Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 14    https://doi.org/10.1007/s11783-018-1075-2
RESEARCH ARTICLE
Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium
Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang()
Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48201, USA
 Download: PDF(667 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

RSM is used to explore the impact of different parameter on algal growth response.

Mixed algal culture promotes algal biomass and lipid accumulation.

Optimized conditions achieve maximum productivity of algal biomass and lipid.

The purpose of this work is to study the co-cultivation of Chlorella sp. and wastewater wild algae under different cultivation conditions (i.e. CO2, light intensity, cultivation time, and inoculation ratio) for enhanced algal biomass and lipid productivity in wastewater medium using Response Surface Methodology (RSM). The results show that mixed cultures of Chlorella sp. and wastewater wild algae increase biomass and lipid yield. Additionally, findings indicate that CO2, light intensity and cultivation time significantly affect algal productivity. Furthermore, CO2 concentration and light intensity, and CO2 concentration and algal composition, have an interactive effect on biomass productivity. Under different cultivation conditions, the response of algal biomass, cell count, and lipid productivity ranges from 2.5 to 10.2 mg/mL, 1.1 × 106 to 8.2 × 108 cells/mL, and 1.1 × 1012 to 6.8 × 1012 total fluorescent units/mL, respectively. The optimum conditions for simultaneous biomass and lipid accumulation are 3.6% of CO2 (v/v), 160 µmol/m2/s of light intensity, 1.6/2.4 of inoculation ratio (wastewater-algae/Chlorella), and 8.3 days of cultivation time. The optimal productivity is 9.8 (g/L) for dry biomass, 8.6 E+ 08 (cells/mL) for cell count, and 6.8 E+ 12 (Total FL units per mL) for lipid yield, achieving up to four times, eight times, and seven times higher productivity compared to non-optimized conditions. Provided is a supportive methodology to improve mixed algal culture for bioenergy feedstock generation and to optimize cultivation conditions in complex wastewater environments. This work is an important step forward in the development of sustainable large-scale algae cultivation for cost-efficient generation of biofuel.

Keywords Algal biofuels      Algal mixed cultures      Algal biomass      Algal lipid      Wastewater      Response surface methodology     
Corresponding Author(s): Yongli Zhang   
Issue Date: 17 August 2018
 Cite this article:   
Kishore Gopalakrishnan,Javad Roostaei,Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1075-2
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/14
Run Factors (Coded) Factors (Un-coded levels)
a b c d A B C D
1 0 0 0 0 3.5 150 2:2 9
2 + 1 + 1 0 0 6 250 2:2 9
3 + 1 0 0 + 1 6 150 2:2 15
4 +1 + 1 0 0 1 250 2:2 9
5 0 -1 0 + 1 3.5 50 2:2 15
6 +1 -1 0 0 1 50 2:2 9
7 + 1 0 -1 0 6 150 1:3 9
8 0 0 -1 -1 3.5 150 1:3 3
9 0 -1 -1 0 3.5 50 1:3 9
10 1 0 0 + 1 1 150 2:2 15
11 0 + 1 0 + 1 3.5 250 2:2 15
12 0 -1 + 1 0 3.5 50 3:1 9
13 + 1 -1 0 0 6 50 2:2 9
14 0 + 1 -1 0 3.5 250 1:3 9
15 0 0 0 0 3.5 150 2:2 9
16 0 + 1 + 1 0 3.5 250 3:1 9
17 0 -1 0 -1 3.5 50 2:2 3
18 0 0 + 1 -1 3.5 150 3:1 3
19 0 + 1 0 -1 3.5 250 2:2 3
20 + 1 0 + 1 0 6 150 3:1 9
21 0 0 0 0 3.5 150 2:2 9
22 + 1 0 0 -1 6 150 2:2 3
23 0 0 0 0 3.5 150 2:2 9
24 0 0 -1 + 1 3.5 150 1:3 15
25 0 0 0 0 3.5 150 2:2 9
26 0 0 + 1 + 1 3.5 150 3:1 15
27 +1 0 -1 0 1 150 1:3 9
28 +1 0 0 -1 1 150 2:2 3
29 +1 0 + 1 0 1 150 3:1 9
Tab.1  Table 1(a)Experimental design by using three factorial Box-Behnken model
Factor 1 Factor 2 Factor 3 Factor 4 Response1 Response2 Response3
Run CO2 concentration(%) Light intensity(µmol/m2/s) Inoculum ratio Harvest time(days) Cell count(Cells/mL) Lipid(FL units) Dry weight(g/L)
1 3.5 150 2:2 9 8.18E+ 08 5.85E+ 12 10.1
2 6 250 2:2 9 8.34E+ 07 5.89E+ 12 9.9
3 6 150 2:2 15 1.23E+ 06 2.34E+ 12 4.4
4 1 250 2:2 9 3.03E+ 08 4.99E+ 12 9.2
5 3.5 50 2:2 15 4.17E+ 06 1.74E+ 12 3.9
6 1 50 2:2 9 5.27E+ 08 6.05E+ 12 10.2
7 6 150 1:3 9 2.44E+ 08 5.38E+ 12 10.9
8 3.5 150 1:3 3 3.63E+ 06 3.73E+ 12 4.4
9 3.5 50 1:3 9 8.36E+ 08 6.60E+ 12 10.2
10 1 150 2:2 15 1.07E+ 07 2.14E+ 12 3.3
11 3.5 250 2:2 15 2.37E+ 06 1.67E+ 12 3.1
12 3.5 50 3:1 9 7.54E+ 08 6.23E+ 12 9.4
13 6 50 2:2 9 1.01E+ 08 4.96E+ 12 8.3
14 3.5 250 1:3 9 6.12E+ 08 5.08E+ 12 8.6
15 3.5 150 2:2 9 8.18E+ 08 5.85E+ 12 10.1
16 3.5 250 3:1 9 5.30E+ 08 5.17E+ 12 8.7
17 3.5 50 2:2 3 1.66E+ 06 3.46E+ 12 3.9
18 3.5 150 3:1 3 3.46E+ 06 3.46E+ 12 2.8
19 3.5 250 2:2 3 1.35E+ 06 3.39E+ 12 3.3
20 6 150 3:1 9 2.06E+ 08 5.02E+ 12 10.6
21 3.5 150 2:2 9 8.18E+ 08 5.85E+ 12 10
22 6 150 2:2 3 1.07E+ 06 4.37E+ 12 5
23 3.5 150 2:2 9 8.18E+ 08 5.85E+ 12 9.7
24 3.5 150 1:3 15 2.70E+ 06 2.27E+ 12 3.1
25 3.5 150 2:2 9 8.18E+ 08 5.85E+ 12 9
26 3.5 150 3:1 15 2.02E+ 06 1.96E+ 12 2.5
27 1 150 1:3 9 4.14E+ 08 5.48E+ 12 10.2
28 1 150 2:2 3 1.40E+ 06 3.36E+ 12 3.1
29 1 150 3:1 9 3.32E+ 08 5.11E+ 12 10.1
Tab.2  Table 1(b)Level of different factors maintained and the response of cell count, lipid content and dry weight
Source Sum of
Squares
df Mean
Square
F
Value
p-value
Prob>F
Significance
Model 228.61 14 16.33 12.05 <0.0001 Significant
A-CO2 2.842E-014 1 2.842E-014 2.098E-014 1.0000
B-Light 0.70 1 0.70 0.52 0.4838
C-Inoculum 0.44 1 0.44 0.33 0.5774
D-time 3.333E-003 1 3.333E-003 2.461E-003 0.9611
AB 10.24 1 10.24 7.56 0.0157 Significant
AC 1.21 1 1.21 0.89 0.3606
AD 0.36 1 0.36 0.27 0.6142
BC 1.10 1 1.10 0.81 0.3822
BD 1.000E-002 1 1.000E-002 7.382E-003 0.9327
CD 0.25 1 0.25 0.18 0.6740
A2 3.59 1 3.59 2.65 0.1257
B2 9.06 1 9.06 6.69 0.0216 Significant
C2 0.28 1 0.28 0.20 0.6580
D2 208.47 1 208.47 153.90 <0.0001 Significant
Residual 18.96 14 1.35
Lack of Fit 18.10 10 1.81 8.34 0.0278 Significant
Pure Error 0.87 4 0.22
Corrected Total 247.57 28
Tab.3  Variance analysis of response surface quadratic model for algal dry biomass  
Source Sum of
Squares
df Mean
Square
F
Value
p-value
Prob>F
Significance
Model 202.16 14 14.44 72.11 <0.0001 Significant
A-CO2 3.39 1 3.39 16.91 0.0011 Significant
B-Light 0.40 1 0.40 1.98 0.1811
C-Inoculum 0.080 1 0.080 0.40 0.5384
D-time 0.67 1 0.67 3.33 0.0894
AB 0.032 1 0.032 0.16 0.6932
AC 7.180E-004 1 7.180E-004 3.585E-003 0.9531
AD 0.89 1 0.89 4.45 0.0534
BC 4.111E-004 1 4.111E-004 2.053E-003 0.9645
BD 0.031 1 0.031 0.16 0.6989
CD 0.015 1 0.015 0.074 0.7894
A2 4.75 1 4.75 23.74 0.0002 Significant
B2 1.13 1 1.13 5.65 0.0323 Significant
C2 0.034 1 0.034 0.17 0.6856
D2 189.17 1 189.17 944.69 <0.0001 Significant
Residual 2.80 14 0.20
Lack of Fit 2.80 10 0.28
Pure Error 0.000 4 0.000
Corrected Total 204.96 28
Tab.4  Table 2(b) Variance analysis of response surface quadratic model for algal cell count 
Source Sum of
Squares
df Mean
Square
F
Value
p-value
Prob>F
Significance
M odel 7.247E+ 025 14 5.176E+ 024 9.05 <0.0001 Significant
A-CO2 1.029E+ 024 1 1.029E+ 024 1.80 0.2012
B-Light 1.288E+ 023 1 1.288E+ 023 0.23 0.6424
C-Inoculum 5.201E+ 022 1 5.201E+ 022 0.091 0.7674
D-time 1.092E+ 025 1 1.092E+ 025 19.09 0.0006 Significant
AB 2.500E+ 023 1 2.500E+ 023 0.44 0.5192
AC 2.250E+ 022 1 2.250E+ 022 0.039 0.8456
AD 1.654E+ 023 1 1.654E+ 023 0.29 0.5992
BC 4.694E+ 020 1 4.694E+ 020 8.208E-004 0.9775
BD 9.000E+ 022 1 9.000E+ 022 0.16 0.6976
CD 5.444E+ 020 1 5.444E+ 020 9.520E-004 0.9758
A2 3.142E+ 024 1 3.142E+ 024 5.49 0.0344 Significant
B2 5.607E+ 024 1 5.607E+ 024 9.80 0.0074 Significant
C2 1.524E+ 024 1 1.524E+ 024 2.66 0.1249
D2 5.874E+ 025 1 5.874E+ 025 102.71 <0.0001 Significant
Residual 8.007E+ 024 14 5.719E+ 023
Lack of Fit 7.495E+ 024 10 7.495E+ 023 5.86 0.0516
Pure Error 5.120E+ 023 4 1.280E+ 023
Corrected Total 8.047E+ 025 28
Tab.5  Table 2(c) Variance analysis of response surface quadratic model for algal lipid content.  
Fig.1  The fitness of the actual and predicted results. These graphs show the high closeness of the fitted regression between the actual and predicted biomass (BM), cell count (CC) and lipid content (LC). (a) the fitness of the actual and predicted algal dry biomass; (b) the fitness of the actual and predicted algal cell count; (c) the fitness of the actual and predicted algal lipid content
Optimal condition Response Optimum outcome Desirability
CO2 LI IR HT
3.4 180 1.2:2.8 8.4 Biomass (g/L) 9.9 0.961
2.2 187 1.5:2.5 8.7 Cell count (Cells/mL) 8.4 × 108 0.921
4.1 153 2.0:2.0 7.7 Lipid content (Total FL) 6.9 × 1012 1.000
3.6 159 1.6:2.4 8.3 Overall biomass (g/L) 9.9 0.985
Overall cell count (Cells/mL) 8.6 × 108
Overall lipid content (Total FL/mL) 6.8 × 1012
Tab.6  Optimal conditions for three outputs (biomass, cell count and lipid content) individually and together with desirability values
Fig.2  The response of algal dry biomass to different cultivation parameters. 3D surface response and contour line of Box-Behnken Design showing the mutual effect of different parameters on algal biomass (BM) with maximum response value in boxes. IR, inoculation ratio of wastewater algae to Chlorella (1:3, 2:2, 3:1), with the higher number indicating a high ratio of wastewater algae; LI, light intensity, 50– 50 µmol/m2/s; HT, harvesting time, 3–15 days; CO2, CO2 concentration, 1%–6% (v/v). (a)the response of algal dry biomass to LI and CO2; (b) the response of algal dry biomass to IR and CO2; (c) the response of algal dry biomass to HT and CO2; (d) the response of algal dry biomass to IR and LI; (e) the response of algal dry biomass to HT and LI; (f) the response of algal dry biomass to HT and IR
Fig.3  The cross lines of CO2 and light intensity, and CO2 and inoculation ratio demonstrate the cross-interactive impact of these parameters on algal biomass. (a) Interaction plot of CO2 concentration with respect to light intensity on biomass response. (b) Interaction plot of CO2 concentration with respect to inoculation ration on biomass response
Fig.4  The response of algal cell count to different cultivation parameters.3D surface response and contour line of Box-Behnken Design showing the mutual effect of different parameters on algal cell count (CC) with maximum response value in the boxes above each parabola. IR, the inoculation ratio of wastewater algae to Chlorella (1:3, 2:2, 3:1), with the higher number indicating a high ratio of wastewater algae; LI, light intensity, 50–250 µmol/m2/s; HT, harvesting time, 3–15 days; CO2, CO2 concentration, 1%–6% (v/v). (a) the response of algal cell count to LI and CO2; (b) the response of algal cell count to IR and CO2; (c) the response of algal cell count to HT and CO2; (d) the response of algal cell count to IR and LI; (d) the response of algal cell count to IR and LI; (e) the response of algal cell count to HT and LI; (f) the response of algal cell count to HT and IR
Fig.5  The response of algal lipid productivity to different cultivation parameters. 3D surface response and contour line of Box-Behnken Design showing the mutual effect of different parameters on algal lipid content (LC) with the maximum response value in the box above eachfigure. IR, the inoculation ratio of wastewater algae to Chlorella (1:3, 2:2, 3:1), with the higher number indicating high ratio of wastewater algae; LI, light intensity, 50–250 µmol/m2/s; HT, harvesting time, 3–15 days; CO2, CO2 concentration, 1%–6% (v/v). (a) the response of algal lipid productivity to LI and CO2; (b) the response of algal lipid productivity to IR and CO2; (c) the response of algal lipid productivity to HT and CO2; (d) the response of algal lipid productivity to IR and LI; (e) the response of algal lipid productivity to HT and LI; (f) the response of algal lipid productivity to HT and IR
1 Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002). Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 60(5): 497–503
https://doi.org/10.1016/S0031-9422(02)00100-0 pmid: 12052516
2 Borowitzka M A (1999). Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Progress in Industrial Microbiology, 35: 313–321
https://doi.org/doi.org/10.1016/S0079-6352(99)80123-4
3 Carley K M, Kamneva N Y, Reminga J (2004). Response Surface Methodology. Pittsburgh PA: Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science
4 Chen C Y, Yeh K L, Aisyah R, Lee D J, Chang J S (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1): 71–81
https://doi.org/10.1016/j.biortech.2010.06.159 pmid: 20674344
5 Chen G, Zhao L, Qi Y (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy, 137 (1): 282–291
https://doi.org/10.1016/j.apenergy.2014.10.032
6 Chen X, Wang W, Li S, Xue J, Fan L, Sheng Z, Chen Y (2010). Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells. Carbohydrate Polymers, 80(3): 944–948
https://doi.org/10.1016/j.carbpol.2010.01.010
7 Chisti Y (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3): 294–306
https://doi.org/10.1016/j.biotechadv.2007.02.001 pmid: 17350212
8 Clarens A F, Resurreccion E P, White M A, Colosi L M (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 44(5): 1813–1819
https://doi.org/10.1021/es902838n pmid: 20085253
9 Cloern J, Grenz C, Vidergar-Lucas L (1996). An empirical model of the phytoplankton chlorophyll: Carbon ratio-the conversion factor between productivity and growth rate. Limnology & Oceanography, 7(43): 1313–1321
10 Colosi L M, Zhang Y, Clarens A F, White M A (2012). Will algae produce the green? Using published life cycle assessments as a starting point for economic evaluation of future algae-to-energy systems. Biofuels, 3(2): 129–142
https://doi.org/10.4155/bfs.12.4
11 Danielsen F, Beukema H, Burgess N D, Parish F, Brühl C A, Donald P F, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert E B (2009). Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. Conservation Biology, 23(2): 348–358
https://doi.org/10.1111/j.1523-1739.2008.01096.x pmid: 19040648
12 De Wit C T, Van den Bergh J P (1965). Competition between herbage plants.Netherlands Journal of Agricultural Science, 13(2): 212–221
13 Demirbas A, Fatih Demirbas M (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1): 163–170
https://doi.org/10.1016/j.enconman.2010.06.055
14 Francisco E C, Neves D B, Jacob-Lopes E, Franco T T (2010). Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(3): 395–403
https://doi.org/10.1002/jctb.2338
15 Garcia N S, Bonachela J A, Martiny A C (2016). Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus. ISME Journal, 10: 2715–2724
https://doi.org/10.1038/ismej.2016.50 pmid: 27058506
16 Georgianna D R, Mayfield S P (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411): 329–335
https://doi.org/10.1038/nature11479 pmid: 22895338
17 Gopalakrishnan K K, Detchanamoorthy S (2011). Effect of media sterilization time on penicillin G production and precursor utilization in batch fermentation. Journal of Bioprocessing & Biotechniques, 01(03): 1–4
https://doi.org/10.4172/2155-9821.1000105
18 Guideline T, Guideline O (2001). OECD Guidelines for the Testing of Chemicals. Paris: Oecd/Ocde
19 Hallenbeck P C, Grogger M, Mraz M, Veverka D (2015). The use of design of experiments and response surface methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2. Bioresource Technology, 184: 161–168
https://doi.org/10.1016/j.biortech.2014.09.022 pmid: 25304731
20 Ho S H, Chen C Y, Chang J S (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113: 244–252
https://doi.org/10.1016/j.biortech.2011.11.133 pmid: 22209130
21 Huntley M E, Redalje D G (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4): 573–608
https://doi.org/10.1007/s11027-006-7304-1
22 Illman A M, Scragg A H, Shales S W (2000). Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8): 631–635
https://doi.org/10.1016/S0141-0229(00)00266-0 pmid: 11024528
23 Johnson K R, Admassu W (2013). Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 88(6): 992–998
https://doi.org/10.1002/jctb.3943
24 Kobayashi N, Noel E A, Barnes A, Rosenberg J, DiRusso C, Black P, Oyler G A (2013a). Rapid detection and quantification of triacylglycerol by HPLC-ELSD in Chlamydomonas reinhardtii and Chlorella strains. Lipids, 48(10): 1035–1049
https://doi.org/10.1007/s11745-013-3828-9 pmid: 23975573
25 Kobayashi N, Noel E A, Barnes A, Watson A, Rosenberg J N, Erickson G, Oyler G A (2013b). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology, 150: 377–386
https://doi.org/10.1016/j.biortech.2013.10.032 pmid: 24185420
26 Leite G B, Abdelaziz A E, Hallenbeck P C (2013). Algal biofuels: Challenges and opportunities. Bioresource Technology, 145: 134–141
https://doi.org/10.1016/j.biortech.2013.02.007 pmid: 23499181
27 Li Y, Qin J G (2005). Comparison of growth and lipid content in three Botryococcus braunii strains. Journal of Applied Phycology, 17(6): 551–556
https://doi.org/10.1007/s10811-005-9005-7
28 Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 102(1): 106–110
https://doi.org/10.1016/j.biortech.2010.06.017 pmid: 20591657
29 Liu Z Y, Wang G C, Zhou B C (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11): 4717–4722
https://doi.org/10.1016/j.biortech.2007.09.073 pmid: 17993270
30 Mona A (2013). Sustainable algal biomass products by cultivation in wastewater flows. VTT Technology, 147: 1– 84
31 Myers R, Montgomery D C (1995). Response Surface Methodology. New York: John Willey & Sons. Inc.
32 Morgan K C, Kalff J (1979). Effect of light and temperature interactions on growth of Cryptomonas erosa (Cryptophyceae). Journal of Phycology, 15(2): 127–134
https://doi.org/10.1111/j.0022-3646.1979.00127.x
33 Morris I, Glover H, Yentsch C (1974). Products of photosynthesis by marine phytoplankton: The effect of environmental factors on the relative rates of protein synthesis. Marine Biology, 27(1): 1–9
https://doi.org/10.1007/BF00394754
34 Nogueira D P K, Silva A F, Araújo O Q, Chaloub R M (2015). Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass and Bioenergy, 72: 280–287
35 Park J B, Craggs R J, Shilton A N (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1): 35–42
https://doi.org/10.1016/j.biortech.2010.06.158 pmid: 20674341
36 Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111(1): 1–61
37 Roach T, Krieger-Liszkay A (2014). Regulation of photosynthetic electron transport and photoinhibition. Current Protein & Peptide Science, 15(4): 351–362
https://doi.org/10.2174/1389203715666140327105143 pmid: 24678670
38 Roostaei J, Zhang Y (2017). Spatially explicit life cycle assessment: Opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Research, 24: 395–402
https://doi.org/10.1016/j.algal.2016.08.008
39 Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret J P, Bougaran G (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1): 42–57
https://doi.org/10.1186/s13068-015-0220-4 pmid: 25788982
40 Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea-Smith D J, Smith A G (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3): 277–286
https://doi.org/10.1016/j.copbio.2010.03.005 pmid: 20399634
41 Simionato D, Basso S, Giacometti G M, Morosinotto T (2013). Optimization of light use efficiency for biofuel production in algae. Biophysical Chemistry, 182: 71–78
https://doi.org/10.1016/j.bpc.2013.06.017 pmid: 23876487
42 Singh S, Singh P (2014). Effect of CO2 concentration on algal growth: A review. Renewable & Sustainable Energy Reviews, 38: 172–179
https://doi.org/10.1016/j.rser.2014.05.043
43 Smith A, Morris I (1980). Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean. Limnology and Oceanography, 25(5): 865–872
https://doi.org/10.4319/lo.1980.25.5.0865
44 Sterner R W, Grover J P (1998). Algal growth in warm temperate reservoirs: Kinetic examination of nitrogen, temperature, light, and other nutrients. Water Research, 32(12): 3539–3548
https://doi.org/10.1016/S0043-1354(98)00165-1
45 Sun Z, Chen Y F, Du J (2016). Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Plant Biotechnology Journal, 14(2): 557–566
https://doi.org/10.1111/pbi.12398 pmid: 25973988
46 Takagi M, Karseno T, Yoshida (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3): 223–226
https://doi.org/10.1263/jbb.101.223 pmid: 16716922
47 Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology, 54(1): 112–117
https://doi.org/10.1007/s002530000333 pmid: 10952013
48 Wahidin S, Idris A, Shaleh S R M (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129: 7–11
https://doi.org/10.1016/j.biortech.2012.11.032 pmid: 23232218
49 Xiong W, Li X, Xiang J, Wu Q (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1): 29–36
https://doi.org/10.1007/s00253-007-1285-1 pmid: 18064453
50 Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H (2012). Harvesting of microalgae by flocculation with poly (g-glutamic acid). Bioresource Technology, 112: 212–220
https://doi.org/10.1016/j.biortech.2012.02.086 pmid: 22425514
[1] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[2] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[3] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[4] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[5] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[6] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[7] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[8] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[9] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[10] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[11] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[12] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[13] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[14] Zhenlian Qi, Shijie You, Ranbin Liu, C. Joon Chuah. Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes[J]. Front. Environ. Sci. Eng., 2020, 14(3): 40-.
[15] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed