Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

   Online First

Administered by

, Volume 17 Issue 3

For Selected: View Abstracts Toggle Thumbnails
REVIEW ARTICLE
Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges
Narinder Singh
Front. Mater. Sci.. 2023, 17 (3): 230632-.  
https://doi.org/10.1007/s11706-023-0632-1

Abstract   HTML   PDF (28121KB)

Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.

Figures and Tables | References | Related Articles | Metrics
RESEARCH ARTICLE
Synergistic effect of diethylene triamine penta(methylene phosphonic acid) and graphene oxide barrier on anti-scaling and anti-corrosion performance of superhydrophobic coatings
Mingliang Zhu, Hongwei Li, Ruixia Yuan, Huijuan Qian, Huaiyuan Wang
Front. Mater. Sci.. 2023, 17 (3): 230650-.  
https://doi.org/10.1007/s11706-023-0650-z

Abstract   HTML   PDF (5321KB)

In this study, a novel diethylene triamine penta(methylene phosphonic acid) (DTPMPA)- and graphene oxide (GO)-modified superhydrophobic anodized aluminum (DGSAA) coating was fabricated. The obtained coatings were characterized by scan electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman analysis. After immersion in the supersaturated CaCO3 solution for 240 h, the scaling mass of the DGSAA coating is only 50% of that of the SAA coating. The excellent anti-scaling performance of the DGSAA coating comes from three barriers of the air layer, the DTPMPA:Ca2+ chelate, and the lamellar GO, as well as the further active anti-scaling of DTPMPA:Ca2+ at the coating–solution interface. DTPMPA and GO at the surface of the DGSAA coating exhibit an insertion structure. In the electrochemical impedance spectroscopy measurement, the impedance modulus of the DGSAA coating is three orders-of-magnitude higher than that of the anodized aluminum. The synergistic effect of DTPMPA stored in the porous structure of anodized aluminum and the barrier protection of superhydrophobicity and GO contributes to the excellent comprehensive performance of the DGSAA coating. This research provides a new perspective for designing anti-scaling and anti-corrosion superhydrophobic bi-functional coatings.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li
Front. Mater. Sci.. 2023, 17 (3): 230651-.  
https://doi.org/10.1007/s11706-023-0651-y

Abstract   HTML   PDF (7842KB)

Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Self-assembled dandelion-like NiS nanowires on biomass-based carbon aerogels as electrode material for hybrid supercapacitors
Chunfei Lv, Ranran Guo, Xiaojun Ma, Yujuan Qiu
Front. Mater. Sci.. 2023, 17 (3): 230652-.  
https://doi.org/10.1007/s11706-023-0652-x

Abstract   HTML   PDF (7473KB)

Carbon aerogels derived from biomass have low specific capacity due to the underutilized structure, limiting their application in high-performance supercapacitors. In this work, the hierarchical nickel sulfide/carbon aerogels from liquefied wood (LWCA-NiS) were synthesized via a simple two-step hydrothermal method. Benefitting from the unique 3D coral-like network structure of LWCA, self-assembled NiS nanowires with the dandelion-like structure showed high specific surface (389.1 m2·g−1) and hierarchical pore structure, which increased affluent exposure of numerous active sites and structural stability, causing superior energy storage performance. As expected, LWCA-NiS displayed high specific capacity (131.5 mAh·g−1 at 1 A·g−1), good rate performance, and highly reversible and excellent cycle stability (13.1% capacity fading after 5000 cycles) in the electrochemical test. Furthermore, a symmetrical supercapacitor using LWCA-NiS-10 as the electrode material delivered an energy density of 12.7 Wh·kg−1 at 299.85 W·kg−1. Therefore, the synthesized LWCA-NiS composite was an economical and sustainable candidate for the electrodes of high-performance supercapacitors.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement
Wenjing Li, Ni Wu, Sai Che, Li Sun, Hongchen Liu, Guang Ma, Ye Wang, Chong Xu, Yongfeng Li
Front. Mater. Sci.. 2023, 17 (3): 230653-.  
https://doi.org/10.1007/s11706-023-0653-9

Abstract   HTML   PDF (4870KB)

Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m−1·K−1 at a low filler loading of 7.9 wt.%, which is 1115% higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage
Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang
Front. Mater. Sci.. 2023, 17 (3): 230654-.  
https://doi.org/10.1007/s11706-023-0654-8

Abstract   HTML   PDF (5288KB)

Nitrogen-doped carbon-coated hollow SnS2/NiS (SnS2/NiS@N–C) microflowers were obtained using NiSn(OH)6 nanospheres as the template via a solvent-thermal method followed by the polydopamine coating and carbonization process. When served as an anode material for lithium-ion batteries, such hollow SnS2/NiS@N–C microflowers exhibited a capacity of 403.5 mAh·g−1 at 2.0 A·g−1 over 200 cycles and good rate performance. The electrochemical reaction kinetics of this anode was analyzed, and the morphologies and structures of anode materials after the cycling test were characterized. The high stability and good rate performance were mainly due to bimetallic synergy, hollow micro/nanostructure, and nitrogen-doped carbon layers. The revealed excellent electrochemical energy storage properties of hollow SnS2/NiS@N–C microflowers in this study highlight their potential as the anode material.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Self-healing poly(acrylic acid) hydrogels fabricated by hydrogen bonding and Fe3+ ion cross-linking for cartilage tissue engineering
Min Kang, Yizhu Cheng, Yinchun Hu, Huixiu Ding, Hui Yang, Yan Wei, Di Huang
Front. Mater. Sci.. 2023, 17 (3): 230655-.  
https://doi.org/10.1007/s11706-023-0655-7

Abstract   HTML   PDF (6671KB)

Autonomous self-healing hydrogels were achieved through a dynamic combination of hydrogen bonding and ferric ion (Fe3+) migration. N,N′-methylenebis (acrylamide) (MBA), a cross-linking agent, was added in this study. Poly(acrylic acid) (PAA)/Fe3+ and PAA–MBA/Fe3+ hydrogels were prepared by introducing Fe3+ into the PAA hydrogel network. The ionic bonds were formed between Fe3+ ions and carboxyl groups. The microstructure, mechanical properties, and composition of hydrogels were characterized by field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The experimental results showed that PAA/Fe3+ and PAA–MBA/Fe3+ hydrogels healed themselves without external stimuli. The PAA/Fe3+ hydrogel exhibited good mechanical properties, i.e., the tensile strength of 50 kPa, the breaking elongation of 750%, and the self-healing efficiency of 82%. Meanwhile, the PAA–MBA/Fe3+ hydrogel had a tensile strength of 120 kPa. These fabricated hydrogels are biocompatible, which may have promising applications in cartilage tissue engineering.

Figures and Tables | References | Related Articles | Metrics
Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material
Xicheng Gao, Jianqiang Bi, Lulin Xie, Chen Liu
Front. Mater. Sci.. 2023, 17 (3): 230656-.  
https://doi.org/10.1007/s11706-023-0656-6

Abstract   HTML   PDF (8334KB)

Few-layers WS2 was obtained through unique chemical liquid exfoliation of commercial WS2. Results showed that after the exfoliation process, the thickness of WS2 reduced significantly. Moreover, the NiFe2O4 nanosheets/WS2 composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m2·g−1 with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g−1 at a current density of 1 A·g−1, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg−1 at the power density of 70 W·kg−1 and maintained 13.42 Wh·kg−1 at the higher power density of 7000 W·kg−1. All the excellent electrochemical performances demonstrate that the NiFe2O4 nanosheets/WS2 composite is an excellent candidate for supercapacitor applications.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
Co-modulated interface binding energy and electric field distribution of layer-structured PVDF–LDPE dielectric composites with BaTiO3: experiment and multiscale simulations
Ruitian Bo, Chunfeng Wang, Yongliang Wang, Peigang He, Zhidong Han
Front. Mater. Sci.. 2023, 17 (3): 230657-.  
https://doi.org/10.1007/s11706-023-0657-5

Abstract   HTML   PDF (6541KB)

The layer-structured composites were built by the dielectric and insulating layers composed of polyvinylidene fluoride (PVDF) and low-density polyethylene (LDPE) composites containing barium titanate (BT) to modulate the dielectric and energy storage properties of the composites. The simulations on the interface models for molecular dynamics and the geometric models for finite element analysis were performed together with the experimental characterization of the morphology, dielectric, and energy storage properties of the composites. The results revealed that polyethylene as an insulating layer played a successful role in modulating dielectric permittivity and breakdown strength while BT particles exerted positive effects in improving the miscibility between the composed layers and redistributing the electric field. The strong interface binding energy and the similar dielectric permittivity between the PVDF layer and the BT20/LDPE layer made for the layer-structured composites with a characteristic breakdown strength (Eb) of 188.9 kV·mm−1, a discharge energy density (Ud) of 1.42 J·cm−3, and a dielectric loss factor (tanδ) of 0.017, which were increased by 94%, 141%, and decreased by 54% in comparison with those of the BT20/PVDF composite, respectively.

Figures and Tables | References | Supplementary Material | Related Articles | Metrics
REVIEW ARTICLE
Progress in cancer therapy with functionalized Fe3O4 nanomaterials
Yuhui Wang, Xuanyu Liu, Shilong Ma, Xuhong He, Chaiqiong Guo, Ziwei Liang, Yinchun Hu, Yan Wei, Xiaojie Lian, Di Huang
Front. Mater. Sci.. 2023, 17 (3): 230658-.  
https://doi.org/10.1007/s11706-023-0658-4

Abstract   HTML   PDF (5439KB)

Malignant neoplasms represent a significant global health threat. To address the need for accurate diagnosis and effective treatment, research is underway to develop therapeutic nanoplatforms. Iron oxide nanoparticles (NPs), specifically Fe3O4 NPs have been extensively studied as potential therapeutic agents for cancer due to their unique properties including magnetic targeting, favorable biocompatibility, high magnetic response sensitivity, prolonged in vivo circulation time, stable performance, and high self-metabolism. Their ability to be integrated with magnetic hyperthermia, photodynamic therapy, and photothermal therapy has resulted in the widespread use of Fe3O4 NPs in cancer diagnosis and treatment, making them a popular choice for such applications. Various methods can be employed to synthesize magnetic Fe3O4 NPs, which can then be surface-modified with biocompatible materials or active targeting molecules. Multifunctional systems can be created by combining Fe3O4 NPs with polymers. By combining various therapeutic approaches, more effective biomedical materials can be developed. This paper discusses the synthesis of Fe3O4 NPs and the latest research advances in Fe3O4-based nanotherapeutic platforms, as well as their applications in the biomedical field.

Figures and Tables | References | Related Articles | Metrics
10 articles