Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (1) : 28-32     DOI: 10.1007/s11684-016-0434-2
Traditional Chinese medicine: potential approaches from modern dynamical complexity theories
Yan Ma1,*(),Kehua Zhou2,3,Jing Fan1,4,Shuchen Sun5,*()
1. Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
2. Department of Health Care Studies, Daemen College, Amherst, NY 14226, USA
3. Daemen College Physical Therapy Wound Care Clinic, Daemen College, Amherst, NY 14226, USA
4. Department of Orthopedics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing 210029, China
5. Department of Otolaryngology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
Download: PDF(309 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Despite the widespread use of traditional Chinese medicine (TCM) in clinical settings, proving its effectiveness via scientific trials is still a challenge. TCM views the human body as a complex dynamical system, and focuses on the balance of the human body, both internally and with its external environment. Such fundamental concepts require investigations using system-level quantification approaches, which are beyond conventional reductionism. Only methods that quantify dynamical complexity can bring new insights into the evaluation of TCM. In a previous article, we briefly introduced the potential value of Multiscale Entropy (MSE) analysis in TCM. This article aims to explain the existing challenges in TCM quantification, to introduce the consistency of dynamical complexity theories and TCM theories, and to inspire future system-level research on health and disease.

Keywords traditional Chinese medicine      quantification      dynamical complexity      system level      balance      modern sciences     
Corresponding Authors: Yan Ma,Shuchen Sun   
Just Accepted Date: 30 December 2015   Online First Date: 25 January 2016    Issue Date: 31 March 2016
URL:     OR
Fig.1  Hierarchical structure of western medicine and traditional Chinese medicine.
Fig.2  Development of complexity concept. (A) Conventional entropy and (B) Expected complexity measures, with optimal complexity to keep the system balance.
1 Anderson PW. More is different. Science 1972; 177(4047): 393–396
doi: 10.1126/science.177.4047.393 pmid: 17796623
2 Koch C, Laurent G. Complexity and the nervous system. Science 1999; 284(5411): 96–98
doi: 10.1126/science.284.5411.96 pmid: 10102826
3 Weng G, Bhalla US, Iyengar R. Complexity in biological signaling systems. Science 1999; 284(5411): 92–96
doi: 10.1126/science.284.5411.92 pmid: 10102825
4 Germain RN. The art of the probable: system control in the adaptive immune system. Science 2001; 293(5528): 240–245
doi: 10.1126/science.1062946 pmid: 11452112
5 Choffnes ER, Relman DA, Pray L. The Science and Applications of Synthetic and Systems Biology: Workshop Summary. Washington DC: National Academy of Sciences, 2011
6 Leshner A. A middle way for traditional medicine. Science 2014; 346(6216): S3
7 Luo G, Liu Q, Liang Q, Wang Y. Systems Biology for Traditional Chinese Medicine. John Wiley & Sons, Inc., 2012
8 Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys 2005; 71(2 Pt 1): 021906
doi: 10.1103/PhysRevE.71.021906 pmid: 15783351
9 Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 2002; 99(Suppl 1): 2466–2472
doi: 10.1073/pnas.012579499 pmid: 11875196
10 Peng CK, Costa M, Goldberger AL. Adaptive data analysis of complex fluctuations in physiologic time series. Adv Adapt Data Anal 2009; 1(1): 61–70
doi: 10.1142/S1793536909000035 pmid: 20041035
11 Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 2002; 23(1): 23–26
doi: 10.1016/S0197-4580(01)00266-4 pmid: 11755014
12 Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002; 89(6): 068102
doi: 10.1103/PhysRevLett.89.068102 pmid: 12190613
13 Nyquist H. Thermal agitation of electric charge in conductors. Phys Rev 1928; 32(1): 110–113
doi: 10.1103/PhysRev.32.110
14 Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 1992; 267(13): 1806–1809
doi: 10.1001/jama.1992.03480130122036 pmid: 1482430
15 Ma Y, Sun S, Peng CK. Applications of dynamical complexity theory in traditional Chinese medicine. Front Med 2014; 8(3): 279–284
doi: 10.1007/s11684-014-0367-6 pmid: 25204292
16 Manor B, Lipsitz LA, Wayne PM, Peng CK, Li L. Complexity-based measures inform Tai Chi’s impact on standing postural control in older adults with peripheral neuropathy. BMC Complement Altern Med 2013; 13(1): 87
doi: 10.1186/1472-6882-13-87 pmid: 23587193
17 Wayne PM, Gow BJ, Costa MD, Peng CK, Lipsitz LA, Hausdorff JM, Davis RB, Walsh JN, Lough M, Novak V, Yeh GY, Ahn AC, Macklin EA, Manor B. Complexity-based measures inform effects of Tai Chi training on standing postural control: cross-sectional and randomized trial studies. PLoS ONE 2014; 9(12): e114731
doi: 10.1371/journal.pone.0114731 pmid: 25494333
18 Wayne PM, Manor B, Novak V, Costa MD, Hausdorff JM, Goldberger AL, Ahn AC, Yeh GY, Peng CK, Lough M, Davis RB, Quilty MT, Lipsitz LA. A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial. Contemp Clin Trials 2013; 34(1): 21–34
doi: 10.1016/j.cct.2012.09.006 pmid: 23026349
19 Costa MD, Peng CK, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng 2008; 8(2): 88–93
doi: 10.1007/s10558-007-9049-1 pmid: 18172763
20 Papaioannou VE, Chouvarda I, Maglaveras N, Dragoumanis C, Pneumatikos I. Changes of heart and respiratory rate dynamics during weaning from mechanical ventilation: a study of physiologic complexity in surgical critically ill patients. J Crit Care 2011; 26(3): 262–272
doi: 10.1016/j.jcrc.2010.07.010 pmid: 20869842
21 Subramaniam B, Khabbaz KR, Heldt T, Lerner AB, Mittleman MA, Davis RB, Goldberger AL, Costa MD. Blood pressure variability: can nonlinear dynamics enhance risk assessment during cardiovascular surgery? J Cardiothorac Vasc Anesth 2014; 28(2): 392–397
doi: 10.1053/j.jvca.2013.11.014 pmid: 24508020
22 Turianikova Z, Javorka K, Baumert M, Calkovska A, Javorka M. The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure. Physiol Meas 2011; 32(9): 1425–1437
doi: 10.1088/0967-3334/32/9/006 pmid: 21799239
23 Vandendriessche B, Peperstraete H, Rogge E, Cauwels P, Hoste E, Stiedl O, Brouckaert P, Cauwels A. A multiscale entropy-based tool for scoring severity of systemic inflammation. Crit Care Med 2014; 42(8): e560–e569
doi: 10.1097/CCM.0000000000000299 pmid: 24717467
24 Yang AC, Huang CC, Yeh HL, Liu ME, Hong CJ, Tu PC, Chen JF, Huang NE, Peng CK, Lin CP, Tsai SJ. Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiol Aging 2013; 34(2): 428–438
doi: 10.1016/j.neurobiolaging.2012.05.004 pmid: 22683008
25 Yang AC, Tsai SJ. Complexity of mental illness: a new research dimension. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 251–252
doi: 10.1016/j.pnpbp.2013.01.018 pmid: 23380171
26 Yang AC, Tsai SJ. Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 253–257
doi: 10.1016/j.pnpbp.2012.09.015 pmid: 23089053
[1] Yunfang Liu,Zhiping Yang,Jing Cheng,Daiming Fan. Barriers and countermeasures in developing traditional Chinese medicine in Europe[J]. Front. Med., 2016, 10(3): 360-376.
[2] Yan Ma,Shuchen Sun,Chung-Kang Peng. Applications of dynamical complexity theory in traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 279-284.
[3] Jian Wang,Biyan Liang,Xiaoping Zhang,Liran Xu,Xin Deng,Xiuhui Li,Lu Fang,Xinghua Tan,Yuxiang Mao,Guoliang Zhang,Yuguang Wang. An 84-month observational study of the changes in CD4 T-lymphocyte cell count of 110 HIV/AIDS patients treated with traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 362-367.
[4] Yixin Zhong,Baoyan Liu,Hua Qu,Qi Xie. Methodological challenges to human medical study[J]. Front. Med., 2014, 8(3): 328-336.
[5] Li Ma,Baoyan Liu,Qi Xie,Shusong Mao,Zhiwei Cui. Ontological reconstruction of the clinical terminology of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 358-361.
[6] Runshun Zhang,Yinghui Wang,Baoyan Liu,Guangli Song,Xuezhong Zhou,Shizhen Fan,Xishui Pan. Clinical data quality problems and countermeasure for real world study[J]. Front. Med., 2014, 8(3): 352-357.
[7] Xuezhong Zhou,Yubing Li,Yonghong Peng,Jingqing Hu,Runshun Zhang,Liyun He,Yinghui Wang,Lijie Jiang,Shiyan Yan,Peng Li,Qi Xie,Baoyan Liu. Clinical phenotype network: the underlying mechanism for personalized diagnosis and treatment of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 337-346.
[8] Junhua Zhang,Boli Zhang. Clinical research of traditional Chinese medicine in big data era[J]. Front. Med., 2014, 8(3): 321-327.
[9] Guanli Song,Yinghui Wang,Runshun Zhang,Baoyan Liu,Xuezhong Zhou,Xiaji Zhou,Hong Zhang,Yufeng Guo,Yanxing Xue,Lili Xu. Experience inheritance from famous specialists based on real-world clinical research paradigm of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 300-309.
[10] Ping Liu, Songlin Liu, Gang Chen, Ping Wang. Understanding channel tropism in traditional Chinese medicine in the context of systems biology[J]. Front Med, 2013, 7(3): 277-279.
[11] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
[12] Bingxue Shang, Zhifei Cao, Quansheng Zhou. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives[J]. Front Med, 2012, 6(1): 67-78.
[13] Miao Jiang, Cheng Xiao, Gao Chen, Cheng Lu, Qinglin Zha, Xiaoping Yan, Weiping Kong, Shijie Xu, Dahong Ju, Pu Xu, Youwen Zou, Aiping Lu. Correlation between cold and hot pattern in traditional Chinese medicine and gene expression profiles in rheumatoid arthritis[J]. Front Med, 2011, 5(2): 219-228.
[14] Changhua Liu, Man Gu. Protecting traditional knowledge of Chinese medicine: concepts and proposals[J]. Front Med, 2011, 5(2): 212-218.
[15] Zhenji Li, Chunbo Xu. The fundamental theory of traditional Chinese medicine and the consideration in its research strategy[J]. Front Med, 2011, 5(2): 208-211.
Full text