Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (3) : 357-367    https://doi.org/10.1007/s11684-019-0699-3
RESEARCH ARTICLE
Symptom network topological features predict the effectiveness of herbal treatment for pediatric cough
Mengxue Huang1, Jingjing Wang2, Runshun Zhang3, Zhuying Ni4,5, Xiaoying Liu4,5, Wenwen Liu2, Weilian Kong2, Yao Chen4,5, Tiantian Huang6, Guihua Li6, Dan Wei4,5(), Jianzhong Liu4,5(), Xuezhong Zhou2()
1. Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai 200082, China
2. Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
3. Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
4. Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
5. Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
6. School of the Clinical Medicine College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, China
 Download: PDF(1229 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pediatric cough is a heterogeneous condition in terms of symptoms and the underlying disease mechanisms. Symptom phenotypes hold complicated interactions between each other to form an intricate network structure. This study aims to investigate whether the network structure of pediatric cough symptoms is associated with the prognosis and outcome of patients. A total of 384 cases were derived from the electronic medical records of a highly experienced traditional Chinese medicine (TCM) physician. The data were divided into two groups according to the therapeutic effect, namely, an invalid group (group A with 40 cases of poor efficacy) and a valid group (group B with 344 cases of good efficacy). Several well-established analysis methods, namely, statistical test, correlation analysis, and complex network analysis, were used to analyze the data. This study reports that symptom networks of patients with pediatric cough are related to the effectiveness of treatment: a dense network of symptoms is associated with great difficulty in treatment. Interventions with the most different symptoms in the symptom network may have improved therapeutic effects.

Keywords pediatric cough      complex network      symptoms      traditional Chinese medicine      electronic medical records     
Corresponding Author(s): Dan Wei,Jianzhong Liu,Xuezhong Zhou   
Just Accepted Date: 08 July 2019   Online First Date: 16 September 2019    Issue Date: 08 June 2020
 Cite this article:   
Mengxue Huang,Jingjing Wang,Runshun Zhang, et al. Symptom network topological features predict the effectiveness of herbal treatment for pediatric cough[J]. Front. Med., 2020, 14(3): 357-367.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0699-3
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I3/357
Number of total patients 496
Number of total cases 1640
Number of patients with efficacy evaluation 254
Number of cases with efficacy evaluation 384
Tab.1  Number of patients and cases before and after evaluationa
Interval time Cases
1–7 days 336
8–14 days 44
>14 days 4
Tab.2  Distribution of interval time between two consecutive cases
Symptom Abbreviation Symptom Abbreviation Symptom Abbreviation
White-coated tongue wct Pharyngalgia phg Prickly tongue ptt
Pharyngeal red phr Yellow coated tongue yct Abdominal pain abp
Thin tongue coating thc Constipation con Dark red throat drt
Fingerprint in life pass flp Fingerprint in wind pass fiw Fingerprint in qi pass fqp
Moderate pulse mop Loose stool lst Rapid pulse rpp
Anorexia ano Sneezing snz Yellow sputum ysp
Red tongue rtg Pulmonary rales pmr Fine fingerprints fif
Thready pulse thp Nasal secretions nas White sputum wsp
Expectoration exp Nasal mucus nam Vomiting vom
Slippery pulse slp Thin tongue coating ttc Nasal discharge nsd
Antiadoncus ant Wheeze whz Purulent snot psn
Nasal obstruction nao Sleep disturbed sld Postnasal drip pod
Pink tongue pkt Throat secretions ths Barking cough bcg
Fever fev Poor complexion pcp Deep red tongue dpg
Conjunctival congestion cjc Purple red fingerprint prf Lavender fingerprints lvf
Pulmonary breath sounds rough pbs Inflamed lymph follicles of the throat ilt Swollen lymph follicles of the throat slft
Unconspicuous fingerprint ucf Night crying ncr
Thick coated tongue tct Erythra eth
Tab.3  Full names of the 52 symptoms
Age group Group A (cases) Group B (cases)
Newborn baby (1 day<age≤28 days) 0 2
Infancy (28 days<age≤1 year) 2 37
Toddler period (1 year<age≤3 years) 17 94
Pre-school age (3 years<age≤7 years) 17 176
School age (7 years<age≤13 years) 4 35
Tab.4  Age distribution of groups A and B
Gender Group A (cases) Group B (cases)
Boys 25 209
Girls 15 135
Tab.5  Gender distribution of groups A and B
Symptom Mean SD Statistic P value
Group A Group B Group A Group B
phr 0.85 0.81 0.36 0.40 7188 0.50
wct 0.78 0.79 0.42 0.41 6792 0.85
nsd 0.65 0.61 0.48 0.49 7172 0.60
ahc 0.58 0.52 0.50 0.50 7256 0.51
ano 0.50 0.48 0.51 0.50 7000 0.84
thp 0.23 0.39 0.42 0.49 5748 0.04
rtg 0.43 0.38 0.50 0.49 7204 0.56
mop 0.43 0.37 0.50 0.48 7244 0.51
exp 0.43 0.30 0.50 0.46 7724 0.11
slp 0.15 0.29 0.36 0.46 5892 0.06
pkt 0.15 0.22 0.36 0.41 6412 0.32
nao 0.13 0.21 0.33 0.41 6300 0.21
pmr 0.05 0.20 0.22 0.40 5824 0.02
lvf 0.30 0.19 0.46 0.40 7604 0.12
fiw 0.28 0.19 0.45 0.39 7452 0.21
tct 0.13 0.19 0.33 0.39 6420 0.30
con 0.30 0.18 0.46 0.38 7704 0.07
ant 0.18 0.17 0.38 0.38 6884 0.99
pbs 0.15 0.16 0.36 0.37 6792 0.84
fev 0.10 0.16 0.30 0.37 6468 0.32
nam 0.15 0.13 0.36 0.34 7012 0.74
yct 0.10 0.12 0.30 0.32 6748 0.72
snz 0.08 0.10 0.27 0.30 6716 0.63
Lst 0.05 0.09 0.22 0.29 6584 0.37
ucf 0.05 0.09 0.22 0.29 6604 0.39
psn 0.05 0.06 0.22 0.24 6804 0.78
whz 0.05 0.06 0.22 0.23 6824 0.84
prf 0.13 0.05 0.33 0.22 7400 0.05
nas 0.08 0.05 0.27 0.22 7056 0.49
ttc 0.08 0.04 0.27 0.20 7116 0.32
ths 0.05 0.03 0.22 0.18 6984 0.63
cjc 0.03 0.03 0.16 0.17 6852 0.89
pcp 0.05 0.03 0.22 0.17 7024 0.47
drt 0.05 0.02 0.22 0.15 7064 0.32
sld 0.03 0.02 0.16 0.15 6892 0.95
eth 0.03 0.02 0.16 0.15 6892 0.95
ysp 0.03 0.02 0.16 0.14 6912 0.85
rpp 0.03 0.02 0.16 0.14 6912 0.85
phg 0.03 0.02 0.16 0.14 6912 0.85
ptt 0.03 0.02 0.16 0.13 6932 0.74
vom 0.03 0.02 0.16 0.13 6932 0.74
fqp 0.05 0.02 0.22 0.13 7104 0.17
abp 0.03 0.02 0.16 0.13 6932 0.74
ilt 0.03 0.01 0.16 0.12 6952 0.62
slft 0.03 0.01 0.16 0.11 6972 0.48
dpg 0.03 0.01 0.16 0.11 6972 0.48
bcg 0.05 0.01 0.22 0.11 7144 0.06
wsp 0.03 0.01 0.16 0.11 6972 0.48
fif 0.05 0.01 0.22 0.11 7144 0.06
pod 0.03 0.01 0.16 0.08 7012 0.19
ncr 0.03 0.01 0.16 0.08 7012 0.19
flp 0.03 0.00 0.16 0.05 7032 0.07
Tab.6  General difference analysis of symptom of groups A and B
Fig.1  Symptom network structure of groups A and B. (A) Symptom correlation network of group A. (B) Symptom correlation network of group B. The symptom is represented as a node, and the Pearson’s correlation coefficient between two symptoms is represented as an edge. The green edges in (A) represent positive correlations, and the red edges represent negative correlations. The thick edges in (B) represent strong correlations, and the red edges represent negative correlations (positive or negative). Only edges with correlation coefficients larger than 0.24 are shown in the figure.
Group A (cases) Group B (cases)
Positive 395 931
Negative 515 811
Tab.7  Positive/negative correlation coefficient distribution of groups A and B
Invalid group Valid group
Symptom Symptom Weight Symptom Symptom Weight
slft dpg 1.00 fiw lvf 0.67
ths bcg 1.00 prf lvf 0.40
cjc phg 1.00 fqp fif 0.40
ysp flp 1.00 thc wct 0.38
sld ncr 1.00 thp slp 0.35
ths fif 1.00 drt dpg 0.34
bcg fif 1.00 nam nsd 0.31
ptt drt 0.70 tct yct 0.28
ysp fqp 0.70 cjc fev 0.26
fqp flp 0.70 drt pod 0.24
nsd thp −0.36 fiw slp −0.31
rtg pkt −0.36 lvf slp −0.32
ptt phr −0.38 fiw mop −0.38
wct pcp −0.43 mop lvf −0.38
thc tct −0.44 fiw thp −0.39
wct ttc −0.53 lvf thp −0.39
fiw mop −0.53 wct ttc −0.40
drt phr −0.55 rtg pkt −0.41
mop lvf −0.56 thc tct −0.51
wct yct −0.62 wct yct −0.71
Tab.8  Positive correlation and negative correlation values of the symptom network diagram
Fig.2  Overall connectivity measures of groups A and B. The color of columns shows different groups. (A) Global strength of groups A and B. (B) Average shortest path length of groups A and B. (C) Diameter of groups A and B. (D) Density of groups A and B.
Network metric P value
Global strength <0.05
Average shortest path length >0.05
Diameter <0.05
Density <0.05
Tab.9  Results of permutation test with networks
Fig.3  Four node centrality measures of groups A and B: strength, closeness, betweenness, and eigenvector.
Symptom Effect size Symptom Effect size Symptom Effect size
exp 3.21 ths 1.79 ysp 0.97
con 3.03 fev 1.70 vom 0.91
nsd 2.88 pcp 1.60 sld 0.90
pbs 2.81 whz 1.47 ncr 0.88
ano 2.61 psn 1.38 cjc 0.86
ant 2.51 abp 1.16 slft 0.86
phr 2.30 wsp 1.10 ilt 0.85
nao 2.20 drt 1.05 pod 0.84
snz 2.03 lst 1.04 phg 0.80
nas 1.97 eth 1.00
Tab.10  Effect sizes for differences in mean centrality between groups A and Ba
1 PG Gibson, AB Chang, NJ Glasgow, PW Holmes, P Katelaris, AS Kemp, LI Landau, S Mazzone, P Newcombe, P Van Asperen, AE Vertigan; CICADA. CICADA: Cough in Children and Adults: Diagnosis and Assessment. Australian cough guidelines summary statement. Med J Aust 2010; 192(5): 265–271
pmid: 20201760
2 AB Chang, LI Landau, PP Van Asperen, NJ Glasgow, CF Robertson, JM Marchant, CM Mellis; Thoracic Society of Australia and New Zealand. Cough in children: definitions and clinical evaluation. Med J Aust 2006; 184(8): 398–403
pmid: 16618239
3 AB Chang, WB Glomb. Guidelines for evaluating chronic cough in pediatrics: ACCP evidence-based clinical practice guidelines. Chest 2006; 129(1 Suppl): 260S–283S
https://doi.org/10.1378/chest.129.1_suppl.260S pmid: 16428719
4 FJ Gilchrist, WD Carroll. Assessing chronic cough in children. Paediatr Child Health 2016; 26(6): 273–275
https://doi.org/10.1016/j.paed.2016.03.002
5 G Feng, H Zheng, QZ Zheng. Experience of ZHENG Qi-zhong in using Puji Xiaodu Decoction. China J Tradit Chin Med Pharm (Zhonghua Zhong Yi Yao Za Zhi) 2016; 31(7): 2615–2617 (in Chinese)
6 S Wang, JM Qiao-Wong, X Zhao. Pediatrics in Chinese Medicine: PMPH-USA, 2012
7 AL Barabási, N Gulbahce, J Loscalzo. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011; 12(1): 56–68
https://doi.org/10.1038/nrg2918 pmid: 21164525
8 D Borsboom, AO Cramer. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol 2013; 9: 91–121
https://doi.org/10.1146/annurev-clinpsy-050212-185608 pmid: 23537483
9 L Boschloo, CD van Borkulo, M Rhemtulla, KM Keyes, D Borsboom, RA Schoevers. The network structure of symptoms of the diagnostic and statistical manual of mental disorders. PLoS One 2015; 10(9): e0137621
https://doi.org/10.1371/journal.pone.0137621 pmid: 26368008
10 C van Borkulo, L Boschloo, D Borsboom, BW Penninx, LJ Waldorp, RA Schoevers. Association of symptom network structure with the course of depression. JAMA Psychiatry 2015; 72(12): 1219–1226
https://doi.org/10.1001/jamapsychiatry.2015.2079 pmid: 26561400
11 C D van Borkulo. NetworkComparisonTest: Statistical comparison of two networks based on three invariance measures. R package version 2.0.1. Retrieved from the website of CRAN-NetworkComparisonTest. 2016
12 RDC Team. R: a language and environment for statistical computing. Computing 2013; 1: 12–21
13 X Zhou, S Chen, B Liu, R Zhang, Y Wang, P Li, Y Guo, H Zhang, Z Gao, X Yan. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif Intell Med 2010; 48(2-3): 139–152
https://doi.org/10.1016/j.artmed.2009.07.012 pmid: 20122820
14 Q Lu. Consensus of experts on standardized diagnosis and treatment of common cold in Chinese children (2013). Chin J Prac Pediatr (Zhongguo Shi Yong Er Ke Za Zhi) 2013; 28(9): 680–681 (in Chinese)
15 The Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, Chinese Medical Association. Guidelines for the diagnosis and treatment of bronchial asthma in children (2016). Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2016; 54(3): 168–173 (in Chinese)
16 The Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, Chinese Medical Association. Guidelines for the management of community-acquired pneumonia in children (2013). Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2013; 51(10): 745–749 (in Chinese)
pmid: 24406226
17 X Zhou, J Menche, AL Barabási, A Sharma. Human symptoms-disease network. Nat Commun 2014; 5(1): 4212
https://doi.org/10.1038/ncomms5212 pmid: 24967666
18 HB Mann, DR Whitney. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947; 18(1): 50–60
https://doi.org/10.1214/aoms/1177730491
19 M Maass, J Gieffers, E Krause, PM Engel, C Bartels, W Solbach. Qgraph: network visualizations of relationships in psychometric data. J Stat Softw 2012; 48(4): 1–18
20 A Barrat, M Barthélemy, R Pastor-Satorras, A Vespignani. The architecture of complex weighted networks. Proc Natl Acad Sci USA 2004; 101(11): 3747–3752
https://doi.org/10.1073/pnas.0400087101 pmid: 15007165
21 DJ Watts, SH Strogatz. Collective dynamics of ‘small-world’ networks. Nature 1998; 393(6684): 440
22 G Caldarelli. Introduction to complex network. AIP Conf Proc 2003; 661: 17–23
https://doi.org/10.1063/1.1571286
23 P Good. Permutation tests: a practical guide to resampling methods for testing hypotheses. Springer Science & Business Media, 2013
24 S Boccaletti, V Latora, Y Moreno, M Chavez, DU Hwang. Complex networks: structure and dynamics. Phys Rep 2006; 424(4–5): 175–308
https://doi.org/10.1016/j.physrep.2005.10.009
25 T Opsahl, F Agneessens, J Skvoretz. Node centrality in weighted networks: generalizing degree and shortest paths. Soc Networks 2010; 32(3): 245–251
https://doi.org/10.1016/j.socnet.2010.03.006
26 P Bonacich. Power and centrality: a family of measures. Am J Sociol 1987; 92(5): 1170–1182
https://doi.org/10.1086/228631
27 B Efron, R J Tibshirani. An introduction to the bootstrap. CRC press, 1994
28 M Jiang, C Lu, C Zhang, J Yang, Y Tan, A Lu, K Chan. Syndrome differentiation in modern research of traditional Chinese medicine. J Ethnopharmacol 2012; 140(3): 634–642
https://doi.org/10.1016/j.jep.2012.01.033 pmid: 22322251
29 C Miaskowski, M Dodd, K Lee. Symptom clusters: the new frontier in symptom management research. JNCI Monographs 2004; 2004(32): 17–21
30 X Zhang, X Wang, W Wei, X Zhang. Analysis on regulation of Wang Xuefeng’s prescriptions on children children chronic cough by data mining technology. Liaoning J Traditi Chin Med (Liaoning Zhong Yi Za Zhi) 2017; 44(9): 1793–1795 (in Chinese)
31 QX Zhang. Experience of professor NIE Hui-min in treating exogenous cough of children. China J Tradit Chin Med Pharm (Zhonghua Zhong Yi Yao Za Zhi) 2008; 23(4): 335–337 (in Chinese)
32 XZ Zhou, RS Zhang, J Shah, D Rajgor, YH Wang, R Pietrobon, BY Liu, J Chen, JG Zhu, RL Gao. Patterns of herbal combination for the treatment of insomnia commonly employed by highly experienced Chinese medicine physicians. Chin J Integr Med 2011; 17(9): 655–662
https://doi.org/10.1007/s11655-011-0841-9 pmid: 21910065
33 JZ Liu, MX Huang, XY Liu, Y Chen. The data mining analysis of Professor Ni Zhuying’s treatment of pediatric cough disease. World Sci Technol (Shi Jie Ke Xue Ji Shu—Zhong Yi Yao Xian Dai Hua Za Zhi) 2017; 19(9): 1527–1532 (in Chinese)
[1] FMD-19008-OF-ZXZ_suppl_1 Download
[1] Zixin Shu, Yana Zhou, Kai Chang, Jifen Liu, Xiaojun Min, Qing Zhang, Jing Sun, Yajuan Xiong, Qunsheng Zou, Qiguang Zheng, Jinghui Ji, Josiah Poon, Baoyan Liu, Xuezhong Zhou, Xiaodong Li. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases[J]. Front. Med., 2020, 14(6): 760-775.
[2] Qingwei Li, Han Wang, Xiuyang Li, Yujiao Zheng, Yu Wei, Pei Zhang, Qiyou Ding, Jiaran Lin, Shuang Tang, Yikun Zhao, Linhua Zhao, Xiaolin Tong. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China[J]. Front. Med., 2020, 14(5): 681-688.
[3] Qiqi Zhao, Xin Gao, Guangli Yan, Aihua Zhang, Hui Sun, Ying Han, Wenxiu Li, Liang Liu, Xijun Wang. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome[J]. Front. Med., 2020, 14(3): 335-356.
[4] Yuan Gao, Zhilei Wang, Jinfa Tang, Xiaoyi Liu, Wei Shi, Nan Qin, Xiaoyan Wang, Yu Pang, Ruisheng Li, Yaming Zhang, Jiabo Wang, Ming Niu, Zhaofang Bai, Xiaohe Xiao. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions[J]. Front. Med., 2020, 14(1): 68-80.
[5] Hudan Pan, Yanfang Zheng, Zhongqiu Liu, Zhongwen Yuan, Rutong Ren, Hua Zhou, Ying Xie, Liang Liu. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
[6] Li Ma, Bin Wang, Yuanxiong Long, Hanmin Li. Effect of traditional Chinese medicine combined with Western therapy on primary hepatic carcinoma: a systematic review with meta-analysis[J]. Front. Med., 2017, 11(2): 191-202.
[7] Yunfang Liu,Zhiping Yang,Jing Cheng,Daiming Fan. Barriers and countermeasures in developing traditional Chinese medicine in Europe[J]. Front. Med., 2016, 10(3): 360-376.
[8] Fatemeh Mehravar,Soheil Rafiee,Behnaz Bazrafshan,Mahmoud Khodadost. Prevalence of asthma symptoms in Golestan schoolchildren aged 6–7 and 13–14 years in Northeast Iran[J]. Front. Med., 2016, 10(3): 345-350.
[9] Yan Ma,Kehua Zhou,Jing Fan,Shuchen Sun. Traditional Chinese medicine: potential approaches from modern dynamical complexity theories[J]. Front. Med., 2016, 10(1): 28-32.
[10] Li Ma,Baoyan Liu,Qi Xie,Shusong Mao,Zhiwei Cui. Ontological reconstruction of the clinical terminology of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 358-361.
[11] Runshun Zhang,Yinghui Wang,Baoyan Liu,Guangli Song,Xuezhong Zhou,Shizhen Fan,Xishui Pan. Clinical data quality problems and countermeasure for real world study[J]. Front. Med., 2014, 8(3): 352-357.
[12] Guanli Song,Yinghui Wang,Runshun Zhang,Baoyan Liu,Xuezhong Zhou,Xiaji Zhou,Hong Zhang,Yufeng Guo,Yanxing Xue,Lili Xu. Experience inheritance from famous specialists based on real-world clinical research paradigm of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 300-309.
[13] Jian Wang,Biyan Liang,Xiaoping Zhang,Liran Xu,Xin Deng,Xiuhui Li,Lu Fang,Xinghua Tan,Yuxiang Mao,Guoliang Zhang,Yuguang Wang. An 84-month observational study of the changes in CD4 T-lymphocyte cell count of 110 HIV/AIDS patients treated with traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 362-367.
[14] Yixin Zhong,Baoyan Liu,Hua Qu,Qi Xie. Methodological challenges to human medical study[J]. Front. Med., 2014, 8(3): 328-336.
[15] Yan Ma,Shuchen Sun,Chung-Kang Peng. Applications of dynamical complexity theory in traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 279-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed