Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (3) : 230632    https://doi.org/10.1007/s11706-023-0632-1
REVIEW ARTICLE
Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges
Narinder Singh1,2()
1. Department of Physics, Sardar Patel University, Mandi, Himachal Pradesh 175001, India
2. Department of Physics, Government College Nadaun, District Hamirpur, Himachal Pradesh 177033, India
 Download: PDF(28121 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.

Keywords copper sulfide      chemical synthesis method      morphology      electrical property      optical property      application     
Corresponding Author(s): Narinder Singh   
Issue Date: 06 September 2023
 Cite this article:   
Narinder Singh. Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges[J]. Front. Mater. Sci., 2023, 17(3): 230632.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0632-1
https://academic.hep.com.cn/foms/EN/Y2023/V17/I3/230632
Fig.1  Data extracted from Google Scholar using keyword “copper sulfide nano” in abstract only.
Fig.2  (a) Crystal structure of hexagonal CuS unit cell. (b) Space-filling arrangement. (c) Ball-and-stick arrangement. (d) Alternating layers of CuS4?Cu3?CuS4 planes bonded through S?S bond. (e) A typical view of CuS along c-axis. (f) Rietveld refinement of experimental XRD data of CuS. Reproduced with permission from Ref. [73] (Copyright 2018, RSC).
Fig.3  Chemical synthesis methods for CuS nanostructures.
Fig.4  FESEM and TEM images of CuS nanostructures synthesized by different chemical methods: (a) CuS microflowers by the hydrothermal method. Reproduced with permission from Ref. [87] (Copyright 2017, Elsevier). (b) Self-assembled hexagonal CuS nanoplates by solvothermal method. Reproduced with permission from Ref. [88] (Copyright 2013, Elsevier). (c) CuS NPs by chemical co-precipitation method. Reproduced with permission from Ref. [89] (Copyright 2017, Elsevier). (d) CuS NPs by sonochemical method. Reproduced with permission from Ref. [90] (Copyright 2019, Elsevier). (e) CuS hierarchical flowers by the microwave-assisted method. Reproduced with permission from Ref. [91] (Copyright 2010, Elsevier). (f)(g) CuS nanocrystals by sol-gel method. Reproduced with permission from Ref. [79] (Copyright 2014, Elsevier). (h) CuS NPs bychemical co-precipitation method. Reproduced with permission from Ref. [80] (Copyright 2019, Elsevier).
Fig.5  SEM images of (a)(b) CuS1, (c)(d) CuS2, (e)(f) CuS3, and (g)(h) CuS4 thin films surface at 343, 353, and 363 K. Reproduced with permission from Ref. [112] (Copyright 2016, Elsevier).
Sample codePrecursorMole ratio of Cu/SSample codePrecursorMole ratio of Cu/S
CS1CuCl, CH4N2S1:2CS4CuCl, CH4N2S1:1
CS2CuCl2·2H2O, CH4N2S1:2CS5CuCl2·2H2O, CH4N2S1:1
CS3CuSO4·7H2O, CH4N2S1:2CS6CuSO4·7H2O, CH4N2S1:1
Tab.1  Codes of synthesized CuS NPs (Reproduced with permission from Ref. [80] (Copyright 2019, Elsevier))
Fig.6  Schematic illustration of properties of CuS nanostructures.
Type a)MorphologyMethodCapping agentDimensionRef.
0DQDsMicrowave (green)?2?3 nm[124]
QDsOne-pot (green)?2?4 nm[125]
QDsMechano-chemical ball milling?5 nm[126]
QDsMicrowave (green)?2?3 nm[127]
QDsChemicalTGA2?5 nm[128]
1DNRsHydrothermal?100?200 nm[129]
NTsSacrificial templating methodWater-EGd ~ 30?90 nm, t ~ 40?80 nm[130]
NTsCo-precipitation methodNaOHd ~ 22.7 nm, l ~ 6 μm[131]
NTsCation exchange methodd ~ 70 nm, l ~ 300–500 nm[35]
2DNanoflakesCo-precipitation method?d ~ 300?500 nm, t ~ 20?30 nm[32]
3DHierarchicalSolvothermalt ~ 10 nm[37]
CauliflowerSolvothermal?d ~ (300±20) nm[39]
SphericalSolvothermal?d ~ 8?20 nm[81]
SphericalHydrothermalCTABd ~ 16 nm[132]
NWsSolvothermal[C10mim]Br c)t ~ 2 μm[33]
MicroflowerHydrothermald ~ 4 nm, t ~ 15 nm[133]
NCs b)Solvothermal?d ~ 3?12 μm, t ~ 100 nm[134]
SphereHydrothermal?d ~ 200?500 nm[135]
HierarchicalSubcritical and supercritical methanol technique?d ~ 200?600 nm[136]
CauliflowerHydrothermal?d ~ 69?95 nm[137]
Tab.2  Different morphologies of CuS nanostructures using hydrothermal and solvothermal methods [3233,35,37,39,81,124137]
Fig.7  Morphologies of CuS nanostructures. Adapted from Ref. [123].
Fig.8  Schematic illustration of the general mechanism responsible for diverse morphologies.
Fig.9  SEM images of CuS nanostructures synthesized at 20 °C with different reaction times: (a) 0.5 h; (b) 2 h; (c) 10 h; (d) 12 h. SEM images of CuS samples synthesized at different reaction temperatures for 10 h: (e) 20 °C; (f) 70 °C; (g) 120 °C [32]. (h)(i)(j)(k) FESEM images of the V-doped CuS micro skeins. Reproduced with permission from Ref. [37] (Copyright 2020, Elsevier). SEM images of CuS architectures with diverse morphologies at different magnifications: (l)(m) microspheres; (n)(o) hexagonal microsheets; (p)(q) sandwich-like plates; (r)(s) interlaced nanosheets; (t)(u) nanoflowers. Reproduced with permission from Ref. [63] (Copyright 2019, Elsevier).
Fig.10  (a) SEM images of CuS. (b) UV?Vis spectra and (c) Tauc’s plots of CuS NPs. Reproduced with permission from Ref. [80] (Copyright 2020, Elsevier).
Fig.11  (a) XRD patterns of CuS NPs suggestinga change in phase with variation in temperature from as-synthesized to 700 °C. SEM images of CuS NPs treated at different temperatures: (b) as-synthesized; (c) 250 °C; (d) 500 °C; (e) 750 °C. (f) TG curves of CuS NPs at 250, 500, and 700 °C. EDX spectra of samples treated at different temperatures: (g) as-synthesized; (h) 250 °C; (i) 500 °C; (j) 750 °C. (k) Atomic percentage analysis of different elements present in the samples. The values are expressed in average ± standard deviation. Reproduced with permission from Ref. [156] (Copyright 2020, Elsevier).
Fig.12  Variation of temperature with (a) Seebeck coefficient and (b) electrical resistivity for Cu1?xAgxS NCs when x = 0, 0.1, 0.2, 0.5, and 0.75. (c) Temperature dependent Hall resistivity (ρxy) for pristne CuS in presence of 5 T magnetic field at different applied currents of 20 and 51 mA. Variation of temperature with (d) electronic (κe) and lattice (κl) components of thermal conductivity and with (e) the values of ZT for Cu1?xAgxS NCs at x = 0, 0.1, 0.2, 0.5, and 0.75. Reproduced with permission from Ref. [73] (Copyright 2018, RSC).
Fig.13  Schematic representation of alications of CuS nanostructure.
Fig.14  Schematic representation of specific energy vs. specific power for the different electrochemical energy storage devices. Adapted from Ref. [164].
Electrode materialElectrolyteSpecific capacitance stabilityRetention/cycle numberEnergy density/(W·h·kg?1)Power density/(W·kg?1)Ref.
CuS NWs1 mol·L?1 NaOH305 F·g?187%@50070.28300[170]
CuS leaf1 mol·L?1 KOH5029.28 at 4 A·g?1107%@2000169.73[113]
CuS network2 mol·L?1 KOH49.8 mA·g?1 at 1 A·g?180.5%@150017.7504[171]
CuS nanocages2 mol·L?1 KOH843 F·g?1 at 1 A·g?189.2%@4000[172]
CuS spherical clusters3 mol·L?1 KOH713 F·g?1 at 1 A·g?173.0%@1000[173]
CuS microflower438 F·g?1 at 3 mA·m?287.0%@2000[133]
CuS cloud-like3 mol·L?1 KOH164 mA·h·g?1 at 1 A·g?197.12%@4000[174]
CuS NPs1 mol·L?1 NaOH101.34 F·g?1 at 5 mV·s?181.0%@1000[175]
CuS nanoporous6 mol·L?1 KOH948 F·g?1 at 1 A·g?195.0%@1000[176]
CuS nanosphere1 mol·L?1 KPF6?73.0%@500[142]
CuS NPs1 mol·L?1 H2SO4773 F·g?1 at 2 A·g?1100%@4000212990[177]
CuS hollow3 mol·L?1 KOH536.7? F·g?1 at 8 A·g?183.6%@2000015.97185400[178]
Ti3C2/CuS?169.5 C·g?1 at 1 A·g?182.4%@500015.4750.2[179]
CuS/3D graphene3 mol·L?1 KOH249 F·g?1 at 4 A·g?195.0%@5000[180]
CuS/CNT2 mol·L?1 KOH1.51 F·cm?2 at 1.2 A·g?192.0%@1000[181]
CuS/CQDs6 mol·L?1 KOH920.5 F·g?1 at 0.5 A·g?192.8%@1000044.19397.75[168]
CuS/AC6 mol·L?1 KOH247 F·g?1 at 0.5 A·g?192.0%@500024.88800[182]
NiCo2O4/CuS2169 F·g?1 at 0.5?Ag?1123%@7000173.5360[183]
CuS/PPy1 mol·L?1 KCl427 F·g?1 at 1 A·g?188.0%@1000[184]
CuS@MnS/NF3 mol·L?1 KOH89.77 mA·h·g?1 at 1 A·g?195.9%@3000[185]
CuS/rGO6 mol·L?1 KOH235 C·g?1 at 1 A·g?195.0%@2000431426[186]
CuS/CC6 mol·L?1 KOH4.176 F·cm?2 at 2?mA·cm?285.0%@50000.74 a)4.35? b)[65]
Tab.3  Different CuS nanostructures and its nanohybrids as supercapacitors electrode material [65,113,133,142,168,170186]
Fig.15  FESEM images of (a)(a1) CuS-2 h, (b)(b1) CuS-3 h, and (c)(c1) CuS-4 h. (d) Galvanostatic charge?discharge curves of CuS electrodes at the current density of 4 A·g?1 in 2 mol·L?1 KOH. (e) Galvanostatic charge?discharge curves of CuS-3 h based electrode measured at different current densities. (f)(g) The specific capacitance vs. current density curves of CuS-2 h and CuS-3 h for various current densities ranging from 4 to 13 A·g?1. (h) Ragone plot and (i) stability performance curves of CuS-2 h and CuS-3 h based electrodes. (j) CV curves of CuS electrodes with different deposition times at scan rate of 15 mV·s?1 in 2 mol·L?1 KOH solution. CV curves of (k) CuS-2 h, (l) CuS-3 h, and (m) CuS-4 h at scan rates of 5?45 mV·s?1. Reproduced with permission from Ref. [113] (Copyright 2017, Elsevier).
Fig.16  SEM images of CuS nanostructures obtained from (a) DMSO as solvent, (b) 3:1 DMSO-EG as solvent, (c) self-assembled CuS NW bundles. (d) 3:7 DMSO-EG as solvent, (e) 1:4 DMSO-EG as solvent, (f) EG as a solvent, and (g) Charge?discharge curves of the CuS cathode at 0.2 C rate during cycling. (h) CV curves in the 1stcycle atthe scanning rate of 0.02 mV·s?1 inthe potential rangeof 0.02?2.7 V. The cycling performance at: (i) 0.2 and 4 C and (j) 0.1, 0.2, 0.5, 1 and 2 C rates for CuS NWs bundles. Reproduced with permission from Ref. [8] (Copyright 2014, Elsevier).
Fig.17  Energy level diagrams of the materials referenced to the vacuum level. Adapted from Ref. [79].
CEPhotoanodeQDs/sensitizerElectrolyteVoc/VRct/(?·cm2)FF/%Jsc/(mA·cm?2)η/%Ref.
CuSSn-doped ZnO?0.5 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 KCl in a solvent a)0.571?38.515.3363.37[202]
CuSTiO2/FTOCdS/CdSe1 mol·L?1 Na2S, 2 mol·L?1 S, and 0.1 mol·L?1 KCl in a solvent a)0.6032.9349.114.314.27[203]
PVP-based CuSTiO2/FTOCdS/CdSe/ZnS1 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 NaOH in a solvent a)0.5784.1351.417.575.22[204]
Ca-doped CuSTiO2/FTOCdS/CdSe/ZnS1 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 NaOH in a solvent a) and distilled water purged with argon gas0.6116.5452.115.474.92[205]
Ni-doped CuSTiO2/FTOCdS/CdSe1 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 KCl in a solvent a)0.5677.8255.813.784.36[206]
Pt/CuSTiO2/FTOCdS/CdSe/ZnSPolysulfide0.6011.514615.314.32[207]
Cu1.8S/CuSTiO2?rGO/FTOMn2+-CdSPolysulfide0.45?42?4.33[208]
CuS/Sn:In2O3TiO2/FTOCdS/CdSe1 mol·L?1 Na2S, 1 mol·L?1 S, and 0.1 mol·L?1 KCl in a solvent a)0.5??20.4[209]
Ti3C2/CuSTiO2/FTOCdS/CdSe1 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 KCl in a solvent a)0.56?4520.865.11[69]
Au/CuS/FTOTiO2/FTOPbS0.125 mol·L?1 S?0.500 mol·L?1 Na2S aqueous solution0.42?56.424.175.73[210]
MoS2/CuSTiO2/FTO/glassCdS/CdSe2 mol·L?1 Na2S and 2 mol·L?1 S in DIW0.48?48.1215.0[211]
CuS/ECTiO2/FTOCdS/CdSe1 mol·L?1 Na2S and 1 mol·L?1 S in a solvent a)0.521?50.714.63.86[212]
GFs–CuSTiO2/FTOCdS/CdSe2 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 KCl in a solvent a)0.590.2652.7716.195.04[213]
CuS/NiSTiO2/FTOCdS/CdSe/ZnS1 mol·L?1 Na2S, 0.1 mol·L?1 S, and 0.2 mol·L?1 NaOH in a solvent a)0.599??12.474.19[214]
CoS/CuSZnS/TiO2ZnS/CdSe/CdS2 mol·L?1 S and 2 mol·L?1 Na2S aqueous solution0.54?5816.095.03[215]
ZnO/CuSZnO/FTOCdS/CdSe1 mol·L?1 Na2S and 1 mol·L?1 S0.76?3814.484.18[216]
Tab.4  Solar parameters showing the performance of QDSSCs using CuS nanostructures and their nanohybrids [69,202216]
Fig.18  SEM images of CuS CEs deposited at (a1)(a2) 1 h, (b1)(b2) 2 h, and (c1)(c2) 3 h. (d1) Nyquist plots of the symmetric cells of CuS-1 h, CuS-2 h, CuS-3 h, and Pt CEs containing polysulfide electrolyte. The inset shows Nyquist plot of Pt at a higher impedance range and the equivalent circuit diagram. (e1) Tafel polarization curves of the symmetrical dummy cells of CuS and Pt CEs. (f1) J?V plots for TiO2/CdS/CdSe/ZnS QDSSCs based on CuS and Pt CEs. Reproduced with permission from Ref. [203] (Copyright 2017, Elsevier).
Fig.19  (a)(b) SEM images of 3D CuS NWs anodized for 15 min. (c) The thickness statistics histogram of the 3D copper sulfide NPs anodized for 15 min. (d) J?E curves of the 3D CuS nanoplates anodized for different anodization time. (e) The corresponding F?N plots. (f) Variations of Eto and β with the anodization time. (g) The CV curve. Reproduced with permission from Ref. [226] (Copyright 2018, Elsevier).
Fig.20  (a) Schematic illustration of the mechanism of photocatalytic degradation of dye by CuS nanostructures. Reproduced with permission from Ref. [237]. (b) Schematic illustration of the synthesis of CQDs/CuS NC, and the mechanism of photocatalytic degradation of MB by CQDs/CuS NC. Adapted from Ref. [238].
Precursor/componentMorphologyDyeIrradiationTime/minIrradiation efficiency/%Ref.
Cu(CH3COO)2·H2ONPsMBSolar24090.29[81]
Na2S·9H2ORhBSolar24069.23
EY b)Solar24091.97
CR c)Solar24060.35
CuCl2NPsMBVisible18093.00[22]
TU
CuCl2·2H2ONTsRhBUV14087.30[241]
ThioacetamideMOUV14091.50
CuCl2·2H2ONPsRhBVisible6099.7[242]
Na2S·9H2O
CuCl2Ball-flowerRhBUV60100[243]
TU
Cu(CH3COO)2·H2OHierarchical flowerRhBXe-lamp f)40100[244]
TUHollow nanospheres2,4-DCP d)Xe-lamp f)240100
Cu(NO3)2·3H2OHexagonal nanoplatesMBVisible4587[88]
TU
CHDS a)PorousMBSunlight1098[245]
TUAggregatesMOSunlight1598
4-ChlorophenolSunlight6093
(CH3COO)2Cu·H2OUrchin-likeMGSunlight9095[42]
TU
Copper foamHeirarchicalRhBSunlight25100[58]
S powderMBSunlight25100
CuS/PVACSSphericalMGUV6096.51[233]
CQDs/CuSSphericalMBVisible45100[238]
CdS/CuSMicroflowerMBVisible15093[246]
Au?CuS?TiO2NanobeltsAntibiotic OTC e)Visible6096[247]
CuS/ZnSNRsMBVisible, Xe-lamp595.5[248]
rGO/CuSStacked and agglomeratedMGSunlight9097.6[249]
Tab.5  Photocatalytic degradation of different dyes using CuS nanostructures and its nanohybrids [22,42,58,81,88,233,238,241249]
Fig.21  FESEM images of hierarchical CuS microspheres of (a)(b) 0.25:1, 12 h, (c) 0.50:1, 12 h, (d) 0.75:1, 12 h, (e) 0.5:1, 18 h, (f) 0.50:1, 12 h, and (g)(h) 0.50:1, 24 h. (i)(k)(m) Kinetics of the photocatalytic degradation and (j)(l)(n) 1st order linear transforms of ln(C/C0) = kt for RhB (panels (i)(j)), MB (panels (k)(l)), and MO (panels (m)(n)) by H2O2, CuS microspheres with and without H2O2, and commercial TiO2 NPs with H2O2. TEM images of CuS microspheres for molar ratio (CuO:TU) of 0.50:1 at (o) 6 h, (p) 12 h, (q) 18 h, and (r) 24 h. (s) HRTEM image and (t) selected area electron diffraction (SAED) pattern of the CuS-0.50:1-24 microspher. (u) Cycle runs of the hierarchical CuS microsphere (CuS-0.50:1-24 sample). (v) Schematic representation of the formation of CuS microsphere from the CuO template. Reproduced with permission from Ref. [252] (Copyright 2020, Elsevier).
Fig.22  (a) SEM images of CuS-7. (b) Schematic illustration of the photocatalytic degradation mechanism using the (rGO/CuS-7) photocatalyst for MG dye. (c) Variation of MG concentration in dark and direct sunlight irradiation at different periods with and without CuS and different rGO/CuS photocatalysts. (d) Variation of MG concentration with timein the presence of 0.3 and 0.5 g·L?1 (rGO/CuS-7) doses. The inset represents the corresponding photodegradation efficiency (97.6% for 0.3 g·L?1 and 99.2% for 0.5 g·L?1) after 90 min irradiation. (e) The reaction kinetics of the photodegradation of MG using CuS and different rGO/CuS photocatalysts. (f) The decrease of the absorption peak (at λ = 618 nm) with time, showing elimination of MG with (rGO/CuS-7) photocatalyst at pH 5.0 under solar irradiation. (g) Variation of MG concentration with time under direct sunlight using 0.3 g·L?1 of rGO/CuS-7 photocatalyst at pH 5 at different dye concentrations; the insets represent the photodegradation efficiency (97.6% for 10 ppm, 91.0% for 15 ppm and 83.4% for 20 ppm) after 90 min irradiation. (h) Reusability of CuS (rGO/CuS-7) photocatalyst for degradation of 10 ppm MG dye solution at pH 5 under direct sunlight for several runs. Reproduced with permission from Ref. [249] (Copyright 2020, Elsevier).
Fig.23  (a) Energy band diagram of TiO2 and CuS and (b) schematic illustration of charge carrier transfer for H2 generation on CuS/TiO2 NCs. Adapted from Ref. [256].
Fig.24  Schematic presentation of the band energy level and charge carrier’s transfer: (a) CuS/CdS; (b) CuS/Cu2S/CdS. Adapted from Ref. [246].
Fig.25  (a) Schematic representation of photodegradation mechanism of the CNT/CuS composite. (b) Photodegradation of RhB of 3% CNT/CuS was used four times. (c) Nyquist plots of CuS (12 h, 20 C) and CNT/CuS composites. (d) Transient photocurrent?time response curves of CuS (12 h, 20 C) and CNT/CuS composites. (e) Effects of IPA, BQ, and MeOH on the photodegradation percentage of RhB over 3% CNT/CuS [32].
Fig.26  SEM images of (a) TiO2 nanobelts and (b) Au/CuS/CdS/TiO2 nanobelts. (c) TEM image of Au/CuS/CdS/TiO2 nanobelts and (d) HRTEM image of Au/CuS/CdS/TiO2 nanobelts. (e) Voc response curves. (f) Schematic illustration of the possible photocatalytic mechanism of quaternary composite. (g) Nyquist plots and (h) the photocatalytic stability of quaternary composite on the degradation of moxifloxacin. Reproduced with permission from Ref. [267] (Copyright 2020, Elsevier).
Fig.27  SEM imagesof (a1) Cu dendrite, (b1) CuS10 dendrite, (c1) CuS30 dendrite, and (d1) CuS50 dendrite. (e1) Amperometric responses of CuS30 (a), CuS10 (b), CuS50 (c), Cu dendrite (d), and CuS film (e) with stepwise addition of glucose stock solution at 0.55 V. (f1) The current response of various electrodes from A against the glucose concentration (mmol·L?1). (g1) Amperometric response of CuS30 dendrite sensor in successive addition of 1 mmol·L?1 glucose and 0.1 mmol·L?1 different interferent species (Fr, Su, AA, DA, UA) in 0.5 mol·L?1 NaOH at 0.55 V. (h1) Long-term stability of the CuS30 dendrite electrode measured in 30 d. Reproduced with permission from Ref. [271] (Copyright 2017, Elsevier).
Fig.28  CV curves of (a) CuS-W, (b) CuS-E, and (c) CuS-W/E modified electrode in the absence (Curve a) and presence (Curve b) of 1 mmol·L?1 glucose in 0.1 mol·L?1 NaOH solution at 50 mV·s?1. (d) The bar diagram of peak current against modified electrodes. (e) CV response of CuS-modified GC electrode at 50?500 mV·s?1 with 1 mmol·L?1 glucose in 0.1 mol·L?1 NaOH solution (the inset shows the corresponding calibration plot). (f) Linear sweep voltammetry (LSV) result obtained for glucose in the range of 0?500 μmol·L?1 (the inset shows the corresponding calibration plot). Amperometric response for the CuS-modified GC electrode (g) at different applied potential with successive addition of 10 μmol·L?1 glucose in 0.1 mol·L?1 NaOH and (h) with the addition of different concentrations of glucose in 0.1 mol·L?1 NaOH solution (the inset shows the corresponding calibration curve of glucose concentration versus peak current response at an applied potential of 0.5 V). Amperometric response of the CuS-modified GC electrode with successive addition of 10 μmol·L?1 glucose in 0.1 mol·L?1 NaOH solution: (i) ambient condition; (j) 0.1 mol·L?1 NaOH solution containing 0.1 mol·L?1 NaCl; (k) N2 saturated 0.1 mol·L?1 NaOH solution. (l) Bar diagram representing normalized current response obtained in amperometric measurement for the addition of glucose (50 μmol·L?1) and interference compounds (20 μmol·L?1) at CuS-modified GC electrode in 0.1 mol·L?1 NaOH at an applied potential of 0.5 V. (m) Schematic representation of the change of morphology caused by different solvents. (n) Schematic illustration of glucose detection using CuS-modified electrode. Reproduced with permission from Ref. [39] (Copyright 2017, Elsevier).
Fig.29  (a)(b)(c) The schematic representation of electromagnetic wave absorption mechanism. The resistance loss (RL) curves at varied layer thickness at ν = 2?18 GHz: (d) Ti3C2Tx MXene; (e) CuS; (f) CuS:Ti3C2Tx = 1:1; (g) CuS:Ti3C2Tx = 2:1. Reproduced with permission from Ref. [276] (Copyright 2020, Elsevier).
Fig.30  Photothermal curves (808 nm laser) depending on (a) the concentration of CuS/BSA?HMONs aqueous solutions at 1 W·cm?2, (b) the laser power at 100 μg·mL?1 of the aqueous solution of composite, and (c) the temperature variation with time at 200 μg·mL?1 during four cycles of laser on/off at 1.0 W·cm?2. (d) In vitro DOX release profiles from CuS/BSA?HMONs?DOX at different pH in the absence or presence of 10 mmol·L?1 GSH. (e) In vitro DOX release profiles from CuS/BSA?HMONs?DOX at different pHs in presence of 10 mmol·L?1 GSH with NIR laser irradiation (808 nm, 1 W·cm?2). (f) In vitro photoacoustic (PA) images and its variation with Cu concentrations. Schematic illustration of (g) the formation of CuS/BSA-HMONs-DOX NPs and (h) the mechanism of CuS/BSA?HMONs?DOX as a nano theranostic splatform for in vivo PA imaging-guided tumor synergistic chemotherapy-PTT. Reproduced with permission from Ref. [316] (Copyright 2020, Elsevier).
1 S, Iqbal N A, Shaid M M, Sajid et al.. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature.Journal of Crystal Growth, 2020, 547: 125823
https://doi.org/10.1016/j.jcrysgro.2020.125823
2 Y, Zhai M Shim . Effects of copper precursor reactivity on the shape and phase of copper sulfide nanocrystals.Chemistry of Materials, 2017, 29(5): 2390–2397
https://doi.org/10.1021/acs.chemmater.7b00461
3 N, Loudhaief Salem M, Ben H, Labiadh et al.. Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by CuS nanoparticles synthesized through the aqueous route.Materials Chemistry and Physics, 2020, 242: 122464
https://doi.org/10.1016/j.matchemphys.2019.122464
4 S, Arora K, Kabra K, Joshi et al.. Structural, elastic, thermodynamic and electronic properties of covellite, CuS.Physica B: Condensed Matter, 2020, 582: 311142
https://doi.org/10.1016/j.physb.2018.11.007
5 S I, Raj A, Jaiswal I Uddin . Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions.RSC Advances, 2020, 10(24): 14050–14059
https://doi.org/10.1039/C9RA09306K
6 Y, Liu M, Liu M T Swihart . Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications.The Journal of Physical Chemistry C, 2017, 121(25): 13435–13447
https://doi.org/10.1021/acs.jpcc.7b00894
7 S M H, AL-Jawad A A, Taha A M, Redha et al.. Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity.Journal of Sol-Gel Science and Technology, 2019, 91(2): 310–323
https://doi.org/10.1007/s10971-019-05023-1
8 C, Feng L, Zhang Z, Wang et al.. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries.Journal of Power Sources, 2014, 269: 550–555
https://doi.org/10.1016/j.jpowsour.2014.07.006
9 R M, Córdova-Castro M, Casavola Schilfgaarde M, van et al.. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion.ACS Nano, 2019, 13(6): 6550–6560
https://doi.org/10.1021/acsnano.9b00282
10 F, Tao Y, Zhang S, Cao et al.. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation.Materials Today Energy, 2018, 9: 285–294
https://doi.org/10.1016/j.mtener.2018.06.003
11 S S, Kalanur H Seo . Tuning plasmonic properties of CuS thin films via valence band filling.RSC Advances, 2017, 7(18): 11118–11122
https://doi.org/10.1039/C6RA27076J
12 K, Ghosh S K Srivastava . Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets.ACS Omega, 2021, 6(7): 4582–4596
https://doi.org/10.1021/acsomega.0c05034
13 M A, Adedeji M S, Hamed G T Mola . Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell.Solar Energy, 2020, 203: 83–90
https://doi.org/10.1016/j.solener.2020.04.005
14 Z, Bano R M Y, Saeed S, Zhu et al.. Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants.Chemosphere, 2020, 246: 125846
https://doi.org/10.1016/j.chemosphere.2020.125846
15 A, Venkadesh J, Mathiyarasu S Radhakrishnan . Electrochemical enzyme-free sensing of oxalic acid using amine mediated synthesis of CuS nanosphere.Analytical Sciences, 2021, 37(7): 949–954
https://doi.org/10.2116/analsci.20P370
16 Z, Shalabayev M, Baláz N, Daneu et al.. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909
https://doi.org/10.1021/acssuschemeng.9b01849
17 B J, Rani G, Ravi R, Yuvakkumar et al.. Investigation on copper based oxide, sulfide and selenide derivatives oxygen evolution reaction activity.Applied Nanoscience, 2020, 10(11): 4299–4306
https://doi.org/10.1007/s13204-020-01531-7
18 C, Ramamoorthy V Rajendran . Synthesis and characterization of CuS nanostructures: structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process.International Journal of Hydrogen Energy, 2017, 42(42): 26454–26463
https://doi.org/10.1016/j.ijhydene.2017.07.078
19 G, Srinidhi S, Sudalaimani K, Giribabu et al.. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode.Microchimica Acta, 2020, 187(6): 359
https://doi.org/10.1007/s00604-020-04325-4
20 N, Singh M Taunk . Structural, optical, and electrical studies of sonochemically synthesized CuS nanoparticles.Semiconductors, 2020, 54(9): 1016–1022
https://doi.org/10.1134/S1063782620090262
21 M, Saranya C, Santhosh S P, Augustine et al.. Synthesis and characterisation of CuS nanomaterials using hydrothermal route.Journal of Experimental Nanoscience, 2014, 9(4): 329–336
https://doi.org/10.1080/17458080.2012.661471
22 M, Pal N R, Mathews E, Sanchez-Mora et al.. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity.Journal of Nanoparticle Research, 2015, 17(7): 301
https://doi.org/10.1007/s11051-015-3103-5
23 M C, Portillo R V, Gutiérrez M A M, Ramírez et al.. Structural properties of sulfur copper (CuS) nanocrystals grown by chemical bath deposition.Optik, 2020, 208: 164518
https://doi.org/10.1016/j.ijleo.2020.164518
24 D, Ayodhya G Veerabhadram . Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles.Journal of Science. Advanced Materials and Devices, 2019, 4(3): 381–391
https://doi.org/10.1016/j.jsamd.2019.08.006
25 S, Radhakrishnan H Y, Kim B S Kim . A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection.Sensors and Actuators B: Chemical, 2016, 233: 93–99
https://doi.org/10.1016/j.snb.2016.04.056
26 F, Nekouei S, Nekouei O, Jashnsaz et al.. Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose.Materials Science and Engineering C, 2018, 90: 576–588
https://doi.org/10.1016/j.msec.2018.05.001
27 J, Zhu X, Peng W, Nie et al.. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose.Biosensors & Bioelectronics, 2019, 141: 111450
https://doi.org/10.1016/j.bios.2019.111450
28 S, Zhai K, Jin M, Zhou et al.. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 124025
https://doi.org/10.1016/j.colsurfa.2019.124025
29 Z, Shalabayev M, Balaz N, Daneu et al.. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909
https://doi.org/10.1021/acssuschemeng.9b01849
30 S W, Hsu C, Ngo W, Bryks et al.. Shape focusing during the anisotropic growth of CuS triangular nanoprisms.Chemistry of Materials, 2015, 27(14): 4957–4963
https://doi.org/10.1021/acs.chemmater.5b01223
31 J, Huang J, Zhou J, Zhuang et al.. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of Gram-positive and -negative bacteria.ACS Applied Materials & Interfaces, 2017, 9(42): 36606–36614
https://doi.org/10.1021/acsami.7b11062
32 Y, Wang F, Jiang J, Chen et al.. In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes.Nanomaterials, 2020, 10(1): 178
https://doi.org/10.3390/nano10010178
33 K, Yao C, Zhao N, Sun et al.. Freestanding CuS nanowalls: ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate.CrystEngComm, 2017, 19(34): 5048–5057
https://doi.org/10.1039/C7CE01119A
34 S K, Nath P Kalita . Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix.Nano-Structures & Nano-Objects, 2021, 25: 100651
https://doi.org/10.1016/j.nanoso.2020.100651
35 X, Shuai W, Shen X, Li et al.. Cation exchange synthesis of CuS nanotubes composed of nanoparticles as low-cost counter electrodes for dye-sensitized solar cells.Materials Science and Engineering B, 2018, 227: 74–79
https://doi.org/10.1016/j.mseb.2017.10.008
36 Y, Qin X, Kong D, Lei et al.. Facial grinding method for synthesis of high-purity CuS nanosheets.Industrial & Engineering Chemistry Research, 2018, 57(8): 2759–2764
https://doi.org/10.1021/acs.iecr.7b04616
37 P, Gao Y, Zhang H Abedi . Hierarchical CuS doped with vanadium nanosheets with micro skein overall morphology as a high performance amperometric glucose sensor.Surfaces and Interfaces, 2020, 21: 100756
https://doi.org/10.1016/j.surfin.2020.100756
38 M M, Mezgebe A, Ju G, Wei et al.. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures.Nanotechnology, 2019, 30(10): 105704
https://doi.org/10.1088/1361-6528/aaf758
39 A, Venkadesh S, Radhakrishnan J Mathiyarasu . Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures.Electrochimica Acta, 2017, 246: 544–552
https://doi.org/10.1016/j.electacta.2017.06.077
40 S, Iqbal A, Bahadur S, Anwer et al.. Shape and phase-controlled synthesis of specially designed 2D morphologies of L-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum.Applied Surface Science, 2020, 526: 146691
https://doi.org/10.1016/j.apsusc.2020.146691
41 S, Li H, Zhang L, Xu et al.. Laser-induced construction of multi-branched CuS nanodendrites with excellent surface-enhanced Raman scattering spectroscopy in repeated applications.Optics Express, 2017, 25(14): 16204–16213
https://doi.org/10.1364/OE.25.016204
42 A, Shawky S, El-Sheikh A, Gaber et al.. Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight.Applied Nanoscience, 2020, 10(7): 2153–2164
https://doi.org/10.1007/s13204-020-01283-4
43 B, Shi W, Liu K, Zhu et al.. Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries.Chemical Physics Letters, 2017, 677: 70–74
https://doi.org/10.1016/j.cplett.2017.03.051
44 Z, Hosseinpour A, Scarpellini S, Najafishirtari et al.. Morphology-dependent electrochemical properties of CuS hierarchical superstructures.ChemPhysChem, 2015, 16(16): 3418–3424
https://doi.org/10.1002/cphc.201500568
45 J, Jeevanandam A, Barhoum Y S, Chan et al.. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074
https://doi.org/10.3762/bjnano.9.98
46 N H Hong . Introduction to nanomaterials: basic properties, synthesis, and characterization. In: Nano-Sized Multifunctional Materials: Synthesis, Properties and Applications. Elsevier, 2019, 1‒19
47 M Y, Son J H, Choi Y C Kang . Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries.Journal of Power Sources, 2014, 251: 480–487
https://doi.org/10.1016/j.jpowsour.2013.10.093
48 Y, Sun Z, Yu Z, Chen et al.. One-dimensional channel to trigger high-performance sodium-ion battery via doping engineering.Nano Energy, 2021, 84: 105875
https://doi.org/10.1016/j.nanoen.2021.105875
49 T H, Gu N H, Kwon K G, Lee et al.. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor.Coordination Chemistry Reviews, 2020, 421: 213439
https://doi.org/10.1016/j.ccr.2020.213439
50 R, Dong T, Zhang X Feng . Interface-assisted synthesis of 2D materials: trend and challenges.Chemical Reviews, 2018, 118(13): 6189–6235
https://doi.org/10.1021/acs.chemrev.8b00056
51 M, Naveed W, Younas Y, Zhu et al.. Template free and facile microwave-assisted synthesis method to prepare mesoporous copper sulfide nanosheets for high-performance hybrid supercapacitor.Electrochimica Acta, 2019, 319: 49–60
https://doi.org/10.1016/j.electacta.2019.06.169
52 M, Masar M, Urbanek P, Urbanek et al.. Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates.Materials Chemistry and Physics, 2019, 237: 121823
https://doi.org/10.1016/j.matchemphys.2019.121823
53 T, Dou Y, Qin F, Zhang et al.. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate.ACS Applied Energy Materials, 2021, 4(5): 4376–4384
https://doi.org/10.1021/acsaem.0c03190
54 Z, Ying S, Zhao J, Yue et al.. 3D hierarchical CuS microflowers constructed on copper powders-filled nickel foam as advanced binder-free electrodes.Journal of Alloys and Compounds, 2020, 821: 153437
https://doi.org/10.1016/j.jallcom.2019.153437
55 Z, Wang X, Zhang Y, Zhang et al.. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries.Metals, 2018, 8(4): 252
https://doi.org/10.3390/met8040252
56 X, Ding S, Lei C, Du et al.. Small-sized CuS nanoparticles/N, S co-doped rGO composites as the anode materials for high-performance lithium-ion batteries.Advanced Materials Interfaces, 2019, 6(6): 1900038
https://doi.org/10.1002/admi.201900038
57 Z, Hosseinpour Z, Arefinia S Hosseinpour . Morphology and phase control of hierarchical copper sulfide superstructures as efficient catalyst.Materials Science in Semiconductor Processing, 2019, 100: 48–55
https://doi.org/10.1016/j.mssp.2019.04.039
58 N, Qin W, Wei C, Huang et al.. An efficient strategy for the fabrication of CuS as a highly excellent and recyclable photocatalyst for the degradation of organic dyes.Catalysts, 2020, 10(1): 40
https://doi.org/10.3390/catal10010040
59 S I, Raj A Jaiswal . Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation.Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410: 113158
https://doi.org/10.1016/j.jphotochem.2021.113158
60 Y, Zhao Y, Zuo G, He et al.. Synthesis of graphene-based CdS@CuS core–shell nanorods by cation-exchange for efficient degradation of ciprofloxacin.Journal of Alloys and Compounds, 2021, 869: 159305
https://doi.org/10.1016/j.jallcom.2021.159305
61 B, Zhao G, Shao B, Fan et al.. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties.Journal of Materials Chemistry A, 2015, 3(19): 10345–10352
https://doi.org/10.1039/C5TA00086F
62 D, Zhang Y, Cai Q, Liang et al.. Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation.ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9017–9026
https://doi.org/10.1021/acssuschemeng.0c01707
63 J, Li M, Liu J, Jiang et al.. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow.Sensors and Actuators B: Chemical, 2019, 288: 552–563
https://doi.org/10.1016/j.snb.2019.03.028
64 C, Li P, He L, Jia et al.. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors.Electrochimica Acta, 2019, 299: 253–261
https://doi.org/10.1016/j.electacta.2019.01.004
65 S, Zhai K, Jin M, Zhou et al.. In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 75–83
https://doi.org/10.1016/j.colsurfa.2019.05.010
66 S I, El-Hout S G, Mohamed A, Gaber et al.. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications.Journal of Energy Storage, 2021, 34: 102001
https://doi.org/10.1016/j.est.2020.102001
67 H, Sabeeh M, Aadil S, Zulfiqar et al.. Hydrothermal synthesis of CuS nanochips and their nanohybrids with CNTs for electrochemical energy storage applications.Ceramics International, 2021, 47(10): 13613–13621
https://doi.org/10.1016/j.ceramint.2021.01.220
68 M, Muhyuddin M T, Ahsan I, Ali et al.. A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs.Applied Physics A: Materials Science & Processing, 2019, 125(10): 716
https://doi.org/10.1007/s00339-019-3009-7
69 Z, Tian Z, Qi Y, Yang et al.. Anchoring CuS nanoparticles on accordion-like Ti3C2 as high electrocatalytic activity counter electrodes for QDSSCs.Inorganic Chemistry Frontiers, 2020, 7(19): 3727–3734
https://doi.org/10.1039/D0QI00618A
70 G M, Neelgund A, Oki S, Bandara et al.. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide.Journal of Materials Chemistry B, 2021, 9(7): 1792–1803
https://doi.org/10.1039/D0TB02366C
71 A N, Nikam A, Pandey G, Fernandes et al.. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives.Coordination Chemistry Reviews, 2020, 419: 213356
https://doi.org/10.1016/j.ccr.2020.213356
72 R S, Christy J T Kumaran . Phase transition in CuS nanoparticles.Journal of Non-Oxide Glasses, 2014, 6: 13–22
73 , Tarachand S, Hussain N P, Lalla et al.. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method.Physical Chemistry Chemical Physics, 2018, 20(8): 5926–5935
https://doi.org/10.1039/C7CP07986A
74 K M, Rosso M Hochella . A UHV STM/STS and ab initio investigation of covellite {0 0 1} surfaces.Surface Science, 1999, 423(2–3): 364–374
https://doi.org/10.1016/S0039-6028(98)00941-8
75 K J, Wang G D, Li J X, Li et al.. Formation of single-crystalline CuS nanoplates vertically standing on flat substrate.Crystal Growth & Design, 2007, 7(11): 2265–2267
https://doi.org/10.1021/cg060640z
76 A L, Soares Santos E C, Dos A, Morales-García et al.. The stability and structural, electronic and topological properties of covellite (0 0 1) surfaces.ChemistrySelect, 2016, 1(11): 2730–2741
https://doi.org/10.1002/slct.201600422
77 R, Gaspari L, Manna A Cavalli . A theoretical investigation of the (0 0 0 1) covellite surfaces.The Journal of Chemical Physics, 2014, 141(4): 044702
https://doi.org/10.1063/1.4890374
78 A, Morales-García A L Jr, Soares Santos E C, Dos et al.. First-principles calculations and electron density topological analysis of covellite (CuS).The Journal of Physical Chemistry A, 2014, 118(31): 5823–5831
https://doi.org/10.1021/jp4114706
79 J, Li T, Jiu G H, Tao et al.. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells.Journal of Colloid and Interface Science, 2014, 419: 142–147
https://doi.org/10.1016/j.jcis.2013.12.057
80 B, Pejjai M, Reddivari T R R Kotte . Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS.Materials Chemistry and Physics, 2020, 239: 122030
https://doi.org/10.1016/j.matchemphys.2019.122030
81 D, Ayodhya M, Venkatesham Kumari A, Santoshi et al.. Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles.Journal of Experimental Nanoscience, 2016, 11(6): 418–432
https://doi.org/10.1080/17458080.2015.1070312
82 H, Liang W, Shuang Y, Zhang et al.. Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties.ChemElectroChem, 2018, 5(3): 494–500
https://doi.org/10.1002/celc.201701074
83 D, Ayodhya G Veerabhadram . Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach.Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(S1): 215–230
https://doi.org/10.1007/s10904-017-0672-z
84 A M, Huerta-Flores L M, Torres-Martínez E, Moctezuma et al.. Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal.Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11613–11626
https://doi.org/10.1007/s10854-018-9259-x
85 G, Ramalingam R, Vignesh C, Ragupathi et al.. Electrical and chemical stability of CuS nanofluids for conductivity of water soluble based nanocomposites.Surfaces and Interfaces, 2020, 19: 100475
https://doi.org/10.1016/j.surfin.2020.100475
86 C, Manjunatha R H, Krishna S Ashoka . Green synthesis of inorganic nanoparticles using microemulsion methods. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 2021, 41‒67
87 Z, Yang S, Zhang X, Zheng et al.. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing.Sensors and Actuators B: Chemical, 2018, 255: 2643–2651
https://doi.org/10.1016/j.snb.2017.09.075
88 M, Saranya C, Santhosh R, Ramachandran et al.. Hydrothermal growth of CuS nanostructures and its photocatalytic properties.Powder Technology, 2014, 252: 25–32
https://doi.org/10.1016/j.powtec.2013.10.031
89 S, Yadav P Bajpai . Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization.Nano-Structures & Nano-Objects, 2017, 10: 151–158
https://doi.org/10.1016/j.nanoso.2017.03.009
90 R, Zeinodin F Jamali-Sheini . In-doped CuS nanostructures: ultrasonic synthesis, physical properties, and enhanced photocatalytic behavior.Physica B: Condensed Matter, 2019, 570: 148–156
https://doi.org/10.1016/j.physb.2019.05.048
91 C F, Mu Q Z, Yao X F, Qu et al.. Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradiation method.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1–3): 14–21
https://doi.org/10.1016/j.colsurfa.2010.08.049
92 G O, Siqueira T, Matencio Silva H V, da et al.. Temperature and time dependence on ZnS microstructure and phases obtained through hydrothermal decomposition of diethyldithiocarbamate complexes.Physical Chemistry Chemical Physics, 2013, 15(18): 6796–6803
https://doi.org/10.1039/c3cp50549a
93 K, Krishnamoorthy G K, Veerasubramani S J Kim . Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles.Materials Science in Semiconductor Processing, 2015, 40: 781–786
https://doi.org/10.1016/j.mssp.2015.06.070
94 Z, Fereshteh M Salavati-Niasari . Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds.Advances in Colloid and Interface Science, 2017, 243: 86–104
https://doi.org/10.1016/j.cis.2017.03.001
95 M Yoshimura . Importance of soft solution processing for advanced inorganic materials.Journal of Materials Research, 1998, 13(4): 796–802
https://doi.org/10.1557/JMR.1998.0101
96 S, Yang P Y, Zavalij M S Whittingham . Hydrothermal synthesis of lithium iron phosphate cathodes.Electrochemistry Communications, 2001, 3(9): 505–508
https://doi.org/10.1016/S1388-2481(01)00200-4
97 F, Li J, Wu Q, Qin et al.. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures.Powder Technology, 2010, 198(2): 267–274
https://doi.org/10.1016/j.powtec.2009.11.018
98 Z, Cheng S, Wang D, Si et al.. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route.Journal of Alloys and Compounds, 2010, 492(1–2): L44–L49
https://doi.org/10.1016/j.jallcom.2009.11.132
99 T, Thongtem C, Pilapong S Thongtem . Large-scale synthesis of CuS hexaplates in mixed solvents using a solvothermal method.Materials Letters, 2010, 64(2): 111–114
https://doi.org/10.1016/j.matlet.2009.10.004
100 V, Rajendran J Gajendiran . Nonionic surfactant poly (ethane 1, 2-diol)-400 assisted solvothermal synthesis of copper monosulfide (CuS) nanoplates and their structural, topographical, optical and luminescent properties.Materials Science in Semiconductor Processing, 2015, 36: 92–95
https://doi.org/10.1016/j.mssp.2015.03.041
101 S, Shahi S, Saeednia P, Iranmanesh et al.. Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles.Luminescence, 2021, 36(1): 180–191
https://doi.org/10.1002/bio.3933
102 M A, Dheyab A A, Aziz P M, Khaniabadi et al.. Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production.Materials Research Express, 2021, 8(1): 015009
https://doi.org/10.1088/2053-1591/abd5a4
103 S, Asgharzadehahmadi A A A, Raman R, Parthasarathy et al.. Sonochemical reactors: review on features, advantages and limitations.Renewable & Sustainable Energy Reviews, 2016, 63: 302–314
https://doi.org/10.1016/j.rser.2016.05.030
104 K S, Suslick S-B, Choe A A, Cichowlas et al.. Sonochemical synthesis of amorphous iron.Nature, 1991, 353: 414–416
https://doi.org/10.1038/353414a0
105 M, Kristl N, Hojnik S, Gyergyek et al.. Sonochemical preparation of copper sulfides with different phases in aqueous solutions.Materials Research Bulletin, 2013, 48(3): 1184–1188
https://doi.org/10.1016/j.materresbull.2012.12.020
106 A, Phuruangrat T, Thongtem S Thongtem . Characterization of copper sulfide hexananoplates, and nanoparticles synthesized by a sonochemical method.Chalcogenide Letters, 2011, 8: 291–295
107 C, Deng X, Ge H, Hu et al.. Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities.CrystEngComm, 2014, 16(13): 2738–2745
https://doi.org/10.1039/C3CE42376J
108 S Esposito . “Traditional” sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts.Materials, 2019, 12(4): 668
https://doi.org/10.3390/ma12040668
109 M, Parashar V K, Shukla R Singh . Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications.Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3729–3749
https://doi.org/10.1007/s10854-020-02994-8
110 S, Riyaz A, Parveen A Azam . Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route.Perspectives in Science, 2016, 8: 632–635
https://doi.org/10.1016/j.pisc.2016.06.041
111 J, Ha J, Oh H, Choi et al.. Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method.Journal of Industrial and Engineering Chemistry, 2018, 58: 38–44
https://doi.org/10.1016/j.jiec.2017.09.004
112 A, Patil A, Lokhande N, Chodankar et al.. Interior design engineering of CuS architecture alteration with rise in reaction bath temperature for high performance symmetric flexible solid state supercapacitor.Journal of Industrial and Engineering Chemistry, 2017, 46: 91–102
https://doi.org/10.1016/j.jiec.2016.10.019
113 I K, Durga S S, Rao A E, Reddy et al.. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells.Applied Surface Science, 2018, 435: 666–675
https://doi.org/10.1016/j.apsusc.2017.11.171
114 Y J, Zhu F Chen . Microwave-assisted preparation of inorganic nanostructures in liquid phase.Chemical Reviews, 2014, 114(12): 6462–6555
https://doi.org/10.1021/cr400366s
115 T, Thongtem A, Phuruangrat S Thongtem . Characterization of copper sulfide nanostructured spheres and nanotubes synthesized by microwave-assisted solvothermal method.Materials Letters, 2010, 64(2): 136–139
https://doi.org/10.1016/j.matlet.2009.10.021
116 M, Nafees S, Ali S, Idrees et al.. A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape.Applied Nanoscience, 2013, 3(2): 119–124
https://doi.org/10.1007/s13204-012-0113-9
117 H, Hu J, Wang C, Deng et al.. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities.Journal of Materials Science, 2018, 53(20): 14250–14261
https://doi.org/10.1007/s10853-018-2669-6
118 A, Pirogov O Shpigun . Application of microemulsions in liquid chromatography and electrokinetic methods of analysis: advantages and disadvantages of the approach.Journal of Analytical Chemistry, 2020, 75(2): 139–147
https://doi.org/10.1134/S1061934820020148
119 M A López-Quintela . Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control.Current Opinion in Colloid & Interface Science, 2003, 8(2): 137–144
https://doi.org/10.1016/S1359-0294(03)00019-0
120 W, Li P, Xu H, Zhou et al.. Advanced functional nanomaterials with microemulsion phase.Science China: Technological Sciences, 2012, 55(2): 387–416
https://doi.org/10.1007/s11431-011-4687-3
121 D, Jiang W, Hu H, Wang et al.. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1–3): 228–232
https://doi.org/10.1016/j.colsurfa.2011.03.053
122 S, Iqbal A, Bahadur S, Anwer et al.. Designing novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light.CrystEngComm, 2020, 22(24): 4162–4173
https://doi.org/10.1039/D0CE00421A
123 G, Kalimuldina A, Nurpeissova A, Adylkhanova et al.. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review.ACS Applied Energy Materials, 2020, 3(12): 11480–11499
https://doi.org/10.1021/acsaem.0c01686
124 G R, Chaudhary P, Bansal S Mehta . Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions.Chemical Engineering Journal, 2014, 243: 217–224
https://doi.org/10.1016/j.cej.2014.01.012
125 K A, Mary N, Unnikrishnan R Philip . Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots.APL Materials, 2014, 2(7): 076104
https://doi.org/10.1063/1.4886276
126 S, Li Z H, Ge B P, Zhang et al.. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity.Applied Surface Science, 2016, 384: 272–278
https://doi.org/10.1016/j.apsusc.2016.05.034
127 P, Bansal G R, Chaudhary N, Kaur et al.. An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions.RSC Advances, 2015, 5(11): 8205–8209
https://doi.org/10.1039/C4RA15045G
128 Y X, Wen M, Qing S L, Chen et al.. Y-type DNA structure stabilized p-type CuS quantum dots to quench photocurrent of ternary heterostructure for sensitive photoelectrochemical detection of miRNA.Sensors and Actuators B: Chemical, 2021, 329: 129257
https://doi.org/10.1016/j.snb.2020.129257
129 X, Li X, He C, Shi et al.. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.ChemSusChem, 2014, 7(12): 3328–3333
https://doi.org/10.1002/cssc.201402862
130 J, Huang Y, Wang C, Gu et al.. Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst.Materials Letters, 2013, 99: 31–34
https://doi.org/10.1016/j.matlet.2012.12.038
131 D, Pal G, Singh Y C, Goswami et al.. Synthesis of randomly oriented self assembled CuS nanorods by co-precipitation route.Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15700–15704
https://doi.org/10.1007/s10854-019-01953-2
132 M, Darouie S, Afshar K, Zare et al.. Investigation of different factors towards synthesis of CuS spherical nanoparticles.Journal of Experimental Nanoscience, 2013, 8(4): 451–461
https://doi.org/10.1080/17458080.2011.593563
133 S, Radhakrishnan H Y, Kim B S Kim . Expeditious and eco-friendly fabrication of highly uniform microflower superstructures and their applications in highly durable methanol oxidation and high-performance supercapacitors.Journal of Materials Chemistry A, 2016, 4(31): 12253–12262
https://doi.org/10.1039/C6TA04888A
134 J, Zou J, Jiang L, Huang et al.. Synthesis, characterization and electrocatalytic activity of copper sulfide nanocrystals with different morphologies.Solid State Sciences, 2011, 13(6): 1261–1267
https://doi.org/10.1016/j.solidstatesciences.2011.03.019
135 J, Fang P, Zhang H, Chang et al.. Hydrothermal synthesis of nanostructured CuS for broadband efficient optical absorption and high-performance photo-thermal conversion.Solar Energy Materials and Solar Cells, 2018, 185: 456–463
https://doi.org/10.1016/j.solmat.2018.05.060
136 S, Li Z, Zhang L, Yan et al.. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water.Journal of Supercritical Fluids, 2017, 123: 11–17
https://doi.org/10.1016/j.supflu.2016.12.014
137 R, Singhal D, Thorne P K, LeMaire et al.. Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications.AIP Advances, 2020, 10(3): 035307
https://doi.org/10.1063/1.5132713
138 P H, Camargo T S, Rodrigues Silva A G, da , et al.. Controlled synthesis: nucleation and growth in solution. In: Metallic Nanostructures. Springer, 2015, 49‒74
139 Z, Yang Z, Wu J, Liu et al.. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage.Journal of Materials Chemistry A, 2020, 8(16): 8049–8057
https://doi.org/10.1039/D0TA00763C
140 M, Saranya R, Ramachandran E J J, Samuel et al.. Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst.Powder Technology, 2015, 279: 209–220
https://doi.org/10.1016/j.powtec.2015.03.041
141 M, Saranya A N Grace . Hydrothermal synthesis of CuS nanostructures with different morphology.Journal of Nano Research, 2012, 18–19: 43–51
https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.43
142 C, Nithya G Thiyagaraj . Morphology oriented CuS nanostructures: superior K-ion storage using surface enhanced pseudocapacitive effects.Sustainable Energy & Fuels, 2020, 4(7): 3574–3587
https://doi.org/10.1039/D0SE00469C
143 X H, Guan P, Qu X, Guan et al.. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties.RSC Advances, 2014, 4(30): 15579–15585
https://doi.org/10.1039/C4RA00659C
144 J, Kundu D Pradhan . Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies.ACS Applied Materials & Interfaces, 2014, 6(3): 1823–1834
https://doi.org/10.1021/am404829g
145 Sh, Sohrabnezhad M A, Zanjanchi S, Hosseingholizadeh et al.. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 123: 142–150
https://doi.org/10.1016/j.saa.2013.12.050
146 J, Tauc R, Grigorovici A Vancu . Optical properties and electronic structure of amorphous germanium.physica status solidi (b), 1966, 15(2): 627–637
https://doi.org/10.1002/pssb.19660150224
147 Y, Zhao H, Pan Y, Lou et al.. Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides.Journal of the American Chemical Society, 2009, 131(12): 4253–4261
https://doi.org/10.1021/ja805655b
148 U, Shamraiz R A, Hussain A Badshah . Fabrication and applications of copper sulfide (CuS) nanostructures.Journal of Solid State Chemistry, 2016, 238: 25–40
https://doi.org/10.1016/j.jssc.2016.02.046
149 K, Mageshwari S S, Mali T, Hemalatha et al.. Low temperature growth of CuS nanoparticles by reflux condensation method.Progress in Solid State Chemistry, 2011, 39(3–4): 108–113
https://doi.org/10.1016/j.progsolidstchem.2011.10.003
150 N, Mukherjee A, Sinha G G, Khan et al.. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique.Materials Research Bulletin, 2011, 46(1): 6–11
https://doi.org/10.1016/j.materresbull.2010.10.004
151 M, Taunk S Chand . Chemical synthesis and charge transport mechanism in solution processed flexible polypyrrole films.Materials Science in Semiconductor Processing, 2015, 39: 659–664
https://doi.org/10.1016/j.mssp.2015.06.015
152 M, Dhanasekar G, Bakiyaraj K Rammurthi . Structural, morphological, optical and electrical properties of copper sulphide nano crystalline thin films prepared by chemical bath deposition method. International Journal of ChemTech Research, 2014–2015, 7(3): 2014–2015
153 N, Singh M Taunk . In-situ chemical synthesis, microstructural, morphological and charge transport studies of polypyrrole‒CuS hybrid nanocomposites.Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(1): 437–445
https://doi.org/10.1007/s10904-020-01747-8
154 M T Ramesan . Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites.Journal of Applied Polymer Science, 2013, 128(3): 1540–1546
https://doi.org/10.1002/app.38304
155 M T Ramesan . In situ synthesis, characterization and conductivity of copper sulphide/polypyrrole/polyvinyl alcohol blend nanocomposite.Polymer-Plastics Technology and Engineering, 2012, 51(12): 1223–1229
https://doi.org/10.1080/03602559.2012.696766
156 S, Iqbal N A, Shaid M M, Sajid et al.. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature.Journal of Crystal Growth, 2020, 547: 125823
https://doi.org/10.1016/j.jcrysgro.2020.125823
157 J, Madarász M, Krunks L, Niinistö et al.. Thermally evolved gases from thiourea complexes of CuCl in air.Journal of Thermal Analysis and Calorimetry, 2015, 120(1): 189–199
https://doi.org/10.1007/s10973-015-4481-8
158 Y, Liu G, Zhu J, Yang et al.. Phase purification of Cu–S system towards Cu1.8S and its catalytic properties for a clock reaction.RSC Advances, 2015, 5(125): 103458–103464
https://doi.org/10.1039/C5RA17652B
159 R, Mulla M H K Rabinal . Copper sulfides: earth-abundant and low-cost thermoelectric materials.Energy Technology, 2019, 7(7): 1800850
https://doi.org/10.1002/ente.201800850
160 P, Maneesha A, Paulson N A M, Sabeer et al.. Thermo electric measurement of nanocrystalline cobalt doped copper sulfide for energy generation.Materials Letters, 2018, 225: 57–61
https://doi.org/10.1016/j.matlet.2018.04.075
161 G, Dennler R, Chmielowski S, Jacob et al.. Are binary copper sulfides/selenides really new and promising thermoelectric materials?.Advanced Energy Materials, 2014, 4(9): 1301581
https://doi.org/10.1002/aenm.201301581
162 R, Mulla M K Rabinal . Large-scale synthesis of copper sulfide by using elemental sources via simple chemical route.Ultrasonics Sonochemistry, 2017, 39: 528–533
https://doi.org/10.1016/j.ultsonch.2017.05.027
163 C, Yang H F, Wang Q Xu . Recent advances in two-dimensional materials for electrochemical energy storage and conversion.Chemical Research in Chinese Universities, 2020, 36(1): 10–23
https://doi.org/10.1007/s40242-020-9068-7
164 S, Iqbal S Ahmad . Recent development in hybrid conducting polymers: synthesis, applications and future prospects.Journal of Industrial and Engineering Chemistry, 2018, 60: 53–84
https://doi.org/10.1016/j.jiec.2017.09.038
165 S, Kumar G, Saeed L, Zhu et al.. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review.Chemical Engineering Journal, 2021, 403: 126352
https://doi.org/10.1016/j.cej.2020.126352
166 S E, Moosavifard M F, El-Kady M S, Rahmanifar et al.. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.ACS Applied Materials & Interfaces, 2015, 7(8): 4851–4860
https://doi.org/10.1021/am508816t
167 Y, Chen J, Li Z, Lei et al.. Hollow CuS nanoboxes as Li-free cathode for high-rate and long-life lithium metal batteries.Advanced Energy Materials, 2020, 10(7): 1903401
https://doi.org/10.1002/aenm.201903401
168 Y, Quan G, Wang L, Lu et al.. High-performance pseudo-capacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite.Electrochimica Acta, 2020, 353: 136606
https://doi.org/10.1016/j.electacta.2020.136606
169 K J, Huang J Z, Zhang Y Fan . One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials.Journal of Alloys and Compounds, 2015, 625: 158–163
https://doi.org/10.1016/j.jallcom.2014.11.137
170 Y K, Hsu Y C, Chen Y G Lin . Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors.Electrochimica Acta, 2014, 139: 401–407
https://doi.org/10.1016/j.electacta.2014.06.138
171 W, Fu W, Han H, Zha et al.. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.Physical Chemistry Chemical Physics, 2016, 18(35): 24471–24476
https://doi.org/10.1039/C6CP02228F
172 J, Guo X, Zhang Y, Sun et al.. Double-shell CuS nanocages as advanced supercapacitor electrode materials.Journal of Power Sources, 2017, 355: 31–35
https://doi.org/10.1016/j.jpowsour.2017.04.052
173 W, Xu Y, Liang Y, Su et al.. Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application.Electrochimica Acta, 2016, 211: 891–899
https://doi.org/10.1016/j.electacta.2016.06.118
174 K V G, Raghavendra C V M, Gopi R, Vinodh et al.. One-step facile synthesis of dense cloud-like tiny bundled nanoparticles of CuS nanostructures as an efficient electrode material for high-performance supercapacitors.Journal of Energy Storage, 2020, 27: 101148
https://doi.org/10.1016/j.est.2019.101148
175 K, Krishnamoorthy G K, Veerasubramani A N, Rao et al.. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications.Materials Research Express, 2014, 1(3): 035006
https://doi.org/10.1088/2053-1591/1/3/035006
176 H, Heydari S E, Moosavifard S, Elyasi et al.. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors.Applied Surface Science, 2017, 394: 425–430
https://doi.org/10.1016/j.apsusc.2016.10.138
177 N S, Muthu S D, Samikannu M Gopalan . Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor.Ionics, 2019, 25(9): 4409–4423
https://doi.org/10.1007/s11581-019-03002-8
178 Y, Liu Z, Zhou S, Zhang et al.. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors.Applied Surface Science, 2018, 442: 711–719
https://doi.org/10.1016/j.apsusc.2018.02.220
179 Z, Pan F, Cao X, Hu et al.. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors.Journal of Materials Chemistry A, 2019, 7(15): 8984–8992
https://doi.org/10.1039/C9TA00085B
180 Z, Tian H, Dou B, Zhang et al.. Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors.Electrochimica Acta, 2017, 237: 109–118
https://doi.org/10.1016/j.electacta.2017.03.207
181 S, Ravi C V, Gopi H J Kim . Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.Dalton Transactions, 2016, 45(31): 12362–12371
https://doi.org/10.1039/C6DT01664B
182 G, Wang M, Zhang L, Lu et al.. One-pot synthesis of CuS nanoflower-decorated active carbon layer for high-performance asymmetric supercapacitors.ChemNanoMat, 2018, 4(9): 964–971
https://doi.org/10.1002/cnma.201800179
183 Y, Tian Z, Su Z, Zhao et al.. Spherical NiCo2O4/CuS composites for supercapacitor electrodes.Materials Letters, 2020, 264: 127400
https://doi.org/10.1016/j.matlet.2020.127400
184 K, Jin M, Zhou H, Zhao et al.. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage.Electrochimica Acta, 2019, 295: 668–676
https://doi.org/10.1016/j.electacta.2018.10.182
185 P, Himasree I K, Durga T, Krishna et al.. One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material.Electrochimica Acta, 2019, 305: 467–473
https://doi.org/10.1016/j.electacta.2019.03.041
186 S I, El-Hout S G, Mohamed A, Gaber et al.. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications.Journal of Energy Storage, 2021, 34: 102001
https://doi.org/10.1016/j.est.2020.102001
187 X Y, Yu L, Yu X W Lou . Metal sulfide hollow nanostructures for electrochemical energy storage.Advanced Energy Materials, 2016, 6(3): 1501333
https://doi.org/10.1002/aenm.201501333
188 J S, Nam J H, Lee S M, Hwang et al.. New insights into the phase evolution in CuS during lithiation and delithiation processes.Journal of Materials Chemistry A, 2019, 7(19): 11699–11708
https://doi.org/10.1039/C9TA03008E
189 K, Jian Z, Chen X Meng . CuS and Cu2S as cathode materials for lithium batteries: a review.ChemElectroChem, 2019, 6(11): 2825–2840
https://doi.org/10.1002/celc.201900066
190 Y, Du Z, Yin J, Zhu et al.. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals.Nature Communications, 2012, 3(1): 1177
https://doi.org/10.1038/ncomms2181
191 S, Goriparti E, Miele Angelis F, De et al.. Review on recent progress of nanostructured anode materials for Li-ion batteries.Journal of Power Sources, 2014, 257: 421–443
https://doi.org/10.1016/j.jpowsour.2013.11.103
192 K, He Z, Yao S, Hwang et al.. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes.Nano Letters, 2017, 17(9): 5726–5733
https://doi.org/10.1021/acs.nanolett.7b02694
193 G Y, Chen Z Y, Wei B, Jin et al.. Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries.Applied Surface Science, 2013, 277: 268–271
https://doi.org/10.1016/j.apsusc.2013.04.041
194 J, Long T, Han M, Zhu et al.. A matryoshka-like CuS@void@Co3O4 double microcube-locked sulfur as cathode for high-performance lithium–sulfur batteries.Ceramics International, 2021, 47(18): 25769–25776
https://doi.org/10.1016/j.ceramint.2021.05.304
195 H, Liu Y, He H, Zhang et al.. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure.Chemical Engineering Journal, 2021, 425: 130548
https://doi.org/10.1016/j.cej.2021.130548
196 X, Fu L, Xu J, Li et al.. Flexible solar cells based on carbon nanomaterials.Carbon, 2018, 139: 1063–1073
https://doi.org/10.1016/j.carbon.2018.08.017
197 W, Li A, Furlan K H, Hendriks et al.. Efficient tandem and triple-junction polymer solar cells.Journal of the American Chemical Society, 2013, 135(15): 5529–5532
https://doi.org/10.1021/ja401434x
198 W, Han G, Ren J, Liu et al.. Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer.ACS Applied Materials & Interfaces, 2020, 12(44): 49297–49322
https://doi.org/10.1021/acsami.0c13576
199 Z, Du Z, Pan F, Fabregat-Santiago et al.. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%.The Journal of Physical Chemistry Letters, 2016, 7(16): 3103–3111
https://doi.org/10.1021/acs.jpclett.6b01356
200 H, Song Y, Lin Z, Zhang et al.. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition.Journal of the American Chemical Society, 2021, 143(12): 4790–4800
https://doi.org/10.1021/jacs.1c01214
201 V, Sukhovatkin S, Hinds L, Brzozowski et al.. Colloidal quantum-dot photodetectors exploiting multiexciton generation.Science, 2009, 324(5934): 1542–1544
https://doi.org/10.1126/science.1173812
202 J, Tan Y, Shen Z, Zhang et al.. Highly-efficient quantum dot-sensitized solar cells based on Sn doped ZnO and CuS electrodes.Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2145–2150
https://doi.org/10.1007/s10854-014-2660-1
203 C D, Sunesh C V, Gopi M P A, Muthalif et al.. Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode.Applied Surface Science, 2017, 416: 446–453
https://doi.org/10.1016/j.apsusc.2017.04.200
204 H J, Kim L, Myung-Sik C V, Gopi et al.. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells.Dalton Transactions, 2015, 44(25): 11340–11351
https://doi.org/10.1039/C5DT01412C
205 M P A, Muthalif C D, Sunesh Y Choe . Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes.Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 177–185
https://doi.org/10.1016/j.jphotochem.2018.03.013
206 C V M, Gopi S, Sambasivam R, Vinodh et al.. Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells.Journal of Materials Science: Materials in Electronics, 2020, 31(2): 975–982
https://doi.org/10.1007/s10854-019-02608-y
207 S S, Rao I K, Durga T S, Kang et al.. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.Dalton Transactions, 2016, 45(8): 3450–3463
https://doi.org/10.1039/C5DT04887G
208 L, Wen Q, Chen L, Zhou et al.. Cu1.8S@CuS composite material improved the photoelectric efficiency of cadmium-series QDSSCs.Optical Materials, 2020, 108: 110172
https://doi.org/10.1016/j.optmat.2020.110172
209 M, Zervos E, Vasile E, Vasile et al.. Current transport properties of CuS/Sn: In2O3 versus CuS/SnO2 nanowires and negative differential resistance in quantum dot sensitized solar cells.The Journal of Physical Chemistry C, 2016, 120(1): 11–20
https://doi.org/10.1021/acs.jpcc.5b08306
210 S D, Sung I, Lim P, Kang et al.. Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte.Chemical Communications, 2013, 49(54): 6054–6056
https://doi.org/10.1039/c3cc40754c
211 C K, Kamaja R R, Devarapalli M V Shelke . One-step synthesis of a MoS2‒CuS composite with high electrochemical activity as an effective counter electrode for CdS/CdSe sensitized solar cells.ChemElectroChem, 2017, 4(8): 1984–1989
https://doi.org/10.1002/celc.201700231
212 L, Li P, Zhu S, Peng et al.. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells.The Journal of Physical Chemistry C, 2014, 118(30): 16526–16535
https://doi.org/10.1021/jp4117529
213 Y, Zhu H, Cui S, Jia et al.. 3D graphene frameworks with uniformly dispersed CuS as an efficient catalytic electrode for quantum dot-sensitized solar cells.Electrochimica Acta, 2016, 208: 288–295
https://doi.org/10.1016/j.electacta.2016.05.052
214 H J, Kim S M, Suh S S, Rao et al.. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells.Journal of Electroanalytical Chemistry, 2016, 777: 123–132
https://doi.org/10.1016/j.jelechem.2016.07.037
215 L, Givalou M, Antoniadou D, Perganti et al.. Electrodeposited cobalt‒copper sulfide counter electrodes for highly efficient quantum dot sensitized solar cells.Electrochimica Acta, 2016, 210: 630–638
https://doi.org/10.1016/j.electacta.2016.05.191
216 M, Eskandari R, Ghahary M, Shokri et al.. Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells.RSC Advances, 2016, 6(57): 51894–51899
https://doi.org/10.1039/C6RA11034G
217 X, Song J, Wang X, Liu et al.. Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells.Journal of the Electrochemical Society, 2017, 164(4): H215–H224
https://doi.org/10.1149/2.1411704jes
218 F, Wang H, Dong J, Pan et al.. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells.The Journal of Physical Chemistry C, 2014, 118(34): 19589–19598
https://doi.org/10.1021/jp505737u
219 M P A, Muthalif Y Choe . Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells.Journal of Colloid and Interface Science, 2021, 595: 15–24
https://doi.org/10.1016/j.jcis.2021.03.113
220 F, Xi H, Liu W, Li et al.. Fabricating CuS counter electrode for quantum dots-sensitized solar cells via electro-deposition and sulfurization of Cu2O.Electrochimica Acta, 2015, 178: 329–335
https://doi.org/10.1016/j.electacta.2015.08.020
221 C J, Raj K, Prabakar A D, Savariraj et al.. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells.Electrochimica Acta, 2013, 103: 231–236
https://doi.org/10.1016/j.electacta.2013.04.016
222 M A, Agoro J Z, Mbese E L, Meyer et al.. Electrochemical signature of CuS photosensitizers thermalized from alkyldithiocarbamato Cu(II) molecular precursors for quantum dots sensitized solar cells.Materials Letters, 2021, 285: 129191
https://doi.org/10.1016/j.matlet.2020.129191
223 W, Zheng S Zhang . Three-dimensional graphitic C3N4/CuS composite as the low-cost and high performance counter electrodes in QDSCs.Journal of Alloys and Compounds, 2021, 862: 158706
https://doi.org/10.1016/j.jallcom.2021.158706
224 Z, Song H, Lei B, Li et al.. Enhanced field emission from in situ synthesized 2D copper sulfide nanoflakes at low temperature by using a novel controllable solvothermal preferred edge growth route.Physical Chemistry Chemical Physics, 2015, 17(17): 11790–11795
https://doi.org/10.1039/C5CP00493D
225 X F, Su J B, Chen R M, He et al.. The preparation of oxygen-deficient ZnO nanorod arrays and their enhanced field emission.Materials Science in Semiconductor Processing, 2017, 67: 55–61
https://doi.org/10.1016/j.mssp.2017.05.012
226 R M, He J B, Chen B J, Qi et al.. Enhanced field emission properties of the copper sulfide nanowalls with optimized 3-D morphology.Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103: 227–233
https://doi.org/10.1016/j.physe.2018.04.027
227 R P, Antony T, Mathews K, Panda et al.. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films.The Journal of Physical Chemistry C, 2012, 116(31): 16740–16746
https://doi.org/10.1021/jp302578b
228 Y, Li W, Qi Y, Li et al.. Modeling the size-dependent solid–solid phase transition temperature of Cu2S nanosolids.The Journal of Physical Chemistry C, 2012, 116(17): 9800–9804
https://doi.org/10.1021/jp3003307
229 R, Sawafta T Shahwan . A comparative study of the removal of methylene blue by iron nanoparticles from water and water‒ethanol solutions.Journal of Molecular Liquids, 2019, 273: 274–281
https://doi.org/10.1016/j.molliq.2018.10.010
230 W, Xu S, Zhu Y, Liang et al.. Nanoporous CuS with excellent photocatalytic property.Scientific Reports, 2015, 5(1): 18125
https://doi.org/10.1038/srep18125
231 N, Nasseh L, Taghavi B, Barikbin et al.. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater.Journal of Cleaner Production, 2018, 179: 42–54
https://doi.org/10.1016/j.jclepro.2018.01.052
232 L, Yang X, Guan G S, Wang et al.. Synthesis of ZnS/CuS nanospheres loaded on reduced graphene oxide as high-performance photocatalysts under simulated sunlight irradiation.New Journal of Chemistry, 2017, 41(13): 5732–5744
https://doi.org/10.1039/C7NJ00801E
233 G, Wang A Fakhri . Preparation of CuS/polyvinyl alcohol‒chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G− bacteria.International Journal of Biological Macromolecules, 2020, 155: 36–41
https://doi.org/10.1016/j.ijbiomac.2020.03.077
234 S, Yu J, Liu Y, Zhou et al.. Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2‒CuS composites.ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1347–1357
https://doi.org/10.1021/acssuschemeng.6b01769
235 P, Borthakur P K, Boruah G, Darabdhara et al.. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation.Journal of Environmental Chemical Engineering, 2016, 4(4): 4600–4611
https://doi.org/10.1016/j.jece.2016.10.023
236 P, Borthakur M R, Das S, Szunerits et al.. CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr(VI) in an aqueous medium.ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16131–16143
https://doi.org/10.1021/acssuschemeng.9b03043
237 S, Adhikari D, Sarkar G Madras . Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol.ACS Omega, 2017, 2(7): 4009–4021
https://doi.org/10.1021/acsomega.7b00669
238 X, Wang L, Li Z, Fu et al.. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance.Journal of Molecular Liquids, 2018, 268: 578–586
https://doi.org/10.1016/j.molliq.2018.07.086
239 R, Mohamed A Shawky . CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light.Applied Nanoscience, 2018, 8(5): 1179–1188
https://doi.org/10.1007/s13204-018-0742-8
240 R, Mohamed I, Mkhalid A Shawky . Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity.Journal of Alloys and Compounds, 2019, 775: 542–548
https://doi.org/10.1016/j.jallcom.2018.10.181
241 X, You X, Geng X, Liu et al.. A comparative study of the photocatalytic properties of CuS nanotubes and nanoparticles by hydrothermal method.Indian Journal of Chemistry Section A: Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2017, 56(1): 57–62
242 M, Wang F, Xie W, Li et al.. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light.Journal of Materials Chemistry A, 2013, 1(30): 8616–8621
https://doi.org/10.1039/c3ta11739a
243 Z, Cheng S, Wang Q, Wang et al.. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst.CrystEngComm, 2010, 12(1): 144–149
https://doi.org/10.1039/B914902C
244 X, Meng G, Tian Y, Chen et al.. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties.CrystEngComm, 2013, 15(25): 5144–5149
https://doi.org/10.1039/c3ce40195b
245 C, Nethravathi R N, R J T, Rajamathi et al.. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis.ACS Omega, 2019, 4(3): 4825–4831
https://doi.org/10.1021/acsomega.8b03288
246 X, Deng C, Wang H, Yang et al.. One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties.Scientific Reports, 2017, 7(1): 3877
https://doi.org/10.1038/s41598-017-04270-y
247 Q, Chen S, Wu Y Xin . Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline.Chemical Engineering Journal, 2016, 302: 377–387
https://doi.org/10.1016/j.cej.2016.05.076
248 S, Harish J, Archana M, Navaneethan et al.. Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation.RSC Advances, 2017, 7(55): 34366–34375
https://doi.org/10.1039/C7RA04250G
249 S I, El-Hout S M, El-Sheikh A, Gaber et al.. Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles.Journal of Alloys and Compounds, 2020, 849: 156573
https://doi.org/10.1016/j.jallcom.2020.156573
250 X S, Hu Y, Shen L H, Xu et al.. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection.Journal of Alloys and Compounds, 2016, 674: 289–294
https://doi.org/10.1016/j.jallcom.2016.03.047
251 X S, Hu Y, Shen L S, Lu et al.. Synthesis of flower-like CuS for photodegradation of dye wastewater.Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5335–5341
https://doi.org/10.1166/jnn.2017.13794
252 J H, Yoo M, Ji J H, Kim et al.. Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity.Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112782
https://doi.org/10.1016/j.jphotochem.2020.112782
253 M, Hu H, Tian J He . Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg(II) ions.ACS Applied Materials & Interfaces, 2019, 11(21): 19200–19206
https://doi.org/10.1021/acsami.9b04641
254 J, Guo H, Tian J He . Integration of CuS nanoparticles and cellulose fibers towards fast, selective and efficient capture and separation of mercury ions.Chemical Engineering Journal, 2021, 408: 127336
https://doi.org/10.1016/j.cej.2020.127336
255 X, Zhang M, Liu Z, Kang et al.. NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites.Chemical Engineering Journal, 2020, 388: 124304
https://doi.org/10.1016/j.cej.2020.124304
256 M, Chandra K, Bhunia D Pradhan . Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting.Inorganic Chemistry, 2018, 57(8): 4524–4533
https://doi.org/10.1021/acs.inorgchem.8b00283
257 R M, Gunnagol M H K Rabinal . TiO2/rGO/CuS nanocomposites for efficient photocatalytic degradation of rhodamine-B dye.ChemistrySelect, 2019, 4(20): 6167–6176
https://doi.org/10.1002/slct.201901041
258 Z, Li B Zeng . CdS nanoparticle-decorated CuS microflower‒2D graphene hybrids and their enhanced photocatalytic performance.Chalcogenide Letters, 2021, 18(1): 39–46
https://doi.org/10.15251/CL.2021.181.39
259 Y, Liu M, Li Q, Zhang et al.. One-step synthesis of a WO3‒CuS nanosheet heterojunction with enhanced photocatalytic performance for methylene blue degradation and Cr(VI) reduction.Journal of Chemical Technology and Biotechnology, 2020, 95(3): 665–674
https://doi.org/10.1002/jctb.6247
260 F, Zhang H Q, Zhuang W, Zhang et al.. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water.Catalysis Today, 2019, 330: 203–208
https://doi.org/10.1016/j.cattod.2018.03.060
261 Y P, Bhoi B Mishra . Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation.Chemical Engineering Journal, 2018, 344: 391–401
https://doi.org/10.1016/j.cej.2018.03.094
262 M, Kamranifar A, Allahresani A Naghizadeh . Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater.Journal of Hazardous Materials, 2019, 366: 545–555
https://doi.org/10.1016/j.jhazmat.2018.12.046
263 L, Zhou S, Dai S, Xu et al.. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS pn heterojunction photocatalytic degradation of pollutants.Applied Catalysis B: Environmental, 2021, 291: 120019
https://doi.org/10.1016/j.apcatb.2021.120019
264 C, Lai M, Zhang B, Li et al.. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight.Chemical Engineering Journal, 2019, 358: 891–902
https://doi.org/10.1016/j.cej.2018.10.072
265 N, Nasseh B, Barikbin L Taghavi . Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study.Environmental Technology & Innovation, 2020, 20: 101035
https://doi.org/10.1016/j.eti.2020.101035
266 D A, Reddy E H, Kim M, Gopannagari et al.. Enhanced photocatalytic hydrogen evolution by integrating dual co-catalysts on heterophase CdS nano-junctions.ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12835–12844
https://doi.org/10.1021/acssuschemeng.8b02098
267 Q, Chen M, Zhang J, Li et al.. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation.Chemical Engineering Journal, 2020, 389: 124476
https://doi.org/10.1016/j.cej.2020.124476
268 W C, Lee K B, Kim N G, Gurudatt et al.. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au‒Ni alloy with conductive polymer.Biosensors & Bioelectronics, 2019, 130: 48–54
https://doi.org/10.1016/j.bios.2019.01.028
269 C, Wei X, Zou Q, Liu et al.. A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays.Electrochimica Acta, 2020, 334: 135630
https://doi.org/10.1016/j.electacta.2020.135630
270 A K, Dutta S, Das P K, Samanta et al.. Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2.Electrochimica Acta, 2014, 144: 282–287
https://doi.org/10.1016/j.electacta.2014.08.051
271 W B, Kim S H, Lee M, Cho et al.. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor.Sensors and Actuators B: Chemical, 2017, 249: 161–167
https://doi.org/10.1016/j.snb.2017.04.089
272 A, Swaidan P, Borthakur P K, Boruah et al.. A facile preparation of CuS‒BSA nanocomposite as enzyme mimics: application for selective and sensitive sensing of Cr(VI) ions.Sensors and Actuators B: Chemical, 2019, 294: 253–262
https://doi.org/10.1016/j.snb.2019.05.052
273 Y, Li Z, Kang L, Kong et al.. MXene‒Ti3C2/CuS nanocomposites: enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection.Materials Science and Engineering C, 2019, 104: 110000
https://doi.org/10.1016/j.msec.2019.110000
274 Y, Zhang Y N, Wang X T, Sun et al.. Boron nitride nanosheet/CuS nanocomposites as mimetic peroxidase for sensitive colorimetric detection of cholesterol.Sensors and Actuators B: Chemical, 2017, 246: 118–126
https://doi.org/10.1016/j.snb.2017.02.059
275 J, Xu J, Zhang C, Yao et al.. Synthesis of novel highly porous CuS golf balls by hydrothermal method and their application in ammonia gas sensing.Journal of the Chilean Chemical Society, 2013, 58(2): 1722–1724
https://doi.org/10.4067/S0717-97072013000200017
276 G, Cui L, Wang L, Li et al.. Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance.Progress in Natural Science: Materials International, 2020, 30(3): 343–351
https://doi.org/10.1016/j.pnsc.2020.06.001
277 X, Sun M, Sui G, Cui et al.. Fe3O4 nanoparticles decorated on a CuS platelet-based sphere: a popcorn chicken-like heterostructure as an ideal material against electromagnetic pollution.RSC Advances, 2018, 8(31): 17489–17496
https://doi.org/10.1039/C8RA03015D
278 Y, Wang X, Gao X, Wu et al.. Hierarchical ZnFe2O4@RGO@CuS composite: strong absorption and wide-frequency absorption properties.Ceramics International, 2018, 44(8): 9816–9822
https://doi.org/10.1016/j.ceramint.2018.02.220
279 J, Yang D, Dai X, Lou et al.. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy.Theranostics, 2020, 10(2): 615–629
https://doi.org/10.7150/thno.40066
280 H, Shi R, Yan L, Wu et al.. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.Acta Biomaterialia, 2018, 72: 256–265
https://doi.org/10.1016/j.actbio.2018.03.035
281 M, Xu G, Yang H, Bi et al.. Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy.Chemical Engineering Journal, 2019, 360: 866–878
https://doi.org/10.1016/j.cej.2018.12.052
282 S, Goel F, Chen W Cai . Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics.Small, 2014, 10(4): 631–645
https://doi.org/10.1002/smll.201301174
283 Q, Feng Y, Zhang W, Zhang et al.. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.Acta Biomaterialia, 2016, 38: 129–142
https://doi.org/10.1016/j.actbio.2016.04.024
284 L, Hou X, Shan L, Hao et al.. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.Acta Biomaterialia, 2017, 54: 307–320
https://doi.org/10.1016/j.actbio.2017.03.005
285 Q, Jia D, Li Q, Zhang et al.. Biomineralization synthesis of HBc‒CuS nanoparticles for near-infrared light-guided photothermal therapy.Journal of Materials Science, 2019, 54(20): 13255–13264
https://doi.org/10.1007/s10853-019-03613-6
286 S, Ramadan L, Guo Y, Li et al.. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery.Small, 2012, 8(20): 3143–3150
https://doi.org/10.1002/smll.201200783
287 K, Dong Z, Liu Z, Li et al.. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo.Advanced Materials, 2013, 25(32): 4452–4458
https://doi.org/10.1002/adma.201301232
288 W, Ji N, Li D, Chen et al.. A hollow porous magnetic nanocarrier for efficient near-infrared light- and pH-controlled drug release.RSC Advances, 2014, 4(92): 51055–51061
https://doi.org/10.1039/C4RA07573K
289 X, Deng K, Li X, Cai et al.. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics.Advanced Materials, 2017, 29(36): 1701266
https://doi.org/10.1002/adma.201701266
290 Z, Yu W K, Chan Y, Zhang et al.. Near-infrared-II activated inorganic photothermal nanomedicines.Biomaterials, 2021, 269: 120459
https://doi.org/10.1016/j.biomaterials.2020.120459
291 M R, Younis R B, An Y C, Yin et al.. Plasmonic nanohybrid with high photothermal conversion efficiency for simultaneously effective antibacterial/anticancer photothermal therapy.ACS Applied Bio Materials, 2019, 2(9): 3942–3953
https://doi.org/10.1021/acsabm.9b00521
292 L, Guo Y, Li Z, Xiao , et al.. Photothermal properties of hollow gold nanostructures for cancer theranostics. In: Handbook of Nanomaterials Properties. Springer, 2014, 1199‒1226
293 S, Wang Y, Zhao Y Xu . Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology.Visual Computing for Industry, Biomedicine, and Art, 2020, 3(1): 24
https://doi.org/10.1186/s42492-020-00061-x
294 L, Guo I, Panderi D D, Yan et al.. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity.ACS Nano, 2013, 7(10): 8780–8793
https://doi.org/10.1021/nn403202w
295 Q, Xiao X, Zheng W, Bu et al.. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy.Journal of the American Chemical Society, 2013, 135(35): 13041–13048
https://doi.org/10.1021/ja404985w
296 Z, Zha S, Wang S, Zhang et al.. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy.Nanoscale, 2013, 5(8): 3216–3219
https://doi.org/10.1039/c3nr00541k
297 Y, Li W, Lu Q, Huang et al.. Copper sulfide nanoparticles for photothermal ablation of tumor cells.Nanomedicine, 2010, 5(8): 1161–1171
https://doi.org/10.2217/nnm.10.85
298 Z, Wang W, Yu N, Yu et al.. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors.Chemical Engineering Journal, 2020, 400: 125877
https://doi.org/10.1016/j.cej.2020.125877
299 Y, Li G, Bai S, Zeng et al.. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy.ACS Applied Materials & Interfaces, 2019, 11(5): 4737–4744
https://doi.org/10.1021/acsami.8b14877
300 L, Zhou F, Chen Z, Hou et al.. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties.Chemical Engineering Journal, 2021, 409: 128224
https://doi.org/10.1016/j.cej.2020.128224
301 M, Arshad Z, Wang J A, Nasir et al.. Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen.Journal of Photochemistry and Photobiology B: Biology, 2021, 214: 112084
https://doi.org/10.1016/j.jphotobiol.2020.112084
302 X, Bu D, Zhou J, Li et al.. Copper sulfide self-assembly architectures with improved photothermal performance.Langmuir, 2014, 30(5): 1416–1423
https://doi.org/10.1021/la404009d
303 D, Wang Q, Li Z, Xing et al.. Copper sulfide nanoplates as nanosensors for fast, sensitive and selective detection of DNA.Talanta, 2018, 178: 905–909
https://doi.org/10.1016/j.talanta.2017.10.039
304 S S, Kelkar T M Reineke . Theranostics: combining imaging and therapy.Bioconjugate Chemistry, 2011, 22(10): 1879–1903
https://doi.org/10.1021/bc200151q
305 R, Liu L, Jing D, Peng et al.. Manganese(II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy.Theranostics, 2015, 5(10): 1144–1153
https://doi.org/10.7150/thno.11754
306 Y, Wang G, Yang Y, Wang et al.. Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light.Nanoscale, 2017, 9(14): 4759–4769
https://doi.org/10.1039/C6NR09030C
307 D Y, Santiesteban D S, Dumani D, Profili et al.. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents.Nano Letters, 2017, 17(10): 5984–5989
https://doi.org/10.1021/acs.nanolett.7b02105
308 M, Zhou J, Zhao M, Tian et al.. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model.Nanoscale, 2015, 7(46): 19438–19447
https://doi.org/10.1039/C5NR04587H
309 L, Han Y, Zhang X W, Chen et al.. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy.Journal of Materials Chemistry B, 2016, 4(1): 105–112
https://doi.org/10.1039/C5TB02002F
310 S, Wang A, Riedinger H, Li et al.. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.ACS Nano, 2015, 9(2): 1788–1800
https://doi.org/10.1021/nn506687t
311 X, Wu Y, Suo H, Shi et al.. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window.Nano-Micro Letters, 2020, 12(1): 38
https://doi.org/10.1007/s40820-020-0378-6
312 Y, Zhao B Q, Chen R K, Kankala et al.. Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies.ACS Biomaterials Science & Engineering, 2020, 6(9): 4799–4815
https://doi.org/10.1021/acsbiomaterials.0c00830
313 C, Zhang D, Li X Shi . Hybrid nanogels for photoacoustic imaging and photothermal therapy. In: Choi S K, ed. Photonanotechnology for Therapeutics and Imaging. Elsevier, 2020, 23‒43
314 A, Curcio A K A, Silva S, Cabana et al.. Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy.Theranostics, 2019, 9(5): 1288–1302
https://doi.org/10.7150/thno.30238
315 Z, Chu Z, Wang L, Chen et al.. Combining magnetic resonance imaging with photothermal therapy of CuS@BSA nanoparticles for cancer theranostics.ACS Applied Nano Materials, 2018, 1(5): 2332–2340
https://doi.org/10.1021/acsanm.8b00410
316 D, Li T, Zhang C, Min et al.. Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy.Chemical Engineering Journal, 2020, 388: 124253
https://doi.org/10.1016/j.cej.2020.124253
317 P, Kumar R, Nagarajan R Sarangi . Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS.Journal of Materials Chemistry C, 2013, 1(13): 2448–2454
https://doi.org/10.1039/c3tc00639e
318 W, Liang M H Whangbo . Conductivity anisotropy and structural phase transition in covellite CuS.Solid State Communications, 1993, 85(5): 405–408
https://doi.org/10.1016/0038-1098(93)90689-K
319 H, Fjellvåg F, Grønvold S, Stølen et al.. Low-temperature structural distortion in CuS.Zeitschrift für Kristallographie - Crystalline Materials, 1988, 184(1–2): 111–121
https://doi.org/10.1524/zkri.1988.184.1-2.111
320 N L, Pacioni V, Filippenko N, Presseau et al.. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods.Dalton Transactions, 2013, 42(16): 5832–5838
https://doi.org/10.1039/c3dt32836h
321 H, Liu Y, Zhou S A, Kulinich et al.. Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach.Journal of Materials Chemistry A, 2013, 1(2): 302–307
https://doi.org/10.1039/C2TA00138A
322 X, Xu L, Li H, Chen et al.. Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes.Inorganic Chemistry Frontiers, 2020, 7(9): 1900–1908
https://doi.org/10.1039/C9QI01674K
323 Q, Gao X, Wu T Huang . Novel energy efficient window coatings based on In doped CuS nanocrystals with enhanced NIR shielding performance.Solar Energy, 2021, 220: 1–7
https://doi.org/10.1016/j.solener.2021.02.045
324 K, Poudel M, Gautam S G, Jin et al.. Copper sulfide: an emerging adaptable nanoplatform in cancer theranostics.International Journal of Pharmaceutics, 2019, 562: 135–150
https://doi.org/10.1016/j.ijpharm.2019.03.043
[1] Zhiying ZHANG, Ting LIU, Juan LI, Yiyan GUO, Ruiqing LIANG, Jiangbo LU, Runguang SUN, Jun DONG. Regulation of cell morphology and viability using anodic aluminum oxide with custom-tailored structural parameters[J]. Front. Mater. Sci., 2022, 16(4): 220622-.
[2] Wenbo ZHUANG, Dafeng HU, Xudong ZHANG, Kai XIONG, Xiao DING, Jian LU, Yong MAO, Peng YANG, Chao LIU, Yanfen WAN. Antimicrobial power of biosynthesized Ag nanoparticles using refined Ginkgo biloba leaf extracts[J]. Front. Mater. Sci., 2022, 16(2): 220594-.
[3] Yuting ZHENG, Chengming LI, Jinlong LIU, Junjun WEI, Xiaotong ZHANG, Haitao YE, Xiaoping OUYANG. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics[J]. Front. Mater. Sci., 2022, 16(1): 220590-.
[4] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[5] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[6] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[7] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[8] Mathew JOY, Srividhya J. IYENGAR, Jui CHAKRABORTY, Swapankumar GHOSH. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium[J]. Front. Mater. Sci., 2017, 11(4): 395-409.
[9] Bao YANG,Hong ZHANG,Jia GUO,Ya LIU,Zhicheng LI. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors[J]. Front. Mater. Sci., 2016, 10(4): 413-421.
[10] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[11] Zai-Feng LI, Yuan WU, Fu-Tao ZHANG, Yu-Yang CAO, Shou-Peng WU, Ting WANG. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
[12] Xi CHEN, Qiang CAI, Lin-Hao SUN, Wei ZHANG, Xing-Yu JIANG. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals[J]. Front Mater Sci, 2012, 6(3): 278-282.
[13] G. NIXON SAMUEL VIJAYAKUMAR, M. RATHNAKUMARI, P. SURESHKUMAR. Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers[J]. Front Mater Sci, 2012, 6(1): 69-78.
[14] Ying SHI, Song WANG, Xiu-Mei WANG, Qiang CAI, Fu-Zhai CUI, Heng-De LI. Hierarchical self-assembly of a collagen mimetic peptide (PKG)n(POG)2n(DOG)n via electrostatic interactions[J]. Front Mater Sci, 2011, 5(3): 293-300.
[15] Marie-Aline VAN ENDE, Muxing GUO, Bart BLANPAIN, Patrick WOLLANTS. Laboratory study on the formation of Al2O3 inclusions at the on-set of deoxidation and during reoxidation[J]. Front Mater Sci, 2011, 5(1): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed