|
|
Nanoparticles embedded into glass matrices: glass nanocomposites |
Javier FONSECA( ) |
Department of Chemical Engineering, Northeastern University, Boston 02115, USA |
|
|
Abstract Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.
|
Keywords
glass nanocomposites
melt-quenching
sol-gel
ion implantation
ion-exchange
|
Corresponding Author(s):
Javier FONSECA
|
Issue Date: 12 October 2022
|
|
1 |
J, Lee S, Mahendra P J J Alvarez . Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.ACS Nano, 2010, 4(7): 3580–3590
https://doi.org/10.1021/nn100866w
pmid: 20695513
|
2 |
Z, Yang J, Ren Z, Zhang , et al.. Recent advancement of nanostructured carbon for energy applications.Chemical Reviews, 2015, 115(11): 5159–5223
https://doi.org/10.1021/cr5006217
pmid: 25985835
|
3 |
A S, Aricò P, Bruce B, Scrosati , et al.. Nanostructured materials for advanced energy conversion and storage devices.Nature Materials, 2005, 4(5): 366–377
https://doi.org/10.1038/nmat1368
pmid: 15867920
|
4 |
F, Sanchez K Sobolev . Nanotechnology in concrete — a review.Construction and Building Materials, 2010, 24(11): 2060–2071
https://doi.org/10.1016/j.conbuildmat.2010.03.014
|
5 |
L, Shang T, Bian B, Zhang , et al.. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.Angewandte Chemie International Edition, 2014, 53(1): 250–254
https://doi.org/10.1002/anie.201306863
pmid: 24288240
|
6 |
Q, Yuan H H, Duan L L, Li , et al.. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina.Advanced Materials, 2010, 22(13): 1475–1478
https://doi.org/10.1002/adma.200904223
pmid: 20437494
|
7 |
Y, Ohko T, Tatsuma T, Fujii , et al.. Multicolour photochromism of TiO2 films loaded with silver nanoparticles.Nature Materials, 2003, 2(1): 29–31
https://doi.org/10.1038/nmat796
pmid: 12652669
|
8 |
Y, Lykhach T, Staudt N, Tsud , et al.. Enhanced reactivity of Pt nanoparticles supported on ceria thin films during ethylene dehydrogenation.Physical Chemistry Chemical Physics, 2011, 13(1): 253–261
https://doi.org/10.1039/C0CP00345J
pmid: 21063620
|
9 |
A, Mitra G De . Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 145–163
|
10 |
J, Fonseca J Lu . Single-atom catalysts designed and prepared by the atomic layer deposition technique.ACS Catalysis, 2021, 11(12): 7018–7059
https://doi.org/10.1021/acscatal.1c01200
|
11 |
B Karmakar . Chapter 1: Fundamentals of glass and glass nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 3–53
|
12 |
E D, Zanotto J C Mauro . The glassy state of matter: its definition and ultimate fate.Journal of Non-Crystalline Solids, 2017, 471: 490–495
https://doi.org/10.1016/j.jnoncrysol.2017.05.019
|
13 |
J, Fonseca T, Gong L, Jiao , et al.. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses.Journal of Materials Chemistry A, 2021, 9(17): 10562–10611
https://doi.org/10.1039/D1TA01043C
|
14 |
W, Xiang H, Gao L, Ma , et al.. Valence state control and third-order nonlinear optical properties of copper embedded in sodium borosilicate glass.ACS Applied Materials & Interfaces, 2015, 7(19): 10162–10168
https://doi.org/10.1021/acsami.5b00218
pmid: 25928895
|
15 |
J, Zhong W, Xiang Z, Chen , et al.. Microstructures and third-order optical nonlinearities of Cu2In nanoparticles in glass matrix.Journal of Alloys and Compounds, 2013, 572: 137–144
https://doi.org/10.1016/j.jallcom.2013.03.164
|
16 |
S, Chatterjee S K, Saha D Chakravorty . Chapter 2: Glass-based nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 57–88
|
17 |
V, Amendola R, Pilot M, Frasconi , et al.. Surface plasmon resonance in gold nanoparticles: a review.Journal of Physics: Condensed Matter, 2017, 29(20): 203002
https://doi.org/10.1088/1361-648X/aa60f3
pmid: 28426435
|
18 |
B A Korgel . Materials science: composite for smarter windows.Nature, 2013, 500(7462): 278–279
https://doi.org/10.1038/500278a
pmid: 23955225
|
19 |
S, Mangin M, Gottwald C H, Lambert , et al.. Engineered materials for all-optical helicity-dependent magnetic switching.Nature Materials, 2014, 13(3): 286–292
https://doi.org/10.1038/nmat3864
pmid: 24531398
|
20 |
A, Llordés G, Garcia J, Gazquez , et al.. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites.Nature, 2013, 500(7462): 323–326
https://doi.org/10.1038/nature12398
pmid: 23955232
|
21 |
J M, Castro D F, Geraghty B R, West , et al.. Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers.Applied Optics, 2004, 43(33): 6166–6173
https://doi.org/10.1364/AO.43.006166
pmid: 15605557
|
22 |
D L, Veasey D S, Funk P M, Peters , et al.. Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass.Journal of Non-Crystalline Solids, 2000, 263–264: 369–381
https://doi.org/10.1016/S0022-3093(99)00677-8
|
23 |
A, Tervonen B R, West S K Honkanen . Ion-exchanged glass waveguide technology: a review.Optical Engineering, 2011, 50(7): 071107
https://doi.org/10.1117/1.3559213
|
24 |
J, Choi M, Bellec A, Royon , et al.. Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass.Optics Letters, 2012, 37(6): 1029–1031
https://doi.org/10.1364/OL.37.001029
pmid: 22446213
|
25 |
A, Royon K, Bourhis M, Bellec , et al.. Silver clusters embedded in glass as a perennial high capacity optical recording medium.Advanced Materials, 2010, 22(46): 5282–5286
https://doi.org/10.1002/adma.201002413
pmid: 20957765
|
26 |
M N, Azlan S S, Hajer M K, Halimah , et al.. Comprehensive comparison on optical properties of samarium oxide (micro/nano) particles doped tellurite glass for optoelectronics applications.Journal of Materials Science Materials in Electronics, 2021, 32(11): 14174–14185
https://doi.org/10.1007/s10854-021-05961-z
|
27 |
Y J, Oh K H Jeong . Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering.Advanced Materials, 2012, 24(17): 2234–2237
https://doi.org/10.1002/adma.201104696
pmid: 22454295
|
28 |
T, Kurobori S Nakamura . A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass.Radiation Measurements, 2012, 47(10): 1009–1013
https://doi.org/10.1016/j.radmeas.2012.09.003
|
29 |
M, Kato K, Chida T, Moritake , et al.. Direct dose measurement on patient during percutaneous coronary intervention procedures using radiophotoluminescence glass dosimeters.Radiation Protection Dosimetry, 2017, 175(1): 31–37
pmid: 27624894
|
30 |
S, Werner J, Navaridas M Luján . A survey on optical network-on-chip architectures.ACM Computing Surveys, 2017, 50(6): 1–37
https://doi.org/10.1145/3131346
|
31 |
A M, Heidt Z, Li J, Sahu , et al.. 100 kW Peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.Optics Letters, 2013, 38(10): 1615–1617
https://doi.org/10.1364/OL.38.001615
pmid: 23938887
|
32 |
M, Li S, Huang Q, Wang , et al.. Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser.Optics Letters, 2014, 39(3): 693–696
https://doi.org/10.1364/OL.39.000693
pmid: 24487901
|
33 |
S I, Najafi P, Lefebvre J, Albert , et al.. Ion-exchanged Mach‒Zehnder interferometers in glass.Applied Optics, 1992, 31(18): 3381–3383
https://doi.org/10.1364/AO.31.003381
pmid: 20725293
|
34 |
P Chakraborty . Metal nanoclusters in glasses as non-linear photonic materials.Journal of Materials Science, 1998, 33(9): 2235–2249
https://doi.org/10.1023/A:1004306501659
|
35 |
R F Jr Haglund . Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials.Materials Science and Engineering A, 1998, 253(1‒2): 275–283
https://doi.org/10.1016/S0921-5093(98)00736-9
|
36 |
M J, Weber D, Milam W L Smith . Nonlinear refractive index of glasses and crystals.Optical Engineering, 1978, 17(5): 463–469
https://doi.org/10.1117/12.7972266
|
37 |
A I, Ryasnyansky B, Palpant S, Debrus , et al.. Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by Ion implantation.Journal of the Optical Society of America B, 2006, 23(7): 1348–1353
https://doi.org/10.1364/JOSAB.23.001348
|
38 |
D S, Chemla D A B Miller . Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures.Journal of the Optical Society of America B, 1985, 2(7): 1155–1173
https://doi.org/10.1364/JOSAB.2.001155
|
39 |
A, Kawabata R Kubo . Electronic properties of fine metallic particles.II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1966, 21(9): 1765–1772
https://doi.org/10.1143/JPSJ.21.1765
|
40 |
W P Halperin . Quantum size effects in metal particles.Reviews of Modern Physics, 1986, 58(3): 533–606
https://doi.org/10.1103/RevModPhys.58.533
|
41 |
R F Jr, Haglund L, Yang R H III, Magruder , et al.. Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91(1‒4): 493–504
https://doi.org/10.1016/0168-583X(94)96274-X
|
42 |
J C, Garland D B Tanner . Electrical Transport and Optical Properties of Inhomogeneous Media. New York, USA: American Institute of Physics, 1978
|
43 |
Y Q, Li C C, Sung R, Inguva , et al.. Nonlinear-optical properties of semiconductor composite materials.Journal of the Optical Society of America B, 1989, 6(4): 814–817
https://doi.org/10.1364/JOSAB.6.000814
|
44 |
D K Hale . The physical properties of composite materials.Journal of Materials Science, 1976, 11(11): 2105–2141
https://doi.org/10.1007/PL00020339
|
45 |
J W, Haus N, Kalyaniwalla R, Inguva , et al.. Nonlinear-optical properties of conductive spheroidal particle composites.Journal of the Optical Society of America B, 1989, 6(4): 797–807
https://doi.org/10.1364/JOSAB.6.000797
|
46 |
W, Hou S B Cronin . A review of surface plasmon resonance-enhanced photocatalysis.Advanced Functional Materials, 2013, 23(13): 1612–1619
https://doi.org/10.1002/adfm.201202148
|
47 |
S, Kabi A Ghosh . Structural investigation on silver phosphate glasses embedded with nanoparticles.Journal of Alloys and Compounds, 2012, 520: 238–243
https://doi.org/10.1016/j.jallcom.2012.01.031
|
48 |
Q Q, Wang J B, Han H M, Gong , et al.. Linear and nonlinear optical properties of Ag nanowire polarizing glass.Advanced Functional Materials, 2006, 16(18): 2405–2408
https://doi.org/10.1002/adfm.200600096
|
49 |
G, Lin H H, Pan J R, Qiu , et al.. Nonlinear optical properties of lead nanocrystals embedding glass induced by thermal treatment and femtosecond laser irradiation.Chemical Physics Letters, 2011, 516(4‒6): 186–191
https://doi.org/10.1016/j.cplett.2011.09.069
|
50 |
S, Qu Y, Zhang H, Li , et al.. Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser.Optical Materials, 2006, 28(3): 259–265
https://doi.org/10.1016/j.optmat.2005.01.011
|
51 |
G, Lin D Z, Tan F F, Luo , et al.. Linear and nonlinear optical properties of glasses doped with Bi nanoparticles.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2312–2315
https://doi.org/10.1016/j.jnoncrysol.2010.11.052
|
52 |
F, Hache D, Ricard C Flytzanis . Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects.Journal of the Optical Society of America B, 1986, 3(12): 1647–1655
https://doi.org/10.1364/JOSAB.3.001647
|
53 |
N E, Christensen B O Seraphin . Relativistic band calculation and the optical properties of gold.Physical Review B, 1971, 4(10): 3321–3344
https://doi.org/10.1103/PhysRevB.4.3321
|
54 |
F, Hache D, Ricard C, Flytzanis , et al.. The optical kerr effect in small metal particles and metal colloids: The case of gold.Applied Physics A: Materials Science & Processing, 1988, 47: 347–357
|
55 |
L M Liz-Marzán . Tailoring surface plasmons through the morphology and assembly of metal nanoparticles.Langmuir, 2006, 22(1): 32–41
https://doi.org/10.1021/la0513353
pmid: 16378396
|
56 |
M A El-Sayed . Some interesting properties of metals confined in time and nanometer space of different shapes.Accounts of Chemical Research, 2001, 34(4): 257–264
https://doi.org/10.1021/ar960016n
pmid: 11308299
|
57 |
S, Link M A El-Sayed . Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.International Reviews in Physical Chemistry, 2000, 19(3): 409–453
https://doi.org/10.1080/01442350050034180
|
58 |
A, Moores F Goettmann . The plasmon band in noble metal nanoparticles: an introduction to theory and applications.New Journal of Chemistry, 2006, 30(8): 1121–1132
https://doi.org/10.1039/b604038c
|
59 |
P K, Jain K S, Lee I H, El-Sayed , et al.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
https://doi.org/10.1021/jp057170o
pmid: 16599493
|
60 |
S, Eustis M A El-Sayed . Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chemical Society Reviews, 2006, 35(3): 209–217
https://doi.org/10.1039/B514191E
pmid: 16505915
|
61 |
G, De S K, Medda S, De , et al.. Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position.Bulletin of Materials Science, 2008, 31(3): 479–485
https://doi.org/10.1007/s12034-008-0075-4
|
62 |
S, Underwood P Mulvaney . Effect of the solution refractive index on the color of gold colloids.Langmuir, 1994, 10(10): 3427–3430
https://doi.org/10.1021/la00022a011
|
63 |
S K, Ghosh S, Nath S, Kundu , et al.. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids.The Journal of Physical Chemistry B, 2004, 108(37): 13963–13971
https://doi.org/10.1021/jp047021q
|
64 |
W, Rechberger A, Hohenau A, Leitner , et al.. Optical properties of two interacting gold nanoparticles.Optics Communications, 2003, 220(1‒3): 137–141
https://doi.org/10.1016/S0030-4018(03)01357-9
|
65 |
P K, Jain W, Qian M A El-Sayed . Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.The Journal of Physical Chemistry B, 2006, 110(1): 136–142
https://doi.org/10.1021/jp055562p
pmid: 16471511
|
66 |
K H, Su Q H, Wei X, Zhang , et al.. Interparticle coupling effects on plasmon resonances of nanogold particles.Nano Letters, 2003, 3(8): 1087–1090
https://doi.org/10.1021/nl034197f
|
67 |
P K, Jain S, Eustis M A El-Sayed . Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.The Journal of Physical Chemistry B, 2006, 110(37): 18243–18253
https://doi.org/10.1021/jp063879z
pmid: 16970442
|
68 |
S, De G De . In-situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2‒TiO2‒PEO hybrid films.The Journal of Physical Chemistry C, 2008, 112(28): 10378–10384
https://doi.org/10.1021/jp801625u
|
69 |
S K, Medda M, Mitra G De . Tuning of Ag-SPR band position in refractive index controlled inorganic–organic hybrid SiO2–PEO–TiO2 films.Journal of Chemical Sciences, 2008, 120(6): 565–572
https://doi.org/10.1007/s12039-008-0086-0
|
70 |
J, Zhang Y, Fu M H, Chowdhury , et al.. Plasmon-coupled fluorescence probes: effect of emission wavelength on fluorophore-labeled silver particles.The Journal of Physical Chemistry C, 2008, 112(25): 9172–9180
https://doi.org/10.1021/jp8000493
pmid: 19714260
|
71 |
Y, Zhang A, Dragan C D Geddes . Wavelength dependence of metal-enhanced fluorescence.The Journal of Physical Chemistry C, 2009, 113(28): 12095–12100
https://doi.org/10.1021/jp9005668
|
72 |
J, Zhang Y, Fu M H, Chowdhury , et al.. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles.Nano Letters, 2007, 7(7): 2101–2107
https://doi.org/10.1021/nl071084d
pmid: 17580926
|
73 |
T Katsuaki . Field enhancement around metal nanoparticles and nanoshells: a systematic investigation.The Journal of Physical Chemistry C, 2008, 112(40): 15721–15728
https://doi.org/10.1021/jp8060009
|
74 |
J Zhu . Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres.Applied Surface Science, 2007, 253(21): 8729–8733
https://doi.org/10.1016/j.apsusc.2007.04.050
|
75 |
S A, Jupri S K, Ghoshal N N, Yusof , et al.. Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium‒zinc-sulfophosphate glass system.Optics and Laser Technology, 2020, 126: 106134
https://doi.org/10.1016/j.optlastec.2020.106134
|
76 |
A D, Sontakke K, Biswas K Annapurna . Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses.Journal of Luminescence, 2009, 129(11): 1347–1355
https://doi.org/10.1016/j.jlumin.2009.06.027
|
77 |
R T, Karunakaran K, Marimuthu Babu S, Surendra , et al.. Structural, optical and thermal studies of Eu3+ ions in lithium fluoroborate glasses.Solid State Sciences, 2009, 11(11): 1882–1889
https://doi.org/10.1016/j.solidstatesciences.2009.08.001
|
78 |
Raju C, Nageswara S, Sailaja Raju S, Hemasundara , et al.. Emission analysis of CdO–Bi2O3–B2O3 glasses doped with Eu3+ and Tb3+.Ceramics International, 2014, 40(6): 7701–7709
https://doi.org/10.1016/j.ceramint.2013.12.111
|
79 |
P, Vařák P, Nekvindová S, Vytykáčová , et al.. Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (RE = Ho, Er, Tm) after silver ion exchange.Journal of Non-Crystalline Solids, 2021, 557: 120580
https://doi.org/10.1016/j.jnoncrysol.2020.120580
|
80 |
C, Canevali M, Mattoni F, Morazzoni , et al.. Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus.Journal of the American Chemical Society, 2005, 127(42): 14681–14691
https://doi.org/10.1021/ja052502o
pmid: 16231922
|
81 |
W, Cao F, Huang Z, Wang , et al.. Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses.Optics Letters, 2018, 43(14): 3281–3284
https://doi.org/10.1364/OL.43.003281
pmid: 30004486
|
82 |
F, Huang F, E R, Lei , et al.. Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses.Journal of Luminescence, 2019, 213: 370–375
https://doi.org/10.1016/j.jlumin.2019.05.050
|
83 |
R, Vijayakumar K Marimuthu . Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses.Journal of Alloys and Compounds, 2016, 665: 294–303
https://doi.org/10.1016/j.jallcom.2016.01.049
|
84 |
M, Kamrádek I, Kašík J, Aubrecht , et al.. Nanoparticle and solution doping for efficient holmium fiber lasers.IEEE Photonics Journal, 2019, 11(5): 1–10
https://doi.org/10.1109/JPHOT.2019.2940747
|
85 |
C C, Baker E J, Friebele A A, Burdett , et al.. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths.Optics Express, 2017, 25(12): 13903–13915
https://doi.org/10.1364/OE.25.013903
pmid: 28788833
|
86 |
W, Zhang J, Lin M, Cheng , et al.. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles.Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 159: 39–52
https://doi.org/10.1016/j.jqsrt.2015.03.002
|
87 |
S, Meng G, Zhao J, Hou , et al.. High performance of near-infrared emission for S-band amplifier from Tm3+-doped bismuth glass incorporated with Ag nanoparticles.Journal of Luminescence, 2020, 224: 117313
https://doi.org/10.1016/j.jlumin.2020.117313
|
88 |
Y M, Sgibnev N V, Nikonorov A I Ignatiev . High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters.Journal of Luminescence, 2017, 188: 172–179
https://doi.org/10.1016/j.jlumin.2017.04.028
|
89 |
J, Zmojda P, Miluski M Kochanowicz . Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications.Applied Sciences, 2018, 8(5): 790
https://doi.org/10.3390/app8050790
|
90 |
H, Fares H, Elhouichet B, Gelloz , et al.. Surface plasmon resonance induced Er3+ photoluminescence enhancement in tellurite glass.Journal of Applied Physics, 2015, 117(19): 193102
https://doi.org/10.1063/1.4921436
|
91 |
S E, Kichanov D P, Kozlenko Y E, Gorshkova , et al.. Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses.Journal of Nanoparticle Research, 2018, 20(3): 54
https://doi.org/10.1007/s11051-018-4156-z
|
92 |
M Moskovits . Surface-enhanced spectroscopy.Reviews of Modern Physics, 1985, 57(3): 783–826
https://doi.org/10.1103/RevModPhys.57.783
|
93 |
S, Nie S R Emory . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science, 1997, 275(5303): 1102–1106
https://doi.org/10.1126/science.275.5303.1102
pmid: 9027306
|
94 |
A, Simo V, Joseph R, Fenger , et al.. Long-term stable silver subsurface ion-exchanged glasses for SERS applications.ChemPhysChem, 2011, 12(9): 1683–1688
https://doi.org/10.1002/cphc.201100098
pmid: 21626643
|
95 |
C L, Haynes A D, McFarland Duyne R P Van . Surface-enhanced Raman spectroscopy.Analytical Chemistry, 2005, 77(17): 338A–346A
https://doi.org/10.1021/ac053456d
|
96 |
G C Schatz . Theoretical studies of surface enhanced Raman scattering.Accounts of Chemical Research, 1984, 17(10): 370–376
https://doi.org/10.1021/ar00106a005
|
97 |
M R, Dousti M R, Sahar R J, Amjad , et al.. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium-zinc-tellurite glass.Journal of Luminescence, 2013, 143: 368–373
https://doi.org/10.1016/j.jlumin.2013.04.017
|
98 |
M Moskovits . Surface-enhanced Raman spectroscopy: a brief perspective.In: Kneipp K, Moskovits M, Kneipp H, eds. Surface-enhanced Raman scattering. Topics in Applied Physics. Berlin, Heidelberg: Springer, 2006, 103
|
99 |
A, Campion P Kambhampati . Surface-enhanced Raman scattering.Chemical Society Reviews, 1998, 27(4): 241–250
https://doi.org/10.1039/a827241z
|
100 |
X M, Qian S M Nie . Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.Chemical Society Reviews, 2008, 37(5): 912–920
https://doi.org/10.1039/b708839f
pmid: 18443676
|
101 |
M, Fleischmann P J, Hendra A J McQuillan . Raman spectra of pyridine adsorbed at a silver electrode.Chemical Physics Letters, 1974, 26(2): 163–166
https://doi.org/10.1016/0009-2614(74)85388-1
|
102 |
D, Liu X, Chen Y, Hu , et al.. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.Nature Communications, 2018, 9: 193
https://doi.org/10.1038/s41467-017-02627-5
pmid: 29335471
|
103 |
J, Kneipp H, Kneipp K Kneipp . SERS — a single-molecule and nanoscale tool for bioanalytics.Chemical Society Reviews, 2008, 37(5): 1052–1060
https://doi.org/10.1039/b708459p
pmid: 18443689
|
104 |
S M, Wells S D, Retterer J M, Oran , et al.. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.ACS Nano, 2009, 3(12): 3845–3853
https://doi.org/10.1021/nn9010939
pmid: 19911835
|
105 |
H, Wang C S, Levin N J Halas . Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.Journal of the American Chemical Society, 2005, 127(43): 14992–14993
https://doi.org/10.1021/ja055633y
pmid: 16248615
|
106 |
P, Pal A, Bonyár M, Veres , et al.. A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio.Sensors and Actuators A: Physical, 2020, 314: 112225
https://doi.org/10.1016/j.sna.2020.112225
|
107 |
C M, Chou Thi L T, Thanh Nhu N T, Quynh , et al.. Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis.Applied Sciences, 2020, 10(14): 5015
https://doi.org/10.3390/app10145015
|
108 |
A, Yahata H, Ishii K, Nakamura , et al.. Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering.Advanced Powder Technology, 2019, 30(12): 2957–2963
https://doi.org/10.1016/j.apt.2019.09.003
|
109 |
L C S, Belusso G F, Lenz E E, Fiorini , et al.. Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst.Applied Surface Science, 2019, 473: 303–312
https://doi.org/10.1016/j.apsusc.2018.12.155
|
110 |
J B, Goodenough M H Braga . Batteries for electric road vehicles.Dalton Transactions, 2018, 47(3): 645–648
https://doi.org/10.1039/C7DT03026F
pmid: 29199286
|
111 |
M H, Braga N S, Grundish A J, Murchison , et al.. Alternative strategy for a safe rechargeable battery.Energy & Environmental Science, 2017, 10(1): 331–336
https://doi.org/10.1039/C6EE02888H
|
112 |
C, Mikolajczak M, Kahn K, White , et al.. Lithium-Ion Batteries Hazard and Use Assessment.Springer, 2011, ISBN-13: 978–1461434856
|
113 |
M H, Braga A J, Murchison J A, Ferreira , et al.. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells.Energy & Environmental Science, 2016, 9(3): 948–954
https://doi.org/10.1039/C5EE02924D
|
114 |
N, Kamaya K, Homma Y, Yamakawa , et al.. A lithium superionic conductor.Nature Materials, 2011, 10(9): 682–686
https://doi.org/10.1038/nmat3066
pmid: 21804556
|
115 |
M, Duclot J L Souquet . Glassy materials for lithium batteries: electrochemical properties and devices performances.Journal of Power Sources, 2001, 97‒98: 610–615
https://doi.org/10.1016/S0378-7753(01)00641-3
|
116 |
J, Janek W G Zeier . A solid future for battery development.Nature Energy, 2016, 1(9): 16141
https://doi.org/10.1038/nenergy.2016.141
|
117 |
Stephan A, Manuel K S Nahm . Review on composite polymer electrolytes for lithium batteries.Polymer, 2006, 47(16): 5952–5964
https://doi.org/10.1016/j.polymer.2006.05.069
|
118 |
M Z A Munshi . Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific, 1995
|
119 |
S, Troy A, Schreiber T, Reppert , et al.. Life cycle assessment and resource analysis of all-solid-state batteries.Applied Energy, 2016, 169: 757–767
https://doi.org/10.1016/j.apenergy.2016.02.064
|
120 |
E A, Mohamed E, Nabhan A, Ratep , et al.. Influence of BaTiO3 nanoparticles/clusters on the structural and dielectric properties of glasses-nanocomposites.Physical Review B: Condensed Matter, 2020, 589: 412220
https://doi.org/10.1016/j.physb.2020.412220
|
121 |
E A, Mohamed M G, Moustafa I Kashif . Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix.Journal of Non-Crystalline Solids, 2018, 482: 223–229
https://doi.org/10.1016/j.jnoncrysol.2017.12.048
|
122 |
A A, Menazea A M, Abdelghany N A, Hakeem , et al.. Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd:YAG nanosecond laser pulses: characterization and dielectric studies.Journal of Electronic Materials, 2020, 49(1): 826–832
https://doi.org/10.1007/s11664-019-07736-z
|
123 |
A A, Menazea A M, Abdelghany N A, Hakeem , et al.. Nd:YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies.Silicon, 2020, 12(1): 13–20
https://doi.org/10.1007/s12633-019-0094-3
|
124 |
E K, Abdel-Khalek M A, Elsharkawy M A, Motawea , et al.. Dielectric and thermal properties of tetragonal PbTiO3 nanoparticles/clusters embedded in lithium tetraborate glass matrix.Silicon, 2021, 13: 2993–3002
https://doi.org/10.1007/s12633-020-00648-2
|
125 |
P R, Rejikumar P V, Jyothy S, Mathew , et al.. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass.Physical Review B: Condensed Matter, 2010, 405: 1513–1517
|
126 |
A M, Abdelghany H M, Zeyada H A, ElBatal , et al.. AC conductivity and dielectric behavior of silicophosphate glass doped by Nd2O3.Silicon, 2017, 9(3): 347–354
https://doi.org/10.1007/s12633-016-9498-5
|
127 |
K, Yang J, Liu B, Shen , et al.. Large improvement on energy storage and charge‒discharge properties of Gd2O3-doped BaO‒K2O‒Nb2O5‒SiO2 glass-ceramic dielectrics.Materials Science and Engineering B, 2017, 223: 178–184
https://doi.org/10.1016/j.mseb.2017.06.011
|
128 |
J, Fonseca S Choi . Electro-and photoelectro-catalysts derived from bimetallic amorphous metal-organic frameworks.Catalysis Science & Technology, 2020, 10(24): 8265–8282
https://doi.org/10.1039/D0CY01600D
|
129 |
L D, Ellis N A, Rorrer K P, Sullivan , et al.. Chemical and biological catalysis for plastics recycling and upcycling.Nature Catalysis, 2021, 4(7): 539–556
https://doi.org/10.1038/s41929-021-00648-4
|
130 |
R Schlögl . Heterogeneous catalysis.Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
https://doi.org/10.1002/anie.201410738
pmid: 25693734
|
131 |
D, Gärtner S, Sandl von Wangelin A Jacobi . Homogeneous vs.heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology, 2020, 10(11): 3502–3514
https://doi.org/10.1039/D0CY00644K
|
132 |
A F, Lee J A, Bennett J C, Manayil , et al.. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification.Chemical Society Reviews, 2014, 43(22): 7887–7916
https://doi.org/10.1039/C4CS00189C
pmid: 24957179
|
133 |
S A, Khan N, Khan U, Irum , et al.. Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant.International Journal of Biological Macromolecules, 2020, 153: 806–816
https://doi.org/10.1016/j.ijbiomac.2020.03.013
pmid: 32145236
|
134 |
C, Gao F, Lyu Y Yin . Encapsulated metal nanoparticles for catalysis.Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237
pmid: 32585087
|
135 |
R, Jin G, Li S, Sharma , et al.. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures.Chemical Reviews, 2021, 121(2): 567–648
https://doi.org/10.1021/acs.chemrev.0c00495
pmid: 32941029
|
136 |
S, Majhi K, Sharma R, Singh , et al.. Development of silver nanoparticles decorated on functional glass slide as highly efficient and recyclable dip catalyst.ChemistrySelect, 2020, 5(40): 12365–12370
https://doi.org/10.1002/slct.202002492
|
137 |
K, Mennecke R, Cecilia T N, Glasnov , et al.. Palladium(0) nanoparticles on glass‒polymer composite materials as recyclable catalysts: a comparison study on their use in batch and continuous flow processes.Advanced Synthesis & Catalysis, 2008, 350(5): 717–730
https://doi.org/10.1002/adsc.200700510
|
138 |
A, Elhage B, Wang N, Marina , et al.. Glass wool: a novel support for heterogeneous catalysis.Chemical Science, 2018, 9(33): 6844–6852
https://doi.org/10.1039/C8SC02115E
pmid: 30310617
|
139 |
G F, Lenz R, Schneider de Aguiar K M F, Rossi , et al.. Self-supported nickel nanoparticles on germanophosphate glasses: synthesis and applications in catalysis.RSC Advances, 2019, 9(30): 17157–17164
https://doi.org/10.1039/C9RA02927C
pmid: 35519891
|
140 |
X, Luo M, Meng R, Li , et al.. Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching.Materials & Design, 2020, 196: 109109
https://doi.org/10.1016/j.matdes.2020.109109
|
141 |
K, Zheng A R Boccaccini . Sol-gel processing of bioactive glass nanoparticles: a review.Advances in Colloid and Interface Science, 2017, 249: 363–373
https://doi.org/10.1016/j.cis.2017.03.008
pmid: 28364954
|
142 |
D S Brauer . Bioactive glasses — structure and properties.Angewandte Chemie International Edition, 2015, 54(14): 4160–4181
https://doi.org/10.1002/anie.201405310
pmid: 25765017
|
143 |
J R Jones . Review of bioactive glass: from Hench to hybrids.Acta Biomaterialia, 2013, 9(1): 4457–4486
https://doi.org/10.1016/j.actbio.2012.08.023
pmid: 22922331
|
144 |
V, Miguez-Pacheco L L, Hench A R Boccaccini . Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues.Acta Biomaterialia, 2015, 13: 1–15
https://doi.org/10.1016/j.actbio.2014.11.004
pmid: 25462853
|
145 |
F, Baino G, Novajra V, Miguez-Pacheco , et al.. Bioactive glasses: special applications outside the skeletal system.Journal of Non-Crystalline Solids, 2016, 432: 15–30
https://doi.org/10.1016/j.jnoncrysol.2015.02.015
|
146 |
L L, Hench R J, Splinter W C, Allen , et al.. Bonding mechanisms at the interface of ceramic prosthetic materials.Journal of Biomedical Materials Research, 1971, 5(6): 117–141
https://doi.org/10.1002/jbm.820050611
|
147 |
M, Erol-Taygun K, Zheng A R Boccaccini . Nanoscale bioactive glasses in medical applications.International Journal of Applied Glass Science, 2013, 4(2): 136–148
https://doi.org/10.1111/ijag.12029
|
148 |
C, Vichery J M Nedelec . Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications.Materials, 2016, 9(4): 288–295
https://doi.org/10.3390/ma9040288
pmid: 28773412
|
149 |
J, Hum A R Boccaccini . Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review.Journal of Materials Science: Materials in Medicine, 2012, 23(10): 2317–2333
https://doi.org/10.1007/s10856-012-4580-z
pmid: 22361998
|
150 |
C, Wu W, Fan J Chang . Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells.Journal of Materials Chemistry B, 2013, 1(21): 2710–2718
https://doi.org/10.1039/c3tb20275e
pmid: 32260976
|
151 |
G, Blackburn T G, Scott I S, Bayer , et al.. Bionanomaterials for bone tumor engineering and tumor destruction.Journal of Materials Chemistry B, 2013, 1(11): 1519–1534
https://doi.org/10.1039/c3tb00536d
pmid: 32260715
|
152 |
A C, Jayalekshmi S P, Victor C P Sharma . Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.Colloids and Surfaces B: Biointerfaces, 2013, 101: 196–204
https://doi.org/10.1016/j.colsurfb.2012.06.027
pmid: 22809595
|
153 |
C, Wu W, Fan Y, Zhu , et al.. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.Acta Biomaterialia, 2011, 7(10): 3563–3572
https://doi.org/10.1016/j.actbio.2011.06.028
pmid: 21745610
|
154 |
S J, Shih W L, Tzeng R, Jatnika , et al.. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 899–907
https://doi.org/10.1002/jbm.b.33273
pmid: 25171327
|
155 |
J, Li D, Zhai F, Lv , et al.. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing.Acta Biomaterialia, 2016, 36: 254–266
https://doi.org/10.1016/j.actbio.2016.03.011
pmid: 26965395
|
156 |
M G, Ventura A J, Parola de Matos A Pires . Influence of heat treatment on the colour of Au and Ag glasses produced by the sol-gel pathway.Journal of Non-Crystalline Solids, 2011, 357(4): 1342–1349
https://doi.org/10.1016/j.jnoncrysol.2010.12.013
|
157 |
P, Mazzold S, Carturan A, Quaranta , et al.. Ion exchange process: history, evolution and applications.Rivista del Nuovo Cimento, 2013, 36: 397–460
https://doi.org/10.1393/ncr/i2013-10092-1
|
158 |
G, Molina S, Murcia J, Molera , et al.. Color and dichroism of silver-stained glasses.Journal of Nanoparticle Research, 2013, 15(9): 1932
https://doi.org/10.1007/s11051-013-1932-7
|
159 |
T, Pradell J, Molera J, Roque , et al.. Ionic-exchange mechanism in the formation of medieval luster decorations.Journal of the American Ceramic Society, 2005, 88(5): 1281–1289
https://doi.org/10.1111/j.1551-2916.2005.00223.x
|
160 |
T, Palomar P, Redol Almeida I, Cruz , et al.. The influence of environment in the alteration of the stained-glass windows in Portuguese monuments.Heritage, 2018, 1(2): 365–376
https://doi.org/10.3390/heritage1020025
|
161 |
T, Palomar C, Grazia Cardoso I, Pombo , et al.. Analysis of chromophores in stained-glass windows using visible hyperspectral imaging in-situ.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117378
https://doi.org/10.1016/j.saa.2019.117378
pmid: 31323494
|
162 |
C, Machado A, Machado T, Palomar , et al.. Debitus grisailles for stained-glass conservation: an analytical study.Conservar Património, 2020, 34: 65–72
https://doi.org/10.14568/cp2018067
|
163 |
F, Gonella P Mazzoldi . Chapter 2: Metal nanocluster composite glasses.Handbook of Nanostructured Materials and Nanotechnology, 2000, 4: 81–158
|
164 |
L C, Liu S H Risbud . Quantum-dot size-distribution analysis and precipitation stages in semiconductor doped glasses.Journal of Applied Physics, 1990, 68(1): 28–32
https://doi.org/10.1063/1.347130
|
165 |
T M, Machado R F, Falci I L, Silva , et al.. Erbium 1.55 μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses.Materials Chemistry and Physics, 2019, 224: 73–78
https://doi.org/10.1016/j.matchemphys.2018.11.059
|
166 |
T M, Machado R F, Falci G F S, Andrade , et al.. Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses.Physical Chemistry Chemical Physics, 2020, 22(23): 13118–13122
https://doi.org/10.1039/D0CP01690J
pmid: 32490492
|
167 |
R, Rajaramakrishna C, Saiyasombat R V, Anavekar , et al.. Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass.Journal of Non-Crystalline Solids, 2014, 406: 107–110
https://doi.org/10.1016/j.jnoncrysol.2014.09.052
|
168 |
R, Rajaramakrishna S, Karuthedath R V, Anavekar , et al.. Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles.Journal of Non-Crystalline Solids, 2012, 358(14): 1667–1672
https://doi.org/10.1016/j.jnoncrysol.2012.04.031
|
169 |
F, Chen S, Dai T, Xu , et al.. Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses.Chemical Physics Letters, 2011, 514(1‒3): 79–82
https://doi.org/10.1016/j.cplett.2011.08.011
|
170 |
R, Ma J, Qian S, Cui , et al.. Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass.Journal of Luminescence, 2014, 152: 222–225
https://doi.org/10.1016/j.jlumin.2013.10.036
|
171 |
Z, Guo S, Ye T, Liu , et al.. SmF3 doping and heat treatment manipulated Ag species evaluation and efficient energy transfer from Ag nanoclusters to Sm3+ ions in oxyfluoride glass.Journal of Non-Crystalline Solids, 2017, 458: 80–85
https://doi.org/10.1016/j.jnoncrysol.2016.11.026
|
172 |
S P, Singh B Karmakar . Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag:bismuth glass nanocomposites.Plasmonics, 2011, 6(3): 457–467
https://doi.org/10.1007/s11468-011-9224-5
|
173 |
Rao G, Venkateswara H D Shashikala . Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO‒CaF2‒P2O5 glass.Journal of Alloys and Compounds, 2015, 622: 108–114
https://doi.org/10.1016/j.jallcom.2014.09.156
|
174 |
B N, Swetha K Keshavamurthy . Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses.Applied Surface Science, 2020, 525: 146505
https://doi.org/10.1016/j.apsusc.2020.146505
|
175 |
Danmallam I, Mohammed S K, Ghoshal R, Ariffin , et al.. Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd‒Ofelt calculation.Optical Materials, 2020, 105: 109889
https://doi.org/10.1016/j.optmat.2020.109889
|
176 |
J, Qiu M, Shirai T, Nakaya , et al.. Space-selective precipitation of metal nanoparticles inside glasses.Applied Physics Letters, 2002, 81(16): 3040–3042
https://doi.org/10.1063/1.1509095
|
177 |
J, Qiu X, Jiang C, Zhu , et al.. Manipulation of gold nanoparticles inside transparent materials.Angewandte Chemie International Edition, 2004, 43(17): 2230–2234
https://doi.org/10.1002/anie.200352380
pmid: 15108130
|
178 |
X, Hu Q, Zhao X, Jiang , et al.. Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass.Solid State Communications, 2006, 138(1): 43–46
https://doi.org/10.1016/j.ssc.2006.01.007
|
179 |
Y, Teng B, Qian N, Jiang , et al.. Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses.Chemical Physics Letters, 2010, 485(1‒3): 91–94
https://doi.org/10.1016/j.cplett.2009.12.010
|
180 |
J M P, Almeida Boni L, De W, Avansi , et al.. Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass.Optics Express, 2012, 20(14): 15106–15113
https://doi.org/10.1364/OE.20.015106
pmid: 22772208
|
181 |
S, Chen T, Akai K, Kadono , et al.. Reversible control of silver nanoparticle generation and dissolution in soda-lime silicate glass through X-ray irradiation and heat treatment.Applied Physics Letters, 2001, 79(22): 3687–3689
https://doi.org/10.1063/1.1418257
|
182 |
J, Sheng K, Kadono T Yazawa . Nanosized gold clusters formation in selected areas of soda-lime silicate glass.Journal of Non-Crystalline Solids, 2003, 324(3): 295–299
https://doi.org/10.1016/S0022-3093(03)00320-X
|
183 |
E, Valentin H, Bernas C, Ricolleau , et al.. Ion beam “photography”: decoupling nucleation and growth of metal clusters in glass.Physical Review Letters, 2001, 86(1): 99–102
https://doi.org/10.1103/PhysRevLett.86.99
pmid: 11136103
|
184 |
H K, Farag M A Marzouk . Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses.Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15480–15487
https://doi.org/10.1007/s10854-017-7435-z
|
185 |
A S, Asyikin M K, Halimah A A, Latif , et al.. Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles.Journal of Non-Crystalline Solids, 2020, 529: 119777
https://doi.org/10.1016/j.jnoncrysol.2019.119777
|
186 |
J R, Orives W R, Viali M, Magnani , et al.. Incorporation of CdFe2O4‒SiO2 nanoparticles in SbPO4‒ZnO‒PbO glasses by melt-quenching process.Eclética Química Journal, 2018, 43(2): 32–43
https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p32-43
|
187 |
W, Widanarto M R, Sahar S K, Ghoshal , et al.. Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide.Materials Letters, 2013, 108: 289–292
https://doi.org/10.1016/j.matlet.2013.06.109
|
188 |
W, Widanarto M R, Sahar S K, Ghoshal , et al.. Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass.Journal of Magnetism and Magnetic Materials, 2013, 326: 123–128
https://doi.org/10.1016/j.jmmm.2012.08.042
|
189 |
P, Anigrahawati M R, Sahar S K Ghoshal . Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass.Materials Chemistry and Physics, 2015, 155: 155–161
https://doi.org/10.1016/j.matchemphys.2015.02.014
|
190 |
D F, Franco A C, Sant’Ana Oliveira L F C, De , et al.. The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties.Journal of Materials Chemistry C, 2015, 3(15): 3803–3808
https://doi.org/10.1039/C5TC00102A
|
191 |
O N, Egorova S L, Semjonov V V, Velmiskin , et al.. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.Optics Express, 2014, 22(7): 7632–7637
https://doi.org/10.1364/OE.22.007632
pmid: 24718138
|
192 |
Z M, Sathi J, Zhang Y, Luo , et al.. Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping.Optical Materials Express, 2015, 5(10): 2096–2105
https://doi.org/10.1364/OME.5.002096
|
193 |
T, Wei F, Chen Y, Tian , et al.. Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 126: 53–58
https://doi.org/10.1016/j.saa.2014.01.134
pmid: 24583472
|
194 |
D D, Chen Q, Qian M Y, Peng , et al.. Effect of Ce3+, Dy3+, and Tb3+ additions on the spectroscopic properties of Er3+/Yb3+ codoped tellurite glasses.Physica B: Condensed Matter, 2010, 405(21): 4453–4456
https://doi.org/10.1016/j.physb.2010.08.014
|
195 |
L, Li Y, Yang D, Zhou , et al.. Influence of the Eu2+ on the silver aggregates formation in Ag+–Na+ ion-exchanged Eu3+-doped sodium-aluminosilicate glasses.Journal of the American Ceramic Society, 2014, 97(4): 1110–1114
https://doi.org/10.1111/jace.12745
|
196 |
C, Worsch M, Büttner P, Schaaf , et al.. Magnetic properties of multicore magnetite nanoparticles prepared by glass crystallization.Journal of Materials Science, 2013, 48(6): 2299–2307
https://doi.org/10.1007/s10853-012-7009-7
|
197 |
R, Harizanova G, Völksch C Rüssel . Microstructures formed during devitrification of Na2O·Al2O3·B2O3·SiO2·Fe2O3 glasses.Journal of Materials Science, 2010, 45(5): 1350–1353
https://doi.org/10.1007/s10853-009-4090-7
|
198 |
C, Worsch P, Schaaf R, Harizanova , et al.. Magnetisation effects of multicore magnetite nanoparticles crystallised from a silicate glass.Journal of Materials Science, 2012, 47(15): 5886–5890
https://doi.org/10.1007/s10853-012-6490-3
|
199 |
S, Woltz R, Hiergeist P, Görnert , et al.. Magnetite nanoparticles prepared by the glass crystallization method and their physical properties.Journal of Magnetism and Magnetic Materials, 2006, 298(1): 7–13
https://doi.org/10.1016/j.jmmm.2005.02.067
|
200 |
C, Burda X, Chen R, Narayanan , et al.. Chemistry and properties of nanocrystals of different shapes.Chemical Reviews, 2005, 105(4): 1025–1102
https://doi.org/10.1021/cr030063a
pmid: 15826010
|
201 |
R D Maurer . Nucleation and growth in a photosensitive glass.Journal of Applied Physics, 1958, 29(1): 1–8
https://doi.org/10.1063/1.1722926
|
202 |
K, Zhang D, Zhou J, Qiu , et al.. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass.Journal of the American Ceramic Society, 2020, 103(4): 2463–2470
https://doi.org/10.1111/jace.16966
|
203 |
D, Manzani J M P, Almeida M, Napoli , et al.. Nonlinear optical properties of tungsten lead-pyrophosphate glasses containing metallic copper nanoparticles.Plasmonics, 2013, 8(4): 1667–1674
https://doi.org/10.1007/s11468-013-9585-z
|
204 |
J, Qiu C, Zhu T, Nakaya , et al.. Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser.Applied Physics Letters, 2001, 79(22): 3567–3569
https://doi.org/10.1063/1.1421640
|
205 |
H, Zeng J, Qiu Z, Ye , et al.. Irradiation assisted fabrication of gold nanoparticles-doped glasses.Journal of Crystal Growth, 2004, 267(1‒2): 156–160
https://doi.org/10.1016/j.jcrysgro.2004.03.041
|
206 |
H, Hosono N, Matsunami A, Kudo , et al.. Novel approach for synthesizing Ge fine particles embedded in glass by ion implantation: formation of Ge nanocrystal in SiO2‒GeO2 glasses by proton implantation.Applied Physics Letters, 1994, 65(13): 1632–1634
https://doi.org/10.1063/1.112934
|
207 |
H, Hosono K, Kawamura Y, Kameshima , et al.. Nanometer-sized Ge particles in GeO2–SiO2 glasses produced by proton implantation: combined effects of electronic excitation and chemical reaction.Journal of Applied Physics, 1997, 82(9): 4232–4235
https://doi.org/10.1063/1.366228
|
208 |
I M, Lifshitz V V Slyozov . The kinetics of precipitation from supersaturated solid solutions.Journal of Physics and Chemistry of Solids, 1961, 19(1‒2): 35–50
https://doi.org/10.1016/0022-3697(61)90054-3
|
209 |
L R, Houk S R, Challa B, Grayson , et al.. The definition of “critical radius” for a collection of nanoparticles undergoing Ostwald ripening.Langmuir, 2009, 25(19): 11225–11227
https://doi.org/10.1021/la902263s
pmid: 19715330
|
210 |
Y, Azlina M N, Azlan M K, Halimah , et al.. Optical performance of neodymium nanoparticles doped tellurite glasses.Physica B: Condensed Matter, 2020, 577: 411784
https://doi.org/10.1016/j.physb.2019.411784
|
211 |
Noorazlan A, Muhammad Kamari H, Mohamed S S, Zulkefly , et al.. Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system.Journal of Nanomaterials, 2013, 2013: 940917
https://doi.org/10.1155/2013/940917
|
212 |
M K, Halimah A A, Awshah A M, Hamza , et al.. Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system.Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3785–3794
https://doi.org/10.1007/s10854-020-02907-9
|
213 |
J R, Orives W R, Viali S H, Santagneli , et al.. Phosphate glasses via coacervation route containing CdFe2O4 nanoparticles: structural, optical and magnetic characterization.Dalton transactions, 2018, 47(16): 5771–5779
https://doi.org/10.1039/C8DT00560E
pmid: 29637950
|
214 |
J R, Orives B P, Pichon D, Mertz , et al.. Phosphate glasses containing monodisperse Fe3−δO4@SiO2 stellate nanoparticles obtained by melt-quenching process.Ceramics International, 2020, 46(8): 12120–12127
https://doi.org/10.1016/j.ceramint.2020.01.257
|
215 |
L L, Hench J K West . The sol-gel process.Chemical Reviews, 1990, 90(1): 33–72
https://doi.org/10.1021/cr00099a003
|
216 |
T Graham . On the properties of silicic acid and other analogous colloidal substances.Journal of the Chemical Society, 1864, 17: 318–327
https://doi.org/10.1039/JS8641700318
|
217 |
H Dislich . New routes to multicomponent oxide glasses.Angewandte Chemie International Edition, 1971, 10(6): 363–370
https://doi.org/10.1002/anie.197103631
|
218 |
B E Yoldas . Monolithic glass formation by chemical polymerization.Journal of Materials Science, 1979, 14(8): 1843–1849
https://doi.org/10.1007/BF00551023
|
219 |
I, Razdobreev Hamzaoui H, El V Y, Ivanov , et al.. Optical spectroscopy of bismuth-doped pure silica fiber preform.Optics Letters, 2010, 35(9): 1341–1343
https://doi.org/10.1364/OL.35.001341
pmid: 20436562
|
220 |
M Vallet-Regí . Ceramics for medical applications.Journal of the Chemical Society — Dalton Transactions: Inorganic Chemistry, 2001, 2(2): 97–108
https://doi.org/10.1039/b007852m
|
221 |
G, Kaur G, Pickrell N, Sriranganathan , et al.. Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(6): 1248–1275
https://doi.org/10.1002/jbm.b.33443
pmid: 26060931
|
222 |
Hamzaoui H, El L, Bigot G, Bouwmans , et al.. From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route.Optical Materials Express, 2011, 1(2): 234–242
https://doi.org/10.1364/OME.1.000234
|
223 |
C J, Brinker G W Scherer . Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York, USA: Academic Press, 1990
|
224 |
J, Zarzycki M, Prassas J Phalippou . Synthesis of glasses from gels: the problem of monolithic gels.Journal of Materials Science, 1982, 17(11): 3371–3379
https://doi.org/10.1007/BF01203507
|
225 |
D R Ulrich . Prospects of sol-gel processes.Journal of Non-Crystalline Solids, 1988, 100(1‒3): 174–193
https://doi.org/10.1016/0022-3093(88)90015-4
|
226 |
F, Kirkbir H, Murata D, Meyers , et al.. Drying and sintering of sol-gel derived large SiO2 monoliths.Journal of Sol-Gel Science and Technology, 1996, 6(3): 203–217
https://doi.org/10.1007/BF00402691
|
227 |
K Kajihara . Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses.Journal of Asian Ceramic Societies, 2013, 1(2): 121–133
https://doi.org/10.1016/j.jascer.2013.04.002
|
228 |
T, Adachi S Sakka . Preparation of monolithic silica gel and glass by the sol-gel method using N, N-dimethylformamide.Journal of Materials Science, 1987, 22(12): 4407–4410
https://doi.org/10.1007/BF01132038
|
229 |
J B, Chan J Jonas . Effect of various amide additives on the tetramethoxysilane sol-gel process.Journal of Non-Crystalline Solids, 1990, 126(1‒2): 79–86
https://doi.org/10.1016/0022-3093(90)91025-M
|
230 |
F, Kirkbir H, Murata D, Meyers , et al.. Drying of large monolithic aerogels between atmospheric and supercritical pressures.Journal of Sol-Gel Science and Technology, 1998, 13(1/3): 311–316
https://doi.org/10.1023/A:1008668009340
|
231 |
R K Iler . The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York, USA: John Wiley and Sons Ltd., 1979
|
232 |
M, Yamane S, Aso S, Okano , et al.. Low temperature synthesis of a monolithic silica glass by the pyrolysis of a silica gel.Journal of Materials Science, 1979, 14(3): 607–611
https://doi.org/10.1007/BF00772720
|
233 |
S, Hæreid M A, Einarsrud G W Scherer . Mechanical strengthening of TMOS-based alcogels by aging in silane solutions.Journal of Sol-Gel Science and Technology, 1994, 3: 199–204
https://doi.org/10.1007/BF00486558
|
234 |
T, Kawaguchi H, Hishikura J, Iura , et al.. Monolithic dried gels and silica glass prepared by the sol-gel process.Journal of Non-Crystalline Solids, 1984, 63(1‒2): 61–69
https://doi.org/10.1016/0022-3093(84)90386-7
|
235 |
A, Sarkar S R, Chaudhuri S, Wang , et al.. Drying of alkoxide gels-observation of an alternate phenomenology.Journal of Sol-Gel Science and Technology, 1994, 2(1‒3): 865–870
https://doi.org/10.1007/BF00486366
|
236 |
H, Murata D E, Meyers F, Kirkbir , et al.. Drying and sintering of bulk silica gels.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 397–402
https://doi.org/10.1007/BF02436872
|
237 |
G W, Scherer D M Smith . Cavitation during drying of a gel.Journal of Non-Crystalline Solids, 1995, 189(3): 197–211
https://doi.org/10.1016/0022-3093(95)00222-7
|
238 |
D M, Smith D, Stein J M, Anderson , et al.. Preparation of low-density xerogels at ambient pressure.Journal of Non-Crystalline Solids, 1995, 186: 104–112
https://doi.org/10.1016/0022-3093(95)00040-2
|
239 |
K, Susa I, Matsuyama S, Satoh , et al.. Sol-gel derived Ge-doped silica glass for optical fiber application: I.Preparation of gel and glass and their characterization. Journal of Non-Crystalline Solids, 1990, 119(1): 21–28
https://doi.org/10.1016/0022-3093(90)90236-F
|
240 |
K, Susa I, Matsuyama S Satoh . Sol-gel derived Ge-doped silica glass for optical fiber application.II. Excess optical loss. Journal of Non-Crystalline Solids, 1991, 128(2): 118–125
https://doi.org/10.1016/0022-3093(91)90503-X
|
241 |
B, Breitscheidel J, Zieder U Schubert . Metal complexes in inorganic matrices.7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chemistry of Materials, 1991, 3(3): 559–566
https://doi.org/10.1021/cm00015a037
|
242 |
C, Lembacher U Schubert . Nanosized platinum particles by sol-gel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size.New Journal of Chemistry, 1998, 22(7): 721–724
https://doi.org/10.1039/a709224e
|
243 |
G, Trimmel C, Lembacher G, Kickelbick , et al.. Sol-gel processing of alkoxysilyl-substituted nickel complexes for the preparation of highly dispersed nickel in silica.New Journal of Chemistry, 2002, 26(6): 759–765
https://doi.org/10.1039/b110612k
|
244 |
C M, Lukehart S B, Milne S R Stock . Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors.Chemistry of Materials, 1998, 10(3): 903–908
https://doi.org/10.1021/cm970673p
|
245 |
J P, Carpenter C M, Lukehart S R, Stock , et al.. Formation of a nanocomposite containing particles of Co3C from a single-source precursor bound to a silica xerogel host matrix.Chemistry of Materials, 1995, 7(1): 201–205
https://doi.org/10.1021/cm00049a030
|
246 |
J P, Carpenter C M, Lukehart D O, Henderson , et al.. Formation of crystalline germanium nanoclusters in a silica xerogel matrix from an organogermanium precursor.Chemistry of Materials, 1996, 8(6): 1268–1274
https://doi.org/10.1021/cm950548i
|
247 |
J P, Carpenter C M, Lukehart S B, Milne , et al.. Organometallic compounds as single-source precursors to nanocomposite materials: an overview.Journal of Organometallic Chemistry, 1998, 557(1): 121–130
https://doi.org/10.1016/S0022-328X(97)00740-7
|
248 |
H, Mathieu T, Richard J, Allègre , et al.. Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the sol-gel process.Journal of Applied Physics, 1995, 77(1): 287–293
https://doi.org/10.1063/1.359389
|
249 |
J, Zhong X, Ma H, Lu , et al.. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles.Journal of Alloys and Compounds, 2014, 607: 177–182
https://doi.org/10.1016/j.jallcom.2014.04.080
|
250 |
J, Zhong W, Xiang H, Zhao , et al.. Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass.Journal of Alloys and Compounds, 2012, 537: 269–274
https://doi.org/10.1016/j.jallcom.2012.05.046
|
251 |
L, Pei X, Liang W, Cai , et al.. Photocatalytic activity in monodisperse In2O3 nanocrystals incorporated into transparent silica glassy matrix.Journal of Alloys and Compounds, 2015, 626: 131–135
https://doi.org/10.1016/j.jallcom.2014.11.165
|
252 |
H, Gao W, Xiang X, Ma , et al.. Sol-gel synthesis and third-order optical nonlinearity of Au nanoparticles doped monolithic glass.Gold Bulletin, 2015, 48(3‒4): 153–159
https://doi.org/10.1007/s13404-015-0173-1
|
253 |
J, Zhong W Xiang . Sol-gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass.Journal of Non-Crystalline Solids, 2017, 462: 17–22
https://doi.org/10.1016/j.jnoncrysol.2017.02.005
|
254 |
Y, Huang W, Xiang S, Lin , et al.. The synthesis of bimetallic gold plus nickel nanoparticles dispersed in a glass host and behavior-enhanced optical nonlinearities.Journal of Non-Crystalline Solids, 2017, 459: 142–149
https://doi.org/10.1016/j.jnoncrysol.2017.01.007
|
255 |
Y, Zhang Y, Jin M, He , et al.. Optical properties of bimetallic Au‒Cu nanocrystals embedded in glass.Materials Research Bulletin, 2018, 98: 94–102
https://doi.org/10.1016/j.materresbull.2017.10.009
|
256 |
Rouge A, Le Hamzaoui H, El B, Capoen , et al.. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass.Materials Research Express, 2015, 2(5): 055009
https://doi.org/10.1088/2053-1591/2/5/055009
|
257 |
E E, Campos-Zuñiga I L, Alonso-Lemus V, Agarwal , et al.. Sol-gel synthesis for stable green emission in samarium doped borosilicate glasses.Ceramics International, 2019, 45(18): 24052–24059
https://doi.org/10.1016/j.ceramint.2019.08.110
|
258 |
U, Schubert S, Amberg-Schwab B Breitscheidel . Metal complexes in inorganic matrices.4. Small metal particles in palladium‒silica composites by sol-gel processing of metal complexes. Chemistry of Materials, 1989, 1(6): 576–578
https://doi.org/10.1021/cm00006a005
|
259 |
U Schubert . Metal oxide/silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors.Advanced Engineering Materials, 2004, 6(3): 173–176
https://doi.org/10.1002/adem.200300548
|
260 |
U Schubert . Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes.Polymer International, 2009, 58(3): 317–322
https://doi.org/10.1002/pi.2526
|
261 |
G, Trimmel U Schubert . Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels.Journal of Non-Crystalline Solids, 2001, 296(3): 188–200
https://doi.org/10.1016/S0022-3093(01)00911-5
|
262 |
W, Moerke R, Lamber U, Schubert , et al.. Metal complexes in inorganic matrices.11. Composition of highly dispersed bimetallic Ni, Pd alloy particles prepared by sol-gel processing: electron microscopy and FMR study. Chemistry of Materials, 1994, 6(10): 1659–1666
https://doi.org/10.1021/cm00046a018
|
263 |
A, Kaiser C, Görsmann U Schubert . Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 795–799
https://doi.org/10.1007/BF02436940
|
264 |
M, Malenovska M A, Neouze U, Schubert , et al.. Multi-component hybrid organic‒inorganic particles with highly dispersed silver nanoparticles in the external shell.Dalton Transactions, 2008, (34): 4647–4651
https://doi.org/10.1039/b806820h
pmid: 19024364
|
265 |
R Reisfeld . Prospects of sol-gel technology towards luminescent materials.Optical Materials, 2001, 16(1‒2): 223707
https://doi.org/10.1016/S0925-3467(00)00052-5
|
266 |
G, Yang S, Cheng C, Li , et al.. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy.Journal of Applied Physics, 2014, 116(22): 1–6
https://doi.org/10.1063/1.4903955
|
267 |
A C, Yanes A, Santana-Alonso J, Méndez-Ramos , et al.. Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: structure and high efficient UV up-conversion.Advanced Functional Materials, 2011, 21(16): 3136–3142
https://doi.org/10.1002/adfm.201100146
|
268 |
M, Zhang H, Fan B, Xi , et al.. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles.The Journal of Physical Chemistry C, 2007, 111(18): 6652–6657
https://doi.org/10.1021/jp068919d
|
269 |
G, Wang W, Qin J, Zhang , et al.. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles.The Journal of Physical Chemistry C, 2008, 112(32): 12161–12167
https://doi.org/10.1021/jp8004713
|
270 |
E, Kalwarczyk P, Kabaciński T M, Kardaś , et al.. A Seedless method for gold nanoparticle growth inside a silica matrix: fabrication of materials capable of third-harmonic generation in the near-infrared.ChemPlusChem, 2019, 84(5): 525–533
https://doi.org/10.1002/cplu.201900224
pmid: 31943903
|
271 |
P, Melnikov I V, Arkhangelsky V A, Nascimento , et al.. Thermolysis mechanism of samarium nitrate hexahydrate.Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1537–1541
https://doi.org/10.1007/s10973-014-4067-x
|
272 |
A, Gaddam H R, Fernandes D U, Tulyaganov , et al.. The structural role of lanthanum oxide in silicate glasses.Journal of Non-Crystalline Solids, 2019, 505: 18–27
https://doi.org/10.1016/j.jnoncrysol.2018.10.023
|
273 |
C A Harper . Handbook of Ceramics, Glasses, and Diamonds.New York, USA: McGraw-Hill, 2001
|
274 |
E J A, Pope J D Mackenzie . Nd-doped silica glass I: structural evolution in the sol-gel state.Journal of Non-Crystalline Solids, 1988, 106(1‒3): 236–241
https://doi.org/10.1016/0022-3093(88)90266-9
|
275 |
R, Campostrini G, Carturan M, Ferrari , et al.. Luminescence of Eu3+ ions during thermal densification of SiO2 gel.Journal of Materials Research, 1992, 7(3): 745–753
https://doi.org/10.1557/JMR.1992.0745
|
276 |
E J A, Pope J D Mackenzie . Sol-gel processing of neodymian-silica glass.Journal of the American Ceramic Society, 1993, 76(5): 1325–1328
https://doi.org/10.1111/j.1151-2916.1993.tb03759.x
|
277 |
S, Chakrabarti J, Sahu M, Chakraborty , et al.. Monophasic silica glasses with large neodymia concentration.Journal of Non-Crystalline Solids, 1994, 180(1): 96–101
https://doi.org/10.1016/0022-3093(94)90403-0
|
278 |
A, Monteil S, Chaussedent G, Alombert-Goget , et al.. Clustering of rare earth in glasses, aluminum effect: experiments and modeling.Journal of Non-Crystalline Solids, 2004, 348: 44–50
https://doi.org/10.1016/j.jnoncrysol.2004.08.124
|
279 |
M, Langlet C, Coutier W, Meffre , et al.. Microstructural and spectroscopic study of sol-gel derived Nd-doped silica glasses.Journal of Luminescence, 2002, 96(2‒4): 295–309
https://doi.org/10.1016/S0022-2313(01)00213-7
|
280 |
M W, Sckerl S, Guldberg-Kjaer Poulsen M, Rysholt , et al.. Precipitate coarsening and self organization in erbium-doped silica.Physical Review B: Condensed Matter, 1999, 59(21): 13494–13497
https://doi.org/10.1103/PhysRevB.59.13494
|
281 |
A L Stepanov . Chapter 4: Laser annealing of metal nanoparticles synthesized in glasses by ion implantation.Glass Nanocomposites Synthesis, Properties and Applications, 2016, 115–130
|
282 |
Marchi G, De G, Mattei P, Mazzoldi , et al.. Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere.Journal of Applied Physics, 2002, 92(8): 4249–4254
https://doi.org/10.1063/1.1506423
|
283 |
S K, Srivastava P, Gangopadhyay S, Amirthapandian , et al.. Effects of high-energy Si ion-irradiations on optical responses of Ag metal nanoparticles in a SiO2 matrix.Chemical Physics Letters, 2014, 607: 100–104
https://doi.org/10.1016/j.cplett.2014.05.059
|
284 |
Q, Liu X, He X, Zhou , et al.. Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2–24Ga2S3–20KBr chalcohalide glasses.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2320–2323
https://doi.org/10.1016/j.jnoncrysol.2011.02.050
|
285 |
S, Vytykacova B, Svecova P, Nekvindova , et al.. The formation of silver metal nanoparticles by ion implantation in silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 245–250
https://doi.org/10.1016/j.nimb.2015.10.016
|
286 |
B, Zhang R, Sato K, Oyoshi , et al.. Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 447: 38–42
https://doi.org/10.1016/j.nimb.2019.03.049
|
287 |
A, Herrera N M Balzaretti . Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3‒PbO‒Bi2O3‒GeO2 glass.Journal of Luminescence, 2017, 181: 147–152
https://doi.org/10.1016/j.jlumin.2016.09.013
|
288 |
A L, Stepanov M F, Galyautdinov A B, Evlyukhin , et al.. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation.Applied Physics A: Materials Science & Processing, 2013, 111(1): 261–264
https://doi.org/10.1007/s00339-012-7474-5
|
289 |
B, Ghosh P, Chakraborty B P, Singh , et al.. Enhanced nonlinear optical responses in metal–glass nanocomposites.Applied Surface Science, 2009, 256(2): 389–394
https://doi.org/10.1016/j.apsusc.2009.05.093
|
290 |
Y H, Wang Y M, Wang J D, Lu , et al.. Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass.Optics Communications, 2010, 283(3): 486–489
https://doi.org/10.1016/j.optcom.2009.10.035
|
291 |
X H, Xiao F, Ren J B, Wang , et al.. Formation of aligned silver nanoparticles by ion implantation.Materials Letters, 2007, 61(22): 4435–4437
https://doi.org/10.1016/j.matlet.2007.02.017
|
292 |
Y, Shen T, Qi Y, Qiao , et al.. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2.Applied Surface Science, 2016, 363: 310–317
https://doi.org/10.1016/j.apsusc.2015.11.135
|
293 |
J, Wang G, Jia B, Zhang , et al.. Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: synthesis of the modified Ag nanoparticles.Journal of Applied Physics, 2013, 113(3): 034304
https://doi.org/10.1063/1.4775820
|
294 |
L C, Nistor Landuyt J, van J B, Barton , et al.. Colloid size distribution in ion implanted glass.Journal of Non-Crystalline Solids, 1993, 162(3): 217–224
https://doi.org/10.1016/0022-3093(93)91240-4
|
295 |
A L, Stepanov V N Popok . Nanostructuring of silicate glass under low-energy Ag-ion implantation.Surface Science, 2004, 566‒568: 1250–1254
https://doi.org/10.1016/j.susc.2004.06.141
|
296 |
H, Gnaser A, Brodyanski B Reuscher . Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology.Surface and Interface Analysis, 2008, 40(11): 1415–1422
https://doi.org/10.1002/sia.2915
|
297 |
S, Stanek P, Nekvindova B, Svecova , et al.. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 350–354
https://doi.org/10.1016/j.nimb.2015.09.078
|
298 |
K, Fukumi A, Chayahara K, Kadono , et al.. Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties.Journal of Applied Physics, 1994, 75(6): 3075–3080
https://doi.org/10.1063/1.356156
|
299 |
A C, Yanes J del-Castillo . Enhanced emission via energy transfer in RE co-doped SiO2–KYF4 nano-glass-ceramics for white LEDs.Journal of Alloys and Compounds, 2016, 658: 170–176
https://doi.org/10.1016/j.jallcom.2015.10.137
|
300 |
Y H, Wang F, Liu H, Cheng , et al.. Third order non-linear optical response of Cu nanoclusters by ion implantation in silicate glass under 532 and 1064 nm laser excitations.Materials Research Innovations, 2014, 18(4): 241–244
https://doi.org/10.1179/1433075X13Y.0000000150
|
301 |
F, Gonella G, Mattei P, Mazzoldi , et al.. Au‒Cu alloy nanoclusters in silica formed by ion implantation and annealing in reducing or oxidizing atmosphere.Applied Physics Letters, 1999, 75(1): 55–57
https://doi.org/10.1063/1.124275
|
302 |
T, Cesca P, Calvelli G, Battaglin , et al.. Local-field enhancement effect on the nonlinear optical response of gold‒silver nanoplanets.Optics Express, 2012, 20(4): 4537–4547
https://doi.org/10.1364/OE.20.004537
pmid: 22418213
|
303 |
G, Mattei G D, Marchi C, Maurizio , et al.. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters.Physical Review Letters, 2003, 90(8): 085502
https://doi.org/10.1103/PhysRevLett.90.085502
pmid: 12633436
|
304 |
Z L, Liau B Y, Tsaur J W Mauer . Influence of atomic mixing and preferential sputtering on depth profiles and interfaces.Journal of Vacuum Science and Technology, 1979, 16(2): 121–127
https://doi.org/10.1116/1.569883
|
305 |
T, Yamada A, Takano K, Sugita , et al.. Effect of dual implantation with Ag and Ni ions on the optical absorption of silica glass.Transactions of the Materials Research Society of Japan, 2020, 45(4): 127–130
https://doi.org/10.14723/tmrsj.45.127
|
306 |
G X, Cai F, Ren X H, Xiao , et al.. Morphology control and optical absorption properties of Ag nanoparticles by ion implantation.Journal of Materials Science and Technology, 2009, 25: 669–672
|
307 |
J C, Bourgoin J W Corbett . Enhanced diffusion mechanisms.Radiation Effects, 1978, 36(3‒4): 157–188
https://doi.org/10.1080/00337577808240846
|
308 |
G, Jia R, Xu X, Mu , et al.. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution.ACS Applied Materials & Interfaces, 2013, 5(24): 13055–13062
https://doi.org/10.1021/am403941n
pmid: 24283510
|
309 |
J, Wang L, Zhang X, Zhang , et al.. Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions.Journal of Alloys and Compounds, 2013, 549: 231–237
https://doi.org/10.1016/j.jallcom.2012.09.099
|
310 |
P W Voorhees . The theory of Ostwald ripening.Journal of Statistical Physics, 1985, 38(1‒2): 231–252
https://doi.org/10.1007/BF01017860
|
311 |
H J, Fan U, Gösele M Zacharias . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.Small, 2007, 3(10): 1660–1671
https://doi.org/10.1002/smll.200700382
pmid: 17890644
|
312 |
Y H, Xu J P Wang . Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation.Advanced Materials, 2008, 20(5): 994–999
https://doi.org/10.1002/adma.200602895
|
313 |
M, Heggen M, Oezaslan L, Houben , et al.. Formation and analysis of core‒shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts.The Journal of Physical Chemistry C, 2012, 116(36): 19073–19083
https://doi.org/10.1021/jp306426a
|
314 |
H, Amekura M, Yoshitake O A, Plaksin , et al.. Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO2 target.Applied Physics Letters, 2007, 91(6): 063113
https://doi.org/10.1063/1.2768004
|
315 |
J, Wang G Y, Jia B, Zhang , et al.. Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation.Journal of Applied Physics, 2013, 113: 1–8
|
316 |
O, Peña U, Pal L, Rodríguez-Fernández , et al.. Formation of Au‒Ag core‒shell nanostructures in silica matrix by sequential ion implantation.The Journal of Physical Chemistry C, 2009, 113(6): 2296–2300
https://doi.org/10.1021/jp809178y
|
317 |
C, Torres-Torres A, López-Suárez B, Can-Uc , et al.. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica.Nanotechnology, 2015, 26(29): 295701
https://doi.org/10.1088/0957-4484/26/29/295701
pmid: 26135968
|
318 |
X C, Yang L L, Li M, Huang , et al.. In situ synthesis of Ag‒Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2306–2308
https://doi.org/10.1016/j.jnoncrysol.2010.11.061
|
319 |
P A, Obraztsov A V, Nashchekin N V, Nikonorov , et al.. Formation of silver nanoparticles on the silicate glass surface after ion exchange.Physics of the Solid State, 2013, 55(6): 1272–1278
https://doi.org/10.1134/S1063783413060267
|
320 |
H M Garfinkel . Ion-exchange equilibria between glass and molten salts.The Journal of Physical Chemistry, 1968, 72(12): 4175–4181
https://doi.org/10.1021/j100858a040
|
321 |
R V, Ramaswamy R Srivastava . Ion-exchanged glass waveguides: a review.Journal of Lightwave Technology, 1988, 6(6): 984–1000
https://doi.org/10.1109/50.4090
|
322 |
J Crank . The Mathematics of Diffusion. Oxford, UK: Clarendon, 1956
|
323 |
J G, Kirkwood J Oppenheim . Chemical Thermodynamics. New York, USA: McGraw Hill, 1961
|
324 |
J, Zhao J, Zhu Z, Yang , et al.. Selective preparation of Ag species on photoluminescence of Sm3+ in borosilicate glass via Ag+‒Na+ ion exchange.Journal of the American Ceramic Society, 2020, 103(2): 955–964
https://doi.org/10.1111/jace.16758
|
325 |
J, Zhao Z, Yang C, Yu , et al.. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions.Chemical Engineering Journal, 2018, 341: 175–186
https://doi.org/10.1016/j.cej.2018.02.028
|
326 |
L, Karvonen J, Rönn S, Kujala , et al.. High non-resonant third-order optical nonlinearity of Ag‒glass nanocomposite fabricated by two-step ion exchange.Optical Materials, 2013, 36(2): 328–332
https://doi.org/10.1016/j.optmat.2013.09.016
|
327 |
M C, Mathpal P, Kumar S, Kumar , et al.. Opacity and plasmonic properties of Ag embedded glass based metamaterials.RSC Advances, 2015, 5(17): 12555–12562
https://doi.org/10.1039/C4RA14061C
|
328 |
P, Kumar M C, Mathpal A K, Tripathi , et al.. Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses.Physical Chemistry Chemical Physics, 2015, 17(14): 8596–8603
https://doi.org/10.1039/C4CP05679E
pmid: 25738191
|
329 |
A, Simo J, Polte N, Pfänder , et al.. Formation mechanism of silver nanoparticles stabilized in glassy matrices.Journal of the American Chemical Society, 2012, 134(45): 18824–18833
https://doi.org/10.1021/ja309034n
pmid: 23098252
|
330 |
J Sheng . Growth of silver nanoclusters embedded in soda-lime silicate glasses.International Journal of Hydrogen Energy, 2009, 34(5): 2471–2474
https://doi.org/10.1016/j.ijhydene.2009.01.034
|
331 |
P, Kumar M C, Mathpal S, Hamad , et al.. Cu nanoclusters in ion exchanged soda-lime glass: study of SPR and nonlinear optical behavior for photonics.Applied Materials Today, 2019, 15: 323–334
https://doi.org/10.1016/j.apmt.2019.02.016
|
332 |
G, Marchi F, Caccavale F, Gonella , et al.. Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere.Applied Physics A: Materials Science & Processing, 1996, 63(4): 403–407
https://doi.org/10.1007/BF01567335
|
333 |
A, Rahman G, Mariotto E, Cattaruzza , et al.. Thermal annealing and laser-induced mechanisms in controlling the size and size-distribution of silver nanoparticles in Ag+‒Na+ ion-exchanged silicate glasses.Journal of Non-Crystalline Solids, 2021, 563: 120815
https://doi.org/10.1016/j.jnoncrysol.2021.120815
|
334 |
J, Zhang W, Dong J, Sheng , et al.. Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation.Journal of Crystal Growth, 2008, 310(1): 234–239
https://doi.org/10.1016/j.jcrysgro.2007.10.007
|
335 |
A Sharma . Energetic argon beam stimulated growth of plasmonic silver nanoparticles in Ag+-exchanged soda glass: a study on the structural, optical, photoluminescence and electrical behavior.Materials Science and Engineering B, 2021, 263: 1–10
|
336 |
H, Hofmeister S, Thiel M, Dubiel , et al.. Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation.Applied Physics Letters, 1997, 70(13): 1694–1696
https://doi.org/10.1063/1.118672
|
337 |
A, Rahman M, Giarola E, Cattaruzza , et al.. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.Journal of Nanoscience and Nanotechnology, 2012, 12(11): 8573–8579
https://doi.org/10.1166/jnn.2012.6808
pmid: 23421246
|
338 |
A, Quaranta A, Rahman G, Mariotto , et al.. Spectroscopic investigation of structural rearrangements in silver ion-exchanged silicate glasses.The Journal of Physical Chemistry C, 2012, 116(5): 3757–3764
https://doi.org/10.1021/jp2095399
|
339 |
M, Lenoir A, Grandjean S, Poissonnet , et al.. Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy.Journal of Non-Crystalline Solids, 2009, 355(28‒30): 1468–1473
https://doi.org/10.1016/j.jnoncrysol.2009.05.015
|
340 |
B O, Mysen J D Frantz . Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units.Contributions to Mineralogy and Petrology, 1994, 117(1): 1–14
https://doi.org/10.1007/BF00307725
|
341 |
M Jansen . Homoatomic d10–d10 interactions: their effects on structure and chemical and physical properties.Angewandte Chemie International Edition, 1987, 26(11): 1098–1110
https://doi.org/10.1002/anie.198710981
|
342 |
F, Gonella A Quaranta . Stress-induced birefringence in silver-diffused glass waveguides.Journal of Modern Optics, 1992, 39(7): 1401–1405
https://doi.org/10.1080/09500349214551451
|
343 |
R Araujo . Colorless glasses containing ion-exchanged silver.Applied Optics, 1992, 31(25): 5221–5224
https://doi.org/10.1364/AO.31.005221
pmid: 20733697
|
344 |
I, Belharouak F, Weill C, Parent , et al.. Silver particles in glasses of the ‘Ag2O–ZnO–P2O5’ system.Journal of Non-Crystalline Solids, 2001, 293-295: 649–656
https://doi.org/10.1016/S0022-3093(01)00843-2
|
345 |
K, Bromann C, Félix H, Brune , et al.. Controlled deposition of size-selected silver nanoclusters.Science, 1996, 274(5289): 956–958
https://doi.org/10.1126/science.274.5289.956
pmid: 8875931
|
346 |
N G, Bastús J, Comenge V Puntes . Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.Langmuir, 2011, 27(17): 11098–11105
https://doi.org/10.1021/la201938u
pmid: 21728302
|
347 |
M, Takesue T, Tomura M, Yamada , et al.. Size of elementary clusters and process period in silver nanoparticle formation.Journal of the American Chemical Society, 2011, 133(36): 14164–14167
https://doi.org/10.1021/ja202815y
pmid: 21848291
|
348 |
S, Ye Z, Guo H, Wang , et al.. Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting.Journal of Alloys and Compounds, 2016, 685: 891–895
https://doi.org/10.1016/j.jallcom.2016.06.226
|
349 |
Y, Chen L, Karvonen A, Säynätjoki , et al.. Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application.Optical Materials Express, 2011, 1(2): 164–172
https://doi.org/10.1364/OME.1.000164
|
350 |
S, Berneschi G C, Righini S Pelli . Towards a glass new world: the role of ion-exchange in modern technology.Applied Sciences, 2021, 11(10): 4610
https://doi.org/10.3390/app11104610
|
351 |
P G, Debenedetti F H Stillinger . Supercooled liquids and the glass transition.Nature, 2001, 410(6825): 259–267
https://doi.org/10.1038/35065704
pmid: 11258381
|
352 |
S, Wackerow G, Seifert A Abdolvand . Homogenous silver-doped nanocomposite glass.Optical Materials Express, 2011, 1(7): 1224–1231
https://doi.org/10.1364/OME.1.001224
|
353 |
Y, Sgibnev B, Asamoah N, Nikonorov , et al.. Tunable photoluminescence of silver molecular clusters formed in Na+‒Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix.Journal of Luminescence, 2020, 226: 117411
https://doi.org/10.1016/j.jlumin.2020.117411
|
354 |
J, Lumeau E D Zanotto . A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass.International Materials Reviews, 2017, 62(6): 348–366
https://doi.org/10.1080/09506608.2016.1264132
|
355 |
N V, Nikonorov E I, Panysheva I V, Tunimanova , et al.. Influence of glass composition on the refractive index change upon photothermoinduced crystallization.Glass Physics and Chemistry, 2001, 27(3): 241–249
https://doi.org/10.1023/A:1011392301107
|
356 |
Q, Jiao X, Yu X, Xu , et al.. Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere.Journal of Solid State Chemistry, 2013, 202: 65–69
https://doi.org/10.1016/j.jssc.2013.03.005
|
357 |
Q, Zhang X, Liu Y, Qiao , et al.. Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere.Optical Materials, 2010, 32(3): 427–431
https://doi.org/10.1016/j.optmat.2009.10.002
|
358 |
D, Manikandan S, Mohan P, Magudapathy , et al.. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study.Physica B: Condensed Matter, 2003, 325: 86–91
https://doi.org/10.1016/S0921-4526(02)01453-9
|
359 |
S, Chervinskii V, Sevriuk I, Reduto , et al.. Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass.Journal of Applied Physics, 2013, 114(22): 224301
https://doi.org/10.1063/1.4840996
|
360 |
T, Tite N, Ollier M C, Sow , et al.. Ag nanoparticles in soda-lime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection.Sensors and Actuators B: Chemical, 2017, 242: 127–131
https://doi.org/10.1016/j.snb.2016.11.006
|
361 |
F, Goutaland M, Sow N, Ollier , et al.. Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure.Optical Materials Express, 2012, 2(4): 350–357
https://doi.org/10.1364/OME.2.000350
|
362 |
F, Goutaland J P, Colombier M C, Sow , et al.. Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass.Optics Express, 2013, 21(26): 31789–31799
https://doi.org/10.1364/OE.21.031789
pmid: 24514774
|
363 |
M D, Niry J, Mostafavi-Amjad H R, Khalesifard , et al.. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam.Journal of Applied Physics, 2012, 111(3): 033111
https://doi.org/10.1063/1.3684552
|
364 |
E, Babich V, Kaasik A, Redkov , et al.. SERS-active pattern in silver-ion-exchanged glass drawn by infrared nanosecond laser.Nanomaterials, 2020, 10(9): 1849
https://doi.org/10.3390/nano10091849
pmid: 32947813
|
365 |
S, Wackerow A Abdolvand . Laser-assisted one-step fabrication of homogeneous glass–silver composite.Applied Physics A: Materials Science & Processing, 2012, 109(1): 45–49
https://doi.org/10.1007/s00339-012-7088-y
|
366 |
S, Wackerow A Abdolvand . Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass.Optics Express, 2014, 22(5): 5076–5085
https://doi.org/10.1364/OE.22.005076
pmid: 24663847
|
367 |
J, Zhang W, Dong L, Qiao , et al.. Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing.Journal of Crystal Growth, 2007, 305(1): 278–284
https://doi.org/10.1016/j.jcrysgro.2007.04.026
|
368 |
, Sonal A, Sharma S Aggarwal . Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation.Journal of Non-Crystalline Solids, 2018, 485: 57–65
https://doi.org/10.1016/j.jnoncrysol.2018.01.038
|
369 |
P, Gangopadhyay P, Magudapathy R, Kesavamoorthy , et al.. Growth of silver nanoclusters embedded in soda glass matrix.Chemical Physics Letters, 2004, 388(4‒6): 416–421
https://doi.org/10.1016/j.cplett.2004.03.055
|
370 |
P, Gangopadhyay P, Magudapathy S K, Srivastava , et al.. Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix.AIP Advances, 2011, 1(3): 032112
https://doi.org/10.1063/1.3623737
|
371 |
O, Véron J P, Blondeau D D S, Meneses , et al.. Characterization of silver or copper nanoparticles embedded in soda-lime glass after a staining process.Surface and Coatings Technology, 2013, 227: 48–57
https://doi.org/10.1016/j.surfcoat.2012.10.014
|
372 |
X, Zhang W, Luo L J, Wang , et al.. Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(34): 6966–6970
https://doi.org/10.1039/C4TC00856A
|
373 |
M, Hirasawa H, Shirakawa H, Hamamura , et al.. Growth mechanism of nanoparticles prepared by radio frequency sputtering.Journal of Applied Physics, 1997, 82(3): 1404–1407
https://doi.org/10.1063/1.365917
|
374 |
E, Cattaruzza G, Battaglin P, Canton , et al.. Structural and physical properties of cobalt nanocluster composite glasses.Journal of Non-Crystalline Solids, 2004, 336(2): 148–152
https://doi.org/10.1016/j.jnoncrysol.2004.01.003
|
375 |
Y J, Chou S H, Lin C J, Shih , et al.. The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses.Journal of Nanoscience and Nanotechnology, 2016, 16(9): 10001–10007
https://doi.org/10.1166/jnn.2016.12330
|
376 |
R G, Palgrave I P Parkin . Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.Journal of the American Chemical Society, 2006, 128(5): 1587–1597
https://doi.org/10.1021/ja055563v
pmid: 16448130
|
377 |
J, Delgado M, Vilarigues A, Ruivo , et al.. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(20): 2383–2388
https://doi.org/10.1016/j.nimb.2011.02.059
|
378 |
J A, Jiménez S, Lysenko G, Zhang , et al.. Optical characterization of Ag nanoparticles embedded in aluminophosphate glass.Journal of Electronic Materials, 2007, 36(7): 812–820
https://doi.org/10.1007/s11664-007-0142-4
|
379 |
Y F, Liu D H Liebenberg . Electromagnetic radio frequency heating in the pulsed electric current sintering (PECS) process.MRS Communications, 2017, 7(2): 266–271
https://doi.org/10.1557/mrc.2017.35
|
380 |
C L, Cramer J W, McMurray M J, Lance , et al.. Reaction-bond composite synthesis of SiC‒TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST).Journal of the European Ceramic Society, 2020, 40(4): 988–995
https://doi.org/10.1016/j.jeurceramsoc.2019.11.061
|
381 |
N S, Weston B, Thomas M Jackson . Processing metal powders via field assisted sintering technology (FAST): a critical review.Materials Science and Technology, 2019, 35(11): 1306–1328
https://doi.org/10.1080/02670836.2019.1620538
|
382 |
H, Gan C B, Wang Q, Shen , et al.. Preparation of La2NiMnO6 double-perovskite ceramics by plasma activated sintering.Journal of Inorganic Materials, 2019, 34(5): 541–545
https://doi.org/10.15541/jim20180291
|
383 |
J E, Alaniz A D, Dupuy Y, Kodera , et al.. Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials.Scripta Materialia, 2014, 92: 7–10
https://doi.org/10.1016/j.scriptamat.2014.07.015
|
384 |
Y, Kodera C L, Hardin J E Garay . Transmitting, emitting and controlling light: processing of transparent ceramics using current-activated pressure-assisted densification.Scripta Materialia, 2013, 69(2): 149–154
https://doi.org/10.1016/j.scriptamat.2013.02.013
|
385 |
Z, Shen M, Johnsson Z, Zhao , et al.. Spark plasma sintering of alumina.Journal of the American Ceramic Society, 2002, 85(8): 1921–1927
https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
|
386 |
S, Deng R, Li T, Yuan , et al.. Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering.Materials Letters, 2018, 229: 126–129
https://doi.org/10.1016/j.matlet.2018.07.001
|
387 |
V Mamedov . Spark plasma sintering as advanced PM sintering method.Powder Metallurgy, 2002, 45(4): 322–328
https://doi.org/10.1179/003258902225007041
|
388 |
R, Marder C, Estournès G, Chevallier , et al.. Plasma in spark plasma sintering of ceramic particle compacts.Scripta Materialia, 2014, 82: 57–60
https://doi.org/10.1016/j.scriptamat.2014.03.023
|
389 |
D M, Hulbert A, Anders J, Andersson , et al.. A discussion on the absence of plasma in spark plasma sintering.Scripta Materialia, 2009, 60(10): 835–838
https://doi.org/10.1016/j.scriptamat.2008.12.059
|
390 |
M Tokita . Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering.Materials Science Forum, 1999, 308‒311: 83–88
https://doi.org/10.4028/www.scientific.net/MSF.308-311.83
|
391 |
Z Y, Hu Z H, Zhang X W, Cheng , et al.. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications.Materials & Design, 2020, 191: 108862
https://doi.org/10.1016/j.matdes.2020.108662
|
392 |
D, Zhao J, Feng Q, Huo , et al.. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548
pmid: 9438845
|
393 |
X, Zhang S, Gu B, Zhou , et al.. Solid-state sintering of glasses with optical nonlinearity from mesoporous powders.Journal of the American Ceramic Society, 2016, 99(5): 1579–1586
https://doi.org/10.1111/jace.14172
|
394 |
M S Raven . Radio frequency sputtering and the deposition of high-temperature superconductors.Journal of Materials Science Materials in Electronics, 1994, 5(3): 129–146
https://doi.org/10.1007/BF01198944
|
395 |
C M Horwitz . Radio frequency sputtering — the significance of power input.Journal of Vacuum Science & Technology A, 1983, 1(4): 1795–1800
https://doi.org/10.1116/1.572218
|
396 |
G, Mattei G, Battaglin E, Cattaruzza , et al.. Synthesis by co-sputtering of Au–Cu alloy nanoclusters in silica.Journal of Non-Crystalline Solids, 2007, 353(5‒7): 697–702
https://doi.org/10.1016/j.jnoncrysol.2006.10.037
|
397 |
E, Cattaruzza G, Battaglin F, Gonella , et al.. Au‒Cu nanoparticles in silica glass as composite material for photonic applications.Applied Surface Science, 2007, 254(4): 1017–1021
https://doi.org/10.1016/j.apsusc.2007.07.158
|
398 |
K Okuyama . Preparation of micro-controlled particles using aerosol process.Journal of Aerosol Science, 1991, 22: S7–S10
https://doi.org/10.1016/S0021-8502(05)80021-7
|
399 |
G L, Messing S C, Zhang G V Jayanthi . Ceramic powder synthesis by spray pyrolysis.Journal of the American Ceramic Society, 1993, 76(11): 2707–2726
https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
|
400 |
A M, El-Kady A F, Ali R A, Rizk , et al.. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles.Ceramics International, 2012, 38(1): 177–188
https://doi.org/10.1016/j.ceramint.2011.05.158
|
401 |
Y L, Hong Z, Liu L, Wang , et al.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials.Science, 2020, 369(6504): 670–674
https://doi.org/10.1126/science.abb7023
pmid: 32764066
|
402 |
Z, Cai B, Liu X, Zou , et al.. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructure.Chemical Reviews, 2018, 118(13): 6091–6133
https://doi.org/10.1021/acs.chemrev.7b00536
pmid: 29384374
|
403 |
J, Pu L, Tang C, Li , et al.. Chemical vapor deposition growth of few-layer graphene for transparent conductive films.RSC Advances, 2015, 5(55): 44142–44148
https://doi.org/10.1039/C5RA03919C
|
404 |
K A, Lozovoy A G, Korotaev A P, Kokhanenko , et al.. Kinetics of epitaxial formation of nanostructures by Frank‒van der Merwe, Volmer‒Weber and Stranski‒Krastanow growth modes.Surface and Coatings Technology, 2020, 384: 125289
https://doi.org/10.1016/j.surfcoat.2019.125289
|
405 |
M Zinke-Allmang . Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics.Thin Solid Films, 1999, 346(1‒2): 1–68
https://doi.org/10.1016/S0040-6090(98)01479-5
|
406 |
E, Ertorer J C, Avery L C, Pavelka , et al.. Surface-immobilized gold nanoparticles by organometallic CVD on amine-terminated glass surfaces.Chemical Vapor Deposition, 2013, 19(10‒12): 338–346
https://doi.org/10.1002/cvde.201307055
|
407 |
J A, Hamilton T, Pugh A L, Johnson , et al.. Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films.Inorganic Chemistry, 2016, 55(14): 7141–7151
https://doi.org/10.1021/acs.inorgchem.6b01146
pmid: 27348614
|
408 |
R G, Palgrave I P Parkin . Aerosol assisted chemical vapor deposition of gold and nanocomposite thin films from hydrogen tetrachloroaurate(III).Chemistry of Materials, 2007, 19(19): 4639–4647
https://doi.org/10.1021/cm0629006
|
409 |
S, Ashraf C S, Blackman G, Hyett , et al.. Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation.Journal of Materials Chemistry, 2006, 16(35): 3575–3582
https://doi.org/10.1039/b607335b
|
410 |
L, Talbot R K, Cheng R W, Schefer , et al.. Thermophoresis of particles in a heated boundary layer.Journal of Fluid Mechanics, 1980, 101(4): 737–758
https://doi.org/10.1017/S0022112080001905
|
411 |
S D, Ponja B A D, Williamson S, Sathasivam , et al.. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(27): 7257–7266
https://doi.org/10.1039/C8TC01929K
|
412 |
A J, Gardecka G K L, Goh G, Sankar , et al.. On the nature of niobium substitution in niobium doped titania thin films by AACVD and its impact on electrical and optical properties.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(34): 17755–17762
https://doi.org/10.1039/C5TA03772G
|
413 |
G, Walters I P Parkin . Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation.Applied Surface Science, 2009, 255(13‒14): 6555–6560
https://doi.org/10.1016/j.apsusc.2009.02.039
|
414 |
M, Ono M, Hata M, Tsunekawa , et al.. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides.Nature Photonics, 2020, 14(1): 37–43
https://doi.org/10.1038/s41566-019-0547-7
|
415 |
Y, Yang K, Kelley E, Sachet , et al.. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber.Nature Photonics, 2017, 11(6): 390–395
https://doi.org/10.1038/nphoton.2017.64
|
416 |
M, Ren B, Jia J Y, Ou , et al.. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching.Advanced Materials, 2011, 23(46): 5540–5544
https://doi.org/10.1002/adma.201103162
pmid: 22021040
|
417 |
R, Pilot R, Signorini C, Durante , et al.. A review on surface-enhanced Raman scattering.Biosensors, 2019, 9(2): 57
https://doi.org/10.3390/bios9020057
pmid: 30999661
|
418 |
E, Kolobkova M S, Kuznetsova N Nikonorov . Ag/Na ion exchange in fluorophosphate glasses and formation of Ag nanoparticles in the bulk and on the surface of the glass.ACS Applied Nano Materials, 2019, 2(11): 6928–6938
https://doi.org/10.1021/acsanm.9b01419
|
419 |
K Takada . Progress and prospective of solid-state lithium batteries.Acta Materialia, 2013, 61(3): 759–770
https://doi.org/10.1016/j.actamat.2012.10.034
|
420 |
V, Thangadurai W Weppner . Recent progress in solid oxide and lithium ion conducting electrolytes research.Ionics, 2006, 12(1): 81–92
https://doi.org/10.1007/s11581-006-0013-7
|
421 |
J G, Kim B, Son S, Mukherjee , et al.. A review of lithium and non-lithium based solid state batteries.Journal of Power Sources, 2015, 282: 299–322
https://doi.org/10.1016/j.jpowsour.2015.02.054
|
422 |
K, Takada N, Aotani K, Iwamoto , et al.. Solid state lithium battery with oxysulfide glass.Solid State Ionics, 1996, 86‒88: 877–882
https://doi.org/10.1016/0167-2738(96)00199-3
|
423 |
L, Liu F, Zhao X, Chen , et al.. Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis.Journal of Materials Chemistry B, 2020, 8(28): 6148–6158
https://doi.org/10.1039/D0TB00982B
pmid: 32568342
|
424 |
M, Shoaib A, Saeed M S U, Rahman , et al.. Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells.Materials Science and Engineering C, 2017, 77: 725–730
https://doi.org/10.1016/j.msec.2017.03.288
pmid: 28532085
|
425 |
Z, Tabia Mabrouk K, El M, Bricha , et al.. Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity.RSC Advances, 2019, 9(22): 12232–12246
https://doi.org/10.1039/C9RA01133A
pmid: 35515868
|
426 |
C, Shuai Y, Xu P, Feng , et al.. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver.Chemical Engineering Journal, 2019, 374: 304–315
https://doi.org/10.1016/j.cej.2019.03.273
|
427 |
J, Fonseca S Choi . Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets.Inorganic Chemistry, 2020, 59(6): 3983–3992
https://doi.org/10.1021/acs.inorgchem.9b03667
pmid: 32133851
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|