Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

   Online First

Administered by

, Volume 13 Issue 2

For Selected: View Abstracts Toggle Thumbnails
Application of BIB polishing technology in cross-section preparation of porous, layered and powder materials: A review
Rongrong JIANG, Ming LI, Yirong YAO, Jianmin GUAN, Huanming LU
Front. Mater. Sci.. 2019, 13 (2): 107-125.

Abstract   HTML   PDF (8086KB)

For the accuracy of experimental results, preparing a high quality polished surface and cross-section of the materials for further analysis using electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), and scanning probe microscopy (SPM) is extremely important. Broad ion beam (BIB) polishing, a method based on the principle of ion bombardment, has irreplaceable advantages. It makes up for the drawbacks and limitations of traditional polishing methods such as mechanical polishing, electrochemical polishing, and chemical polishing. The ions will not leave the bombardment area during polishing, which makes the BIB method suitable for porous materials. The energy of the ion beam can be adjusted according to the sample to reduce the deformation and strain of the polishing area, especially for fragile, soft, and hard materials. The conditions that need to be controlled during BIB polishing are simple. This paper demonstrated the unique advantages of BIB polishing technology in porous, layered and powder materials characterization through some typical application examples, and guided more researchers to understand and utilize BIB polishing technology in the development of new applications.

Figures and Tables | References | Related Articles | Metrics
Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons
Chengzhi YANG, Shikun CHEN, Huilan SU, Haoyue ZHANG, Jianfei TANG, Cuiping GUO, Fang SONG, Wang ZHANG, Jiajun GU, Qinglei LIU
Front. Mater. Sci.. 2019, 13 (2): 126-132.

Abstract   HTML   PDF (1722KB)

Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4 ions by the chelation of −C=O, reducing agent for Au(0) by the reduction of −OH, and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7–10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.

Figures and Tables | References | Related Articles | Metrics
Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors
Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG
Front. Mater. Sci.. 2019, 13 (2): 133-144.

Abstract   HTML   PDF (2714KB)

Porous polyaniline (PANI) was prepared through an efficient and cost-effective method by polymerization of aniline in the NaCl solution at room temperature. The resulting PANI provided large surface area due to its highly porous structure and the intercrossed nanorod, resulting in good electrochemical performance. The porous PANI electrodes showed a high specific capacitance of 480 F∙g−1, 3 times greater than that of PANI without using the NaCl solution. We also make chemically crosslinked hydrogel film for hydrogel polymer electrolyte as well as the flexible supercapacitors (SCs) with PANI. The specific capacitance of the device was 234 F∙g−1 at the current density of 1 A∙g−1. The energy density of the device could reach as high as 75 W∙h∙kg−1 while the power density was 0.5 kW∙kg−1, indicating that PANI be a promising material in flexible SCs.

Figures and Tables | References | Related Articles | Metrics
Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors
Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN
Front. Mater. Sci.. 2019, 13 (2): 145-155.