Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (3) : 230656    https://doi.org/10.1007/s11706-023-0656-6
RESEARCH ARTICLE
Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material
Xicheng Gao, Jianqiang Bi(), Lulin Xie, Chen Liu
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China
 Download: PDF(8334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Few-layers WS2 was obtained through unique chemical liquid exfoliation of commercial WS2. Results showed that after the exfoliation process, the thickness of WS2 reduced significantly. Moreover, the NiFe2O4 nanosheets/WS2 composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m2·g−1 with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g−1 at a current density of 1 A·g−1, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg−1 at the power density of 70 W·kg−1 and maintained 13.42 Wh·kg−1 at the higher power density of 7000 W·kg−1. All the excellent electrochemical performances demonstrate that the NiFe2O4 nanosheets/WS2 composite is an excellent candidate for supercapacitor applications.

Keywords WS2      chemical liquid exfoliation      NiFe2O4      composite      supercapacitor     
Corresponding Author(s): Jianqiang Bi   
Issue Date: 06 September 2023
 Cite this article:   
Xicheng Gao,Jianqiang Bi,Lulin Xie, et al. Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material[J]. Front. Mater. Sci., 2023, 17(3): 230656.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0656-6
https://academic.hep.com.cn/foms/EN/Y2023/V17/I3/230656
Fig.1  SEM images of NiFe2O4/WS2 composites under different reaction conditions: (a)(b) 180 °C, 11 h; (c)(d) 180 °C, 9 h. (e) Surface element analysis of NiFe2O4 nanosheets/WS2.
Fig.2  (a) TEM and (b) HRTEM images of NiFe2O4 nanosheets/WS2.
Fig.3  (a) XRD patterns of NiFe2O4/WS2 composites with different morphologies. (b) N2 adsorption and desorption curve and pore size distribution of NiFe2O4 nanosheets/WS2.
Fig.4  XPS spectra of NiFe2O4 nanosheets/WS2 for (a) wide-scan survey, (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) W 4f, and (f) S 2p.
Fig.5  (a) CV curves at 80 mV·s?1. (b) Charge and discharge curves at 1 A·g?1 of NiFe2O4/WS2 composites with different morphologies. (c) CV curves at 80 mV·s?1. (d) Charge and discharge curves at 1 A·g?1 of WS2 nanosheets, NiFe2O4 nanosheets, and NiFe2O4 nanosheets/WS2 composite.
MaterialSpecific capacitance/(F·g?1)Current density/(A·g?1)ElectrolyteRef.
NiFe2O4/CNT34312 mol·L?1 KOH[48]
NiO@NiFe2O4248.411 mol·L?1 KOH[49]
NiFe2O4/rGO3010.5 a)1 mol·L?1 KOH[50]
WS2/CTs53613 mol·L?1 KOH[51]
WS2/graphene383.60.51 mol·L?1 H2SO4[52]
NiFe2O4 nanosheets240.9311 mol·L?1 KOHthis work
WS2314.5211 mol·L?1 KOHthis work
NiFe2O4 nanospheres/WS2648.1011 mol·L?1 KOHthis work
NiFe2O4 nanosheets/WS2878.0411 mol·L?1 KOHthis work
Tab.1  Electrochemical performance of previous studies on NiFe2O4 and WS2 supercapacitors [48?52]
Fig.6  (a) CV curves of the NiFe2O4 nanosheets/WS2 composite at different scan rates. (b) Charge and discharge curves of the NiFe2O4 nanosheets/WS2 composite at different current densities. (c) Specific capacitances of NiFe2O4/WS2 composites with different morphologies. (d) Plot of lg(Peak current) versus lgv.
Fig.7  Electrochemical performance of the two-electrode system test for NiFe2O4 nanosheets/WS2: (a) CV curves; (b) GCD behaviors; (c) Ragone plots [5557]; (d) Cycle performance; (e) EIS result; (f) Randle’s plot.
1 J, Zhu P, Li G, Wang et al.. Design strategy for high-performance bifunctional electrode materials with heterogeneous structures formed by hydrothermal sulfur etching.Journal of Colloid and Interface Science, 2023, 633: 608–618
https://doi.org/10.1016/j.jcis.2022.11.133
2 Q T, Nguyen U T, Nakate J, Chen et al.. Ceria nanoflowers decorated Co3O4 nanosheets electrodes for highly efficient electrochemical supercapacitors.Applied Surface Science, 2023, 613: 156034
https://doi.org/10.1016/j.apsusc.2022.156034
3 Q, Wang X Wang . Regulating the supercapacitor properties of hollow NiCo–LDHs via morphology engineering.Journal of Alloys and Compounds, 2023, 937: 168396
https://doi.org/10.1016/j.jallcom.2022.168396
4 B, Ren X e, Wang X, Zhang et al.. Designed formation of hierarchical core–shell NiCo2S4 @NiMoO4 arrays on cornstalk biochar as battery-type electrodes for hybrid supercapacitors.Journal of Alloys and Compounds, 2023, 937: 168403
https://doi.org/10.1016/j.jallcom.2022.168403
5 X, Wei M, Cai F, Yuan et al.. The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor.Applied Surface Science, 2022, 606: 154817
https://doi.org/10.1016/j.apsusc.2022.154817
6 Z, Pan X, Li C, Yang et al.. One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor.Journal of Colloid and Interface Science, 2023, 634: 460–468
https://doi.org/10.1016/j.jcis.2022.12.013
7 X, Qu Y W, Kwon S, Jeon et al.. Foldable and wearable supercapacitors for powering healthcare monitoring applications with improved performance based on hierarchically co-assembled CoO/NiCo networks.Journal of Colloid and Interface Science, 2023, 634: 715–729
https://doi.org/10.1016/j.jcis.2022.12.005
8 R M, Bhattarai K, Chhetri S, Natarajan et al.. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications.Chemosphere, 2022, 303(Pt 3): 135290
https://doi.org/10.1016/j.chemosphere.2022.135290
9 M S, Uddin Das H, Tanaya T, Maiyalagan et al.. Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: insights from standard models.Applied Surface Science, 2018, 449: 445–453
https://doi.org/10.1016/j.apsusc.2017.12.088
10 A M, Zardkhoshoui S S H Davarani . Construction of complex copper–cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors.Chemical Engineering Journal, 2020, 402: 126241
https://doi.org/10.1016/j.cej.2020.126241
11 A, Eftekhari M Mohamedi . Tailoring pseudocapacitive materials from a mechanistic perspective.Materials Today: Energy, 2017, 6: 211–229
https://doi.org/10.1016/j.mtener.2017.10.009
12 H, Lv Z, Xiao S, Zhai et al.. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage.Journal of Colloid and Interface Science, 2022, 622: 327–335
https://doi.org/10.1016/j.jcis.2022.04.133
13 T, Arun T, Kavinkumar R, Udayabhaskar et al.. NiFe2O4 nanospheres with size-tunable magnetic and electrochemical properties for superior supercapacitor electrode performance.Electrochimica Acta, 2021, 399: 139346
https://doi.org/10.1016/j.electacta.2021.139346
14 S B, Bandgar M M, Vadiyar C L, Jambhale et al.. Superfast ice crystal-assisted synthesis of NiFe2O4 and ZnFe2O4 nanostructures for flexible high-energy density asymmetric supercapacitors.Journal of Alloys and Compounds, 2021, 853: 157129
https://doi.org/10.1016/j.jallcom.2020.157129
15 M A, Deyab A E, Awadallah H A, Ahmed et al.. Progress study on nickel ferrite alloy–graphene nanosheets nanocomposites as supercapacitor electrodes.Journal of Energy Storage, 2022, 46: 103926
https://doi.org/10.1016/j.est.2021.103926
16 P D, Patil S R, Shingte V C, Karade et al.. Effect of annealing temperature on morphologies of metal organic framework derived NiFe2O4 for supercapacitor application.Journal of Energy Storage, 2021, 40: 102821
https://doi.org/10.1016/j.est.2021.102821
17 T, Huang W, Cui Z, Qiu et al.. 2D porous layered NiFe2O4 by a facile hydrothermal method for asymmetric supercapacitor.Ionics, 2021, 27(3): 1347–1355
https://doi.org/10.1007/s11581-021-03904-6
18 X, Gao W, Wang J, Bi et al.. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor.Electrochimica Acta, 2019, 296: 181–189
https://doi.org/10.1016/j.electacta.2018.11.054
19 R, Liu X R, Shi Y, Wen et al.. Trimetallic synergistic optimization of 0D NiCoFe-P QDs anchoring on 2D porous carbon for efficient electrocatalysis and high-energy supercapacitor.Journal of Energy Chemistry, 2022, 74: 149–158
https://doi.org/10.1016/j.jechem.2022.07.015
20 M, Zhang W, Zhou X, Yan et al.. Sodium dodecyl sulfate intercalated two-dimensional nickel‒cobalt layered double hydroxides to synthesize multifunctional nanomaterials for supercapacitors and electrocatalytic hydrogen evolution.Fuel, 2023, 333: 126323
https://doi.org/10.1016/j.fuel.2022.126323
21 X, Luan K, Zhu X, Zhang et al.. MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity.Electrochimica Acta, 2022, 407: 139929
https://doi.org/10.1016/j.electacta.2022.139929
22 K A S, Raj N, Barman K, Namsheer et al.. CrSe2/Ti3C2 MXene 2D/2D hybrids as promising candidates for energy storage applications.Sustainable Energy & Fuels, 2022, 6(22): 5187–5198
https://doi.org/10.1039/D2SE01122K
23 E, Samuel A, Aldalbahi M, El-Newehy et al.. Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes.Journal of Alloys and Compounds, 2021, 852: 156929
https://doi.org/10.1016/j.jallcom.2020.156929
24 S S, Kuttan N, Girija S J, Devaki et al.. Modulating electrochemical performance of interfacially polymerized, MoS2 decorated polyaniline composites for electrochemical capacitor applications.ACS Applied Energy Materials, 2022, 5(7): 8510–8525
https://doi.org/10.1021/acsaem.2c01040
25 S, Bi M Salanne . Co-ion desorption as the main charging mechanism in metallic 1T-MoS2 Supercapacitors.ACS Nano, 2022, 16(11): 18658–18666
https://doi.org/10.1021/acsnano.2c07272
26 X, Zhang P, Yang S P Jiang . Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance.Journal of Nanostructure in Chemistry, 2021, 11(3): 367–380
https://doi.org/10.1007/s40097-020-00373-7
27 X, Zhang P, Yang S P Jiang . Ni clusters-derived 2D/2D layered WOx(MoS2)/Ni–g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance.Journal of Power Sources, 2021, 510: 230420
https://doi.org/10.1016/j.jpowsour.2021.230420
28 X, Shang J Q, Chi S S, Lu et al.. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors.Applied Surface Science, 2017, 392: 708–714
https://doi.org/10.1016/j.apsusc.2016.09.058
29 S K, Ray B, Pant M, Park et al.. Cavity-like hierarchical architecture of WS2/α-NiMoO4 electrodes for supercapacitor application.Ceramics International, 2020, 46(11): 19022–19027
https://doi.org/10.1016/j.ceramint.2020.04.232
30 A, Ghorai S K, Ray A Midya . Ethylenediamine-assisted high yield exfoliation of MoS2 for flexible solid-state supercapacitor application.ACS Applied Nano Materials, 2019, 2(3): 1170–1177
https://doi.org/10.1021/acsanm.8b02002
31 W, Lei J L, Xiao H P, Liu et al.. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion.Tungsten, 2020, 2(3): 217–239
https://doi.org/10.1007/s42864-020-00054-6
32 Y, Dai X, Wu D, Sha et al.. Facile self-assembly of Fe3O4 nanoparticles@WS2 nanosheets: a promising candidate for supercapacitor electrode.Electronic Materials Letters, 2016, 12(6): 789–794
https://doi.org/10.1007/s13391-016-6107-0
33 J, Shen Y, He J, Wu et al.. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components.Nano Letters, 2015, 15(8): 5449–5454
https://doi.org/10.1021/acs.nanolett.5b01842
34 H, Lin J, Wang Q, Luo et al.. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2.Journal of Alloys and Compounds, 2017, 699: 222–229
https://doi.org/10.1016/j.jallcom.2016.12.388
35 P, Gao B, Shen P, Zhao et al.. Tuning the Mn2+/Mn3+ ratio of ZnMn2O4 from spent zinc‒carbon battery powder to enhance the electrochemical performance.Journal of Power Sources, 2023, 577: 233231
https://doi.org/10.1016/j.jpowsour.2023.233231
36 Y, Wang J, Wang D, Wei et al.. Multicore–shell MnO2@Ppy@N-doped porous carbon nanofiber ternary composites as electrode materials for high-performance supercapacitors.Journal of Colloid and Interface Science, 2023, 648: 925–939
https://doi.org/10.1016/j.jcis.2023.06.003
37 K, Naoi S, Ishimoto Y, Isobe et al.. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors.Journal of Power Sources, 2010, 195(18): 6250–6254
https://doi.org/10.1016/j.jpowsour.2009.12.104
38 X, Gao J, Bi W, Wang et al.. Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors.Journal of Alloys and Compounds, 2020, 826: 154088
https://doi.org/10.1016/j.jallcom.2020.154088
39 M, Thommes K, Kaneko A V, Neimark et al.. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report).Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069
https://doi.org/10.1515/pac-2014-1117
40 A N Mansour . Characterization of β-Ni(OH)2 by XPS.Surface Science Spectra, 1994, 3(3): 239–246
https://doi.org/10.1116/1.1247752
41 X, Zhang P, Yang S P Jiang . NiCo-layered double hydroxide/g-C3N4 heterostructures with enhanced adsorption capacity and photoreduction of Cr(VI).Applied Surface Science, 2021, 556: 149772
https://doi.org/10.1016/j.apsusc.2021.149772
42 T, Yamashita P Hayes . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials.Applied Surface Science, 2008, 254(8): 2441–2449
https://doi.org/10.1016/j.apsusc.2007.09.063
43 A K, Tomar G, Singh R K Sharma . Fabrication of a Mo-doped strontium cobaltite perovskite hybrid supercapacitor cell with high energy density and excellent cycling life.ChemSusChem, 2018, 11(23): 4123–4130
https://doi.org/10.1002/cssc.201801869
44 M, Hua L, Xu F, Cui et al.. Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance.Journal of Materials Science, 2018, 53(10): 7621–7636
https://doi.org/10.1007/s10853-018-2052-7
45 X, Zhang K, Matras-Postolek P, Yang et al.. Z-scheme WOx/Cu‒g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis.Journal of Colloid and Interface Science, 2023, 636: 646–656
https://doi.org/10.1016/j.jcis.2023.01.052
46 M, Latha J V Rani . WS2/graphene composite as cathode for rechargeable aluminum-dual ion battery.Journal of the Electrochemical Society, 2019, 167(7): 070501
https://doi.org/10.1149/2.0012007JES
47 X, Gao J, Bi J, Gao et al.. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application.Electrochimica Acta, 2022, 426: 140739
https://doi.org/10.1016/j.electacta.2022.140739
48 M, Sivakumar B, Muthukutty G, Panomsuwan et al.. Facile synthesis of NiFe2O4 nanoparticle with carbon nanotube composite electrodes for high-performance asymmetric supercapacitor.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129188
https://doi.org/10.1016/j.colsurfa.2022.129188
49 Y, Zhang W, Zhang C, Yu et al.. Synthesis, structure and supercapacitive behavior of spinel NiFe2O4 and NiO@NiFe2O4 nanoparticles.Ceramics International, 2021, 47(7): 10063–10071
https://doi.org/10.1016/j.ceramint.2020.12.153
50 M B, Askari P Salarizadeh . Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material.International Journal of Hydrogen Energy, 2020, 45(51): 27482–27491
https://doi.org/10.1016/j.ijhydene.2020.07.063
51 B, Hu X, Qin A M, Asiri et al.. WS2 nanoparticles-encapsulated amorphous carbon tubes: a novel electrode material for supercapacitors with a high rate capability.Electrochemistry Communications, 2013, 28: 75–78
https://doi.org/10.1016/j.elecom.2012.11.035
52 W, Chen X, Yu Z, Zhao et al.. Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor.Electrochimica Acta, 2019, 298: 313–320
https://doi.org/10.1016/j.electacta.2018.12.096
53 J, Ji L L, Zhang H, Ji et al.. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor.ACS Nano, 2013, 7(7): 6237–6243
https://doi.org/10.1021/nn4021955
54 P, Simon Y, Gogotsi B Dunn . Where do batteries end and supercapacitors begin?.Science, 2014, 343(6176): 1210–1211
https://doi.org/10.1126/science.1249625
55 M, Malarvizhi S, Meyvel M, Sandhiya et al.. Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications.Inorganic Chemistry Communications, 2021, 123: 108344
https://doi.org/10.1016/j.inoche.2020.108344
56 Y Z, Cai W Q, Cao Y L, Zhang et al.. Tailoring rGO–NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes.Journal of Alloys and Compounds, 2019, 811: 152011
https://doi.org/10.1016/j.jallcom.2019.152011
57 T W, Lin T, Sadhasivam A Y, Wang et al.. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors.ChemElectroChem, 2018, 5(7): 1024–1031
https://doi.org/10.1002/celc.201800043
[1] FMS-23656-OF-Gxc_suppl_1 Download
[1] Hang Chen, Xinghan Yuan, Hongmei Qin, Chuanxi Xiong. Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating[J]. Front. Mater. Sci., 2023, 17(4): 230668-.
[2] Yuhang Li, Jun WANG, Ziyan SHEN, Hangli Qian, Wanliang Zhang, Kaiyu Zhang, Danqing Ying, Qihang Zhou, Chengshuang Zhou, Lin Zhang. Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review[J]. Front. Mater. Sci., 2023, 17(4): 230664-.
[3] Yuzhe Zhang, Yuxi Liu, Lifei Lin, Man Zhou, Wang Zhang, Liwei Lin, Zhongyu Li, Yuanzhe Piao, Sun Ha Paek. Advanced flexible humidity sensors: structures, techniques, mechanisms and performances[J]. Front. Mater. Sci., 2023, 17(4): 230662-.
[4] Ruitian Bo, Chunfeng Wang, Yongliang Wang, Peigang He, Zhidong Han. Co-modulated interface binding energy and electric field distribution of layer-structured PVDF–LDPE dielectric composites with BaTiO3: experiment and multiscale simulations[J]. Front. Mater. Sci., 2023, 17(3): 230657-.
[5] Wenjing Li, Ni Wu, Sai Che, Li Sun, Hongchen Liu, Guang Ma, Ye Wang, Chong Xu, Yongfeng Li. Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement[J]. Front. Mater. Sci., 2023, 17(3): 230653-.
[6] Ziming Liao, Jingxuan Li, Yimeng Su, Fenyan Miao, Xiumei Zhang, Yu Gu, Jingjing Du, Ruiqiang Hang, Yan Wei, Weiyi Chen, Di Huang. Antibacterial hydroxyapatite coatings on titanium dental implants[J]. Front. Mater. Sci., 2023, 17(1): 230628-.
[7] Shemeena MULLAKKATTUTHODI, Vijayasree HARIDAS, Sankaran SUGUNAN, Binitha N. NARAYANAN. Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4[J]. Front. Mater. Sci., 2022, 16(3): 220612-.
[8] Javier FONSECA. Nanoparticles embedded into glass matrices: glass nanocomposites[J]. Front. Mater. Sci., 2022, 16(3): 220607-.
[9] Sachin Sharma Ashok KUMAR, Shahid BASHIR, Kasi RAMESH, Subramaniam RAMESH. Why is graphene an extraordinary material? A review based on a decade of research[J]. Front. Mater. Sci., 2022, 16(2): 220603-.
[10] Liangshuo LI, Lin QIN, Xin FAN, Xinyu LI. Chestnut shell-like N-doped carbon coated NiCoP hollow microspheres for hybrid supercapacitors with excellent electrochemical performance[J]. Front. Mater. Sci., 2022, 16(1): 220588-.
[11] Dong XIANG, Libing LIU, Xiaoyu CHEN, Yuanpeng WU, Menghan WANG, Jie ZHANG, Chunxia ZHAO, Hui LI, Zhenyu LI, Ping WANG, Yuntao LI. High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure[J]. Front. Mater. Sci., 2022, 16(1): 220586-.
[12] Tingting MA, Zhen LI, Wen LIU, Jiaxu CHEN, Moucui WU, Zhenghua WANG. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution[J]. Front. Mater. Sci., 2021, 15(4): 589-600.
[13] Shufen TAN, Yajun JI, Fei CHEN, Weimin OUYANG. Three-dimensional sea urchin-like MnCo2O4 nanoarchitectures on Ni foam towards high-performance asymmetric supercapacitors[J]. Front. Mater. Sci., 2021, 15(4): 611-620.
[14] Qi YUAN, Ming-Guo MA. Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes[J]. Front. Mater. Sci., 2021, 15(2): 227-240.
[15] Liangshuo LI, Lin QIN, Xin FAN, Xinyu LI, Ming DENG. A novel and simple nitrogen-doped carbon/polyaniline electrode material for supercapacitors[J]. Front. Mater. Sci., 2021, 15(1): 147-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed