1 pmid: 11831218
5 Peng  D C, Bernet  N, Delgenes  J P, Moletta  R. Aerobic granular sludge — A case report. Water Research, 1999, 33(3): 890–893
https://doi.org/10.1016/S0043-1354(98)00443-6
6 Hulshoff Pol  L W, de Zeeuw  W J, Velzeboer  C T M, Lettinga  G. Granulation in UASB reactors. Water Science and Technology, 1983, 15(8/9): 291–304
7 Morgan  J W, Evison  L M, Forster  C F. The internal architecture of anaerobic sludge granules. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1991, 50(2): 211–226
https://doi.org/10.1002/jctb.280500207
8 Pereboom  J H F. Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Science and Technology, 1994, 30(12): 211–221
9 Wu  W, Jain  M K, Zeikus  J G. Formation of fatty acid-degrading, anaerobic granules by defined species. Applied and Environmental Microbiology, 1996, 62(6): 2037–2044
pmid: 16535336
10 Zhu  J, Hu  J, Gu  X. The bacterial numeration and the observation of a new syntrophic association for granular sludge. Water Science and Technology, 1997, 36(6/7): 133–140
11 Liu  Y, Tay  J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 2002, 36(7): 1653–1665
https://doi.org/10.1016/S0043-1354(01)00379-7 pmid: 12044065
12 Tay  J H, Liu  Q S, Liu  Y. The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 2001, 33(3): 222–226
https://doi.org/10.1046/j.1472-765x.2001.00986.x pmid: 11555208
13 Wan  J, Sperandio  M. Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere, 2009, 75(2): 220–227
https://doi.org/10.1016/j.chemosphere.2008.11.069 pmid: 19124145
14 Wan  J, Bessière  Y, Spérandio  M. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate. Water Research, 2009, 43(20): 5097–5108
https://doi.org/10.1016/j.watres.2009.08.045 pmid: 19796784
15 Nancharaiah  Y V, Venugopalan  V P. Denitrification of synthetic concentrated nitrate wastes by aerobic granular sludge under anoxic conditions. Chemosphere, 2011, 85(4): 683–688
https://doi.org/10.1016/j.chemosphere.2011.06.077 pmid: 21745680
16 Jin  X B, Wang  F, Liu  G H, Yan  N. A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 2012, 47(7): 1122–1128
https://doi.org/10.1016/j.procbio.2012.04.001
17 Frølund  B, Palmgren  R, Keiding  K, Nielsen  P H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 1996, 30(8): 1749–1758
https://doi.org/10.1016/0043-1354(95)00323-1
18 Laguna  A, Ouattara  A, Gonzalez  R O, Baron  O, Famá  G, Mamouni  R E L, Guiot  S, Monroy  O, Macarie  H. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Water Science and Technology, 1999, 40(8): 1–8
https://doi.org/10.1016/S0273-1223(99)00602-2
19 APHA. Standard Methods for the Examination of Water and Wastewater 20th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, 1998
20 Green  M, Tarre  S, Schniier  M, Ogdan  B. Groundwater denitrification using an upflow sludge blanket reactor. Water Research, 1994, 28(3): 631–637
https://doi.org/10.1016/0043-1354(94)90013-2
21 Endo  G, Tohya  Y. Ecological study on anaerobic sludge bulking caused by filamentous bacterial growth in an anaerobic contact process. Water Science and Technology, 1988, 20(11–12): 205–211
22 Huser  B A, Wuhrmann  K, Zehnder  A J B. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Archives of Microbiology, 1982, 132(1): 1–9
https://doi.org/10.1007/BF00690808
23 Sekiguchi  Y, Yamada  T, Hanada  S, Ohashi  A, Harada  H, Kamagata  Y. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 6): 1843–1851
https://doi.org/10.1099/ijs.0.02699-0 pmid: 14657113
24 Yamada  T, Yamauchi  T, Shiraishi  K, Hugenholtz  P, Ohashi  A, Harada  H, Kamagata  Y, Nakamura  K, Sekiguchi  Y. Characterization of filamentous bacteria, belonging to candidate phylum KSB3, that are associated with bulking in methanogenic granular sludges. International Society for Microbial Ecology, 2007, 1(3): 246–255
https://doi.org/10.1038/ismej.2007.28 pmid: 18043635
25 Jenkins  D, Richard  M G, Daigger  G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems. UK: IWA Publishing, 2004
26 Nielsen  P H, Kragelund  C, Seviour  R J, Nielsen  J L. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews, 2009, 33(6): 969–998
https://doi.org/10.1111/j.1574-6976.2009.00186.x pmid: 19622067
27 Wilderer  P A, Irvine  R L, Goronszy  M C. Sequencing Batch Reactor Technology. UK: IWA Publishing, 2000
28 van Loosdrecht  M C M, Martins  A M, Ekama  G A. Bulking sludge. In: Henze  M, ed. Biological Wastewater Treatment: Principles, Modelling and Design. UK: IWA Publishing, 2008
29 Wan  J F, Mozo  I, Filali  A, Liné  A, Bessière  Y, Spérandio  M. Evolution of bioaggregate strength during aerobic granular sludge formation.  Biochemical Engineering  Journal,  2011,  58–59:  69–78
https://doi.org/10.1016/j.bej.2011.08.015
30 Tay  J H, Liu  Q S, Liu  Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 2001, 91(1): 168–175
https://doi.org/10.1046/j.1365-2672.2001.01374.x pmid: 11442727
[1] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[2] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[3] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[4] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[5] Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature[J]. Front. Environ. Sci. Eng., 2014, 8(6): 937-944.
[6] Xinyan ZHANG, Binbin WANG, Qingqing HAN, Hongmei ZHAO, Dangcong PENG. Effects of shear force on formation and properties of anoxic granular sludge in SBR[J]. Front Envir Sci Eng, 2013, 7(6): 896-905.
[7] Zhaoxu PENG, Yongzhen PENG, Zhenbo YU, Xuliang LIU, Xiaoling LI, Randeng WANG. Control of sludge settleability and nitrogen removal under low dissolved oxygen condition[J]. Front Envir Sci Eng, 2012, 6(6): 884-891.
[8] Xuguang TANG, Shuying WANG, Yongzhen PENG. Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment[J]. Front Envir Sci Eng Chin, 2010, 4(4): 475-481.
[9] Qing XIA , Rui LIANG , Yuning HONG , Lili DING , Hongqiang REN , Yuxiang MAO , Mingyu ZHAO , . Effects of La, Ce on nitrogen removal in sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2009, 3(3): 369-374.
[10] LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR)[J]. Front.Environ.Sci.Eng., 2008, 2(1): 99-102.
[11] SUN Yujiao, WANG Yong, HUANG Xia. Relationship between sludge settleability and membrane fouling in a membrane bioreactor[J]. Front.Environ.Sci.Eng., 2007, 1(2): 221-225.
[12] YUAN Linjiang, HAN Wei, WANG Lei, YANG Yongzhe, WANG Zhiying. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor[J]. Front.Environ.Sci.Eng., 2007, 1(1): 23-27.
[13] ZENG Wei, PENG Yongzhen, WANG Shuying. Process evaluation of an alternating aerobic-anoxic process applied in a sequencing batch reactor for nitrogen removal[J]. Front.Environ.Sci.Eng., 2007, 1(1): 28-32.
[14] YANG Qing, WANG Shuying, YANG Anming, GUO Jianhua, BO Fengyang. Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network[J]. Front.Environ.Sci.Eng., 2007, 1(1): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed