Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220607    https://doi.org/10.1007/s11706-022-0607-7
REVIEW ARTICLE
Nanoparticles embedded into glass matrices: glass nanocomposites
Javier FONSECA()
Department of Chemical Engineering, Northeastern University, Boston 02115, USA
 Download: PDF(10909 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.

Keywords glass nanocomposites      melt-quenching      sol-gel      ion implantation      ion-exchange     
Corresponding Author(s): Javier FONSECA   
Issue Date: 12 October 2022
 Cite this article:   
Javier FONSECA. Nanoparticles embedded into glass matrices: glass nanocomposites[J]. Front. Mater. Sci., 2022, 16(3): 220607.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0607-7
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220607
Fig.1  Examples of all-optical devices: (a) directional coupler (self-induced switching); (b) Mach?Zehnder interferometer. The response of linear (dashed lines) and non-linear (solid lines) materials is also illustrated.
Fig.2  LSPR generated by incising light on a metal NP.
MeritsGNC synthesis methods
Melt-quenchingSol-gelIon implantationIon-exchangeStaining processSpark plasma sinteringRadio frequency sputteringSpray pyrolysisCVD
AdvantageLong-standing, inexpensive, simple, short processing times, continuous processingInexpensive, low temperature processingShort processing times, low temperature processing, control of NP location within the glass, high concentration of NPs within the glassInexpensive, control of NP location within the glass, high concentration of NPs within the glass, does not damage glass, co-embedding various NPsLong-standing, inexpensive, does not damage glass, co-embedding various NPsShort processing times, continuous processingShort processing times, low temperature processing, control of NP size, control of NP size distributionInexpensive, short processing times, continuous processingSimple, short processing times, continuous processing
DisadvantageHigh temperature processing, no control of NP size, no control of NP size distribution, no control of NP location within the glassComplex, long processing times, discontinuous processing, no control of NP location within the glassExpensive, no control of NP size distribution, may damage glass, may generate impuritiesLimited to some species of NPsLimited to some species of NPsExpensive, complex, high temperature processingExpensive, complex, no control of NP location within the glassHigh temperature processing, low production rateHigh temperature processing, high purity precursors
Tab.1  Comparison of the different GNC synthesis methods
Fig.3  Schematic illustration of GNC preparation using melt-quenching technique.
CompositeHost matrixReinforcementSize of NPs (min?max (mean))/nmLoading of NPs/wt.% in excessMelt-quenching techniqueApplicationsRef.
CdSe QDs@silicate glassSilicate glass (56 wt.% SiO2, 8 wt.% B2O3, 24 wt.% K2O, 3 wt.% CaO, and 9 wt.% BaO)CdSe QDs(4.8)0.5?1Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1400 °C for 1.5 h)?[164]
Cu NPs@tellurite glassTellurite glass (87.81 wt.% TeO2, 7.76 wt.% Sb2O3, 2.33 wt.% Yb2O3, 0.97 wt.% Ce2O3, and 1.13 wt.% Er2O3)Cu NPs5?200.23Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 800 °C for 3 min), Sb2O3 redox routeIR optical devices[165]
Cu NPs@tellurite glassTellurite glass (90.94 wt.% TeO2, 7.91 wt.% Sb2O3, and 1.15 wt.% Er2O3)Cu NPs(20)0.24Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 800 °C for 3 min), Sb2O3 redox routeLasers (biomedical and bioimaging fields); thermophotovoltaic conversion of thermal radiation[166]
Au NPs@lanthanum borate glassLanthanum borate glass (23.05 wt.% La2O3, 47.38 wt.% PbO, and 29.56 wt.% B2O3)Au NPs30?400.11Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1100 °C for 30 min); annealing (at 500 °C for 2 h)NLO devices: β(532 nm) = 2 × 10?11 m·W?1[167]
Au NPs@lanthanum borate glassLanthanum borate glass (23.05 wt.% La2O3, 47.38 wt.% PbO, and 29.56 wt.% B2O3)Au NPs30?401.10NLO devices: β(532 nm) = 1.4 × 10?12 m·W?1
Au NPs@lanthanum borate glassLanthanum borate glass (23.05 wt.% La2O3, 47.38 wt.% PbO, and 29.56 wt.% B2O3)Au NPs(40)0.001Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1100 °C for 30 min); annealing (at 500 °C for 2 h)NLO devices: n2(532 nm) = 6.7 × 10?14 m2·W?1[168]
Au NPs@lanthanum borate glassLanthanum borate glass (23.05 wt.% La2O3, 47.38 wt.% PbO, and 29.56 wt.% B2O3)Au NPs(40)0.001NLO devices: n2(532 nm) = 5.6 × 10?14 m2·W?1
Au NPs@bismuthate glassBismuthate glass (91.22 wt.% Bi2O3, 6.82 wt.% B2O3, and 1.96 wt.% SiO2)Au NPs3?9?Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1200 °C for 30 min); annealing (at 390 °C for 2 h)NLO devices: χ(3)(800 nm) = 4.88 × 10?10 esu[169]
Ag NPs@oxyfluoride glassOxyfluoride glass (36.10 wt.% SiO2, 19.61 wt.% Al2O3, 14.91 wt.% ZnF2, 21.14 wt.% SrF2, 5.70 wt.% B2O3, and 2.54 wt.% Na2O)Ag NPs(< 5)5.23Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1450 °C for 45 min)LED illumination and solar cells[170]
Ag NPs@oxyfluoride glassOxyfluoride glass (35.06 wt.% SiO2, 19.04 wt.% Al2O3, 14.48 wt.% ZnF2, 20.53 wt.% SrF2, 5.54 wt.% B2O3, 2.47 wt.% Na2O, and 2.89 wt.% YbF3)Ag NPs(< 5)5.14
Ag NPs@tellurite glassTellurite glass (85.70 wt.% TeO2, 11.58 wt.% ZnO, and 2.72 wt.% Er2O3)Ag NPs(12)0.38Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 800 °C for 15 min); annealing (At 350 °C for 8 h)Nanophotonics[97]
Ag NPs@sodium borosilicate glassSodium borosilicate glass (62.48 wt.% SiO2, 8.78 wt.% B2O3, 11.72 wt.% Na2O, 3.97 wt.% NaF, and 13.06 wt.% SrO)Ag NPs(3.5)2.49Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1450 °C for 1 h); annealing (at 450 °C for 2 h)Solid-state lasers[171]
Ag NPs@SmF3-doped sodium borosilicate glassSodium borosilicate glass (62.48 wt.% SiO2, 8.78 wt.% B2O3, 11.72 wt.% Na2O, 3.97 wt.% NaF, 13.06 wt.% SrO, and 2.49 wt.% SmF3)Ag NPs(7.5)2.49
Bi-coated Ag NPs@bismuthate glassBismuthate glass (79.13 wt.% Bi2O3, 12 wt.% K2O, and 8.87 wt.% B2O3)Ag NPs coated with Bi5?150.007Concomitant synthesis of glass matrix and NPs: melt-quenching (melting at 1100 °C for 10 min); annealing (at 350 °C for 2 h)Nanophotonics and optoelectronics[172]
Bi-coated Ag NPs@bismuthate glassBismuthate glass (79.13 wt.% Bi2O3, 12 wt.% K2O, and 8.87 wt.% B2O3)Ag NPs coated with Bi10?350.03
Ag NPs@calcium fluorophosphate glassCalcium fluorophosphate glass (12.63 wt.% CaO, 4.40 wt.% CaF2, 79.94 wt.% P2O5, and 3.03 wt.% SnO)Ag NPs(5)2.37Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1200 °C for 15 min); heat-assisted NP precipitation (at 550 °C for 10 h)?[173]
Ag NPs@calcium fluorophosphate glassCalcium fluorophosphate glass (12.63 wt.% CaO, 4.40 wt.% CaF2, 79.94 wt.% P2O5, and 3.03 wt.% SnO)Ag NPs(15)2.37Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1200 °C for 15 min); heat-assisted NP precipitation (at 550 °C for 30 h)
Ag NPs@calcium fluorophosphate glassCalcium fluorophosphate glass (12.63 wt.% CaO, 4.40 wt.% CaF2, 79.94 wt.% P2O5, and 3.03 wt.% SnO)Ag NPs(42)2.37Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1200 °C for 15 min); heat-assisted NP precipitation (at 550 °C for 50 h)
Ag NPs@lanthanum sodium borate glassLanthanum sodium borate glass (67.23 wt.% B2O3, 11.14 wt.% Na2O, 19.52 wt.% La2O3, and 2.11 wt.% Eu2O3)Ag NPs(2.72)0.17Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1050 °C for 2 h); heat-assisted NP precipitation (at 450 °C for 10 h)Solid-state lasers[174]
Ag NPs@lanthanum sodium borate glassLanthanum sodium borate glass (67.23 wt.% B2O3, 11.14 wt.% Na2O, 19.52 wt.% La2O3, and 2.11 wt.% Eu2O3)Ag NPs(4.64)0.17Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1050 °C for 2 h); heat-assisted NP precipitation (at 450 °C for 15 h)
Ag NPs@lanthanum sodium borate glassLanthanum sodium borate glass (67.23 wt.% B2O3, 11.14 wt.% Na2O, 19.52 wt.% La2O3, and 2.11 wt.% Eu2O3)Ag NPs(6.40)0.17Heat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1050 °C for 2 h); heat-assisted NP precipitation (at 450 °C for 20 h)
Ag NPs/Au NPs@phosphate glassPhosphate glass (82.58 wt.% P2O5, 3.69 wt.% MgO, 11.10 wt.% ZnSO4, and 2.63 wt.% Eu2O3)Ag NPs and Au NPs(27.65)0.44 wt.% Ag, 1.5 wt.% AuHeat-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1100 °C for 1.5 h); heat-assisted NP precipitation (at 300 °C for 3 h)Solid-state lasers[175]
Ag NPs@silicate glassSilicate glass (70.02 wt.% SiO2, 9.34 wt.% CaO, and 20.64 wt.% Na2O)Ag NPs1?8?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1550 °C for 1 h); femtosecond laser irradiation; annealing (at 550 °C for 10 min)Art, optical memory, and all-optical switching devices[176]
Au NPs@silicate glassSilicate glass (70.02 wt.% SiO2, 9.34 wt.% CaO, and 20.64 wt.% Na2O)Au NPs6?8?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1550 °C for 1 h); femtosecond laser irradiation; annealing (at 550 °C for 30 min)Art, optical memory, and all-optical switching devices[177]
Ag NPs/Au NPs@silicate glassSilicate glass (70.02 wt.% SiO2, 9.34 wt.% CaO, and 20.64 wt.% Na2O)Ag NPs and Au NPs??Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1550 °C for 1 h); femtosecond laser irradiation; annealingArt, optical memory, and all-optical switching devices[178]
Cu NPs@borate glassBorate glass (6.78 wt.% K2O, 4.04 wt.% CaO, and 89.19 wt.% B2O3)Cu NPs3?5 (4)?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1000 °C for 30 min); annealing (at 300 °C for 2 h); femtosecond laser irradiationArt, optical memory, and all-optical switching devices[179]
Cu NPs@soda-lime silicate glassSoda-lime silicate glass (46.62 wt.% SiO2, 18.37 wt.% B2O3, 7.19 wt.% MgO, 9.62 wt.% Na2O, and 18.20 wt.% Al2O3)Cu NPs(9)?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1400 °C for 1 h); annealing (at 400 °C for 12 h); femtosecond laser irradiation; heat treatment (at 600 °C for 1 h)Art, optical memory, and all-optical switching devices[180]
Ag NPs@borosilicate glassBorosilicate glass (75.22 wt.% SiO2, 16.98 wt.% Na2O, 3.01 wt.% Al2O3, and 4.79 wt.% CaO)Ag NPs1?5.6 (2.8)?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1450 °C for 4 h); X-ray irradiation (34 min); heat treatment (at 400 °C for 15 min)Art, optical memory, and all-optical switching devices[181]
Au NPs@borosilicate glassBorosilicate glass (72.68 wt.% SiO2, 15.67 wt.% Na2O, 2.19 wt.% Al2O3, and 9.45 wt.% CaO)Au NPs(1.8)?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation (melting at 1400 °C for 3 h); annealing (at 550 °C for 15 min); X-ray irradiation (5 min); heat treatment (at 600 °C for 20 min or for 3 h)Art, optical memory, and all-optical switching devices[182]
Cu NPs@silicate glassSilicate glass (75.32 wt.% SiO2, 16.8 wt.% Na2O, 7.6 wt.% CaO, and 0.28 wt.% SnO2)Cu NPs2?8?Irradiation-assisted precipitation of NPs: melt-quenching for glass preparation; ion irradiation; heat treatment (at 400 °C for 10 h)?[183]
Ag NPs@phosphate glassPhosphate glass (77.46 wt.% P2O5, 3.79 wt.% MgO, 15.19 wt.% ZnSO4, and 3.56 wt.% Ho2O3)Ag NPs(4.93)0.4NPs added before glass formation: melt-quenching for glass preparation (melting at 1100 °C for 1.5 h); annealing (at 300 °C for 3.5 h)Solid-state lasers[75]
NiO NPs@borate glassBorate glass (58.10 wt.% B2O3, 31.12 wt.% ZnO, and 10.78 wt.% Na2O)NiO NPs(70)a)0.52NPs added before glass formation: melt-quenching for glass preparation (melting at 1200 °C for 2 h); annealing (at 400 °C for 1 h)Semiconductor applications[184]
Sm2O3 NPs@bio-borosilicate glassBio-borosilicate glass (10.17 wt.% SiO2, 14.15 wt.% B2O3, and 75.68 wt.% TeO2)Sm2O3 NPs(71.74)8.37NPs added before glass formation: melt-quenching for glass preparation (melting at 1050 °C for 3 h); annealing (at 400 °C for 2 h)Non-linear optics[185]
CdFe2O4/SiO2 NPs@antimony phosphate glassAntimony phosphate glass (68.47 wt.% SbPO4, 16.47 wt.% ZnO, and 15.06 wt.% PbO)CdFe2O4/SiO2 NPs(3.5)2.5NPs added to a molten glass: melt-quenching for glass preparation (melting at 1100 °C for 30 min); NPs added to a molten glass; melt-quenching for embedding CdFe2O4/SiO2 NPs (melting at 1100 °C for 7 min)Magneto-optical devices[186]
Fe3O4 NPs@tellurite glassTellurite glass (88.44 wt.% TeO2, and 11.56 wt.% ZnO)Fe3O4 NPs18?70(a)3.18NPs added before glass formation: melt-quenching for glass preparation (melting at 850 °C for 20 min); annealing (at 300 °C for 3 h)Magneto-optical devices[187]
Fe3O4 NPs@tellurite glassTellurite glass (86.97 wt.% TeO2, 10.17 wt.% ZnO, 0.21 wt.% LiO, and 2.66 wt.% Er2O3)Fe3O4 NPs18?70(a)2.35NPs added before glass formation: melt-quenching for glass preparation (melting at 850 °C for 20 min); annealing (at 300 °C for 3 h)Magneto-optical devices[188]
Fe3O4 NPs@phosphate glassPhosphate glass (77.24 wt.% P2O5, 19.68 wt.% ZnO, and 3.08 wt.% Er2O3)Fe3O4 NPs(31)2.72NPs added before glass formation: melt-quenching for glass preparation (melting at 950 °C for 1 h); annealing (at 300 °C for 3 h)Magneto-optical devices[189]
Fe3O4 NPs@phosphate glassPhosphate glass (77.10 wt.% P2O5, 19.79 wt.% ZnO, and 3.10 wt.% Er2O3)Fe3O4 NPs(26)3.6222
Tab.2  GNCs prepared by melt-quenching techniques [75,97,164189]
Fig.4  (a) TEM image of the GNC (Au NPs@bismuthate glass). (b) HRTEM image of Au NP embedded into the glass matrix. Reproduced with permission from Ref. [169] (Copyright 2011 Elsevier).
Fig.5  (a) UV-vis spectra of GNCs. Notation: A05H8 = Composite made from Ag NPs (0.5 mol.% AgCl precursor) embedded into an Er3+-doped tellurite glass; A10H8 = Composite made from Ag NPs (1 mol.% AgCl precursor) embedded into an Er3+-doped tellurite glass. E1A05H8 revealed three prominent plasmon peaks at 562, 598, and 628 nm. E0A10H8 showed two peaks at 550 and 578 nm. This difference between E1A05H8 and E0A10H8 was attributed to the non-spherical Ag NPs. (b) Size distribution of Ag NPs (0.5 mol.% AgCl precursor) embedded into an Er3+-doped tellurite glass. (c) TEM image of Ag NPs (0.5 mol.% AgCl precursor) embedded into an Er3+-doped tellurite glass. (d) HRTEM micrograph of Ag NPs (0.5 mol.% AgCl precursor) embedded into an Er3+-doped tellurite glass. The image shows a 0.125 nm fringe spacing corresponding to the (3 1 1) Ag lattice spacing. Reproduced with permission from Ref. [97] (Copyright 2013 Elsevier).
Fig.6  (a) TEM image of Ag NPs embedded in calcium fluorophosphate glass (heated at 550 °C for 10 h). Inset: the size distribution of Ag NPs. (b) HRTEM of Ag NPs@calcium fluorophosphate glass (heated at 550 °C for 10 h). (c) TEM image of Ag NPs embedded in calcium fluorophosphate glass (heated at 550 °C for 30 h). Inset: the size distribution of Ag NPs. (d) Selected area electron diffraction (SAED) image of Ag NPs embedded in calcium fluorophosphate glass (heated at 550 °C for 30 h). Reproduced with permission from Ref. [173] (Copyright 2015 Elsevier).
Fig.7  (a) TEM image of CsPbBr3 QDs@sodium borosilicate glass. (b) TEM image of CsPbBr3 QDs/Ag NPs@sodium borosilicate glass (0.1 mol.% of Ag2O precursor). Notation: red spheres denote the CsPbBr3 QDs. Reproduced with permission from Ref. [202] (Copyright 2019 John Wiley & Sons).
Fig.8  CsPbBr3 QDs/Ag NPs@sodium borosilicate glass (0.1 mol.% of Ag2O precursor) in water under the irradiation of a 400 nm lamp. Reproduced with permission from Ref. [202] (Copyright 2019 John Wiley & Sons).
Fig.9  (a) Photograph of the composite after femtosecond laser irradiation and annealing at 400 °C for 30 min. (b) Photograph of the composite after femtosecond laser irradiation and annealing at 570 °C for 30 min. The average laser power was 10 mW. Reproduced with permission from Ref. [178] (Copyright 2006 Elsevier).
Fig.10  Schematic illustration of femtosecond laser inducing the precipitation of Cu NPs. Reproduced with permission from Ref. [179] (Copyright 2010 Elsevier).
Fig.11  (a) Photograph of the glass sample with a grating pattern after irradiation with a femtosecond laser. (b) Optical microscope photograph of the enlarged grating pattern. (c)(d) Photographs of the diffraction patterns of glass samples before irradiation (panel (c); no diffraction pattern was observed in glass) and after irradiation (panel (d); a diffraction pattern was observed when the grating pattern was irradiated by a 532 nm laser) with a femtosecond laser. Reproduced with permission from Ref. [179] (Copyright 2010 Elsevier).
Fig.12  Schematic illustration of (a) the synthesis of Fe3?δO4@SiO2 NPs and (b) the preparation of the phosphate glasses containing monodisperse Fe3?δO4@SiO2 NPs. Reproduced with permission from Ref. [214] (Copyright 2020 Elsevier).
Fig.13  M?H curves at room temperature for (a) Fe3O4 NPs and (b) GNCs (Fe3O4 NPs@phosphate glasses) with different concentrations of embedded Fe3O4 NPs. Reproduced with permission from Ref. [189] (Copyright 2015 Elsevier).
Fig.14  Schematic illustration of the sol-gel process sequence to prepare NPs embedded into glass matrices.
CompositeHost matrixReinforcementSize of NPs (min?max (mean))/nmLoading of NPs/wt.%Sol-gel techniqueApplicationRef.
Ag NPs@silica glass (Ag·4SiO2)Silica glassAg NPs9.0?30.9 (19.5)28.7Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[241]
Ag NPs@silica glass (Ag·12SiO2)Silica glassAg NPs?10.22
Co NPs@silica glass (Co·SiO2)Silica glassCo NPs11.0?24.9 (17.4)47.51
Cu NPs@silica glass (Cu·SiO2)Silica glassCu NPs1.5?7.4 (3.9)46.17
Ni NPs@silica glass (Ni·SiO2)a)Silica glassNi NPs37.5?62.4 (50.3)43.7
Ni NPs@silica glass (Ni·2SiO2)a)Silica glassNi NPsBimodal particle distribution: 7.5?12.4, 27.5?72.431.08
Ni NPs@silica glass (Ni·3SiO2)a)Silica glassNi NPsBimodal particle distribution: 2.5?22.4, 62.5?102.420.05
Ni NPs@silica glass (Ni·5.5SiO2)a)Silica glassNi NPsBimodal particle distribution: 2.5?12.4, 32.5?57.414.01
Ni NPs@silica glass (Ni·10SiO2)a)Silica glassNi NPs12.5?47.4 (22.9)6.99
Ni NPs@silica glass (Ni·33SiO2)a)Silica glassNi NPs2.5?12.4 (5.9)2.65
Pd NPs@silica glass (Pd·2SiO2)Silica glassPd NPs1.8?4.2 (3.0)44.81
Pd NPs@silica glass (Pd·4.5SiO2)Silica glassPd NPs?26.03
Pd NPs@silica glass (Pd·7SiO2)Silica glassPd NPs1.8?4.2 (2.8)18.12
Pd NPs@silica glass (Pd·12SiO2)Silica glassPd NPs?10.84
Pd NPs@silica glass (Pd·22SiO2)Silica glassPd NPs?7.18
Pd NPs@silica glass (Pd·32SiO2)Silica glassPd NPs1.3?3.7 (2.4)5.52
Pd NPs@silica glass (Pd·15SiO2)Silica glassPd NPs2.8?5.2 (3.8)9.36
Pt NPs@silica glass (Pt·32SiO2)Silica glassPt NPs0.8?4.2 (2.5)7.93
Pt NPs@silica glassa)Silica glassPt NPs(7.1)17Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[242]
Pt NPs@silica glassb)Silica glassPt NPs(3.5)24.8
Pt NPs@silica glassc)Silica glassPt NPs(4.0)24.3
Pt NPs@silica glassd)Silica glassPt NPs(5.0)21.5
Ni NPs@silica glassb)e)Silica glassNi NPs(8.5)4Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[243]
Ni NPs@silica glassb)f)Silica glassNi NPs(8.5)9
Ni NPs@silica glassb)g)Silica glassNi NPs(8.2)24
Ni NPs@silica glassb)h)Silica glassNi NPs(8.5)10
Fe2P NCs@silica xerogelSilica xerogelFe2P NCs(4.6)6.64Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[244]
RuP NCs@silica xerogelSilica xerogelRuP NCs(4.7)8.23
Co2P NCs@silica xerogelSilica xerogelCo2P NCs(5.0)4.96
Rh2P NCs@silica xerogelSilica xerogelRh2P NCs(2.0)8.79
Ni2P NCs@silica xerogelSilica xerogelNi2P NCs(2.6)6.83
Pd5P2 NCs@silica xerogelSilica xerogelPd5P2 NCs(11.3)25.84
PtP2 NCs@silica xerogelSilica xerogelPtP2 NCs(4)2.77
Co3C NCs@silica xerogelSilica xerogelCo3C NCs10?46 (25)?Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[245]
Ge NCs@silica xerogelSilica xerogelGe NCs2.5?14.5 (6.7)?Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[246]
Os NPs@silica xerogelSilica xerogelOs NPs1?7 (2.1)0.2?1Concomitant synthesis of glass matrix and NPs: tethering metal precursors to the matrix during sol-gel processing?[247]
PtSn@silica xerogelSilica xerogelPtSn alloy NPs2?14 (6)?
CdS QDs@sodium borosilicate glassi)Sodium borosilicate glass (33.33 wt.% SiO2, 33.33 wt.% B2O3, and 33.33 wt.% Na2O)CdS QDs(18.4)?Concomitant synthesis of glass matrix and NPsSolar concentration; lasers[248]
CdS QDs@sodium borosilicate glassj)Sodium borosilicate glass (33.33 wt.% SiO2, 33.33 wt.% B2O3, and 33.33 wt.% Na2O)CdS QDs(15.4)?
CdS QDs@sodium borosilicate glassk)Sodium borosilicate glass (33.33 wt.% SiO2, 33.33 wt.% B2O3, and 33.33 wt.% Na2O)CdS QDs(5.7)?
CdS QDs@sodium borosilicate glassl)Sodium borosilicate glass (33.33 wt.% SiO2, 33.33 wt.% B2O3, and 33.33 wt.% Na2O)CdS QDs(4.3)?
Sb NPs@sodium borosilicate glassSodium borosilicate glass (72.88 wt.% SiO2, 21.38 wt.% B2O3, and 5.74 wt.% Na2O)Sb NPs(32.63)1.5Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 4.85 × 10?11 esu[249]
Cu NPs@sodium borosilicate glassSodium borosilicate glass (72.88 wt.% SiO2, 21.38 wt.% B2O3, and 5.74 wt.% Na2O)Cu NPs1.5?5 (2.7)1.25Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 2.41 × 10?11 esu[250]
Cu2In NPs@sodium borosilicate glassSodium borosilicate glass (72.88 wt.% SiO2, 21.38 wt.% B2O3, and 5.74 wt.% Na2O)Cu2In NPs(30.28)1.5Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 3.32 × 10?10 esu[15]
In2O3 NCs@silica glassSilica glassIn2O3 NCs(23)1Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmospherePhotocatalytic degradation of organic pollutants[251]
In2O3 NCs@silica glassSilica glassIn2O3 NCs(54)3
Au NPs@sodium borosilicate glassSodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)Au NPs2.82?9.97 (5.48)0.25Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 1.7 × 10?14 esu[252]
Cu3.8Ni@sodium borosilicate glassSodium borosilicate glass (72.88 wt.% SiO2, 21.38 wt.% B2O3, and 5.74 wt.% Na2O)Cu3.8Ni alloy NPs15?40 (27.5)1.5Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 4.92 × 10?11 esu[253]
Au NP/Ni NP@sodium borosilicate glassSodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)Au NPs and Ni NPs8 nm Au NPs, 2 nm Ni NPs2 wt.% Au, 1 wt.% NiConcomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 2.31 × 10?12 esu[254]
Au NP/NiO NP@sodium borosilicate glassSodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)Au NPs and NiO NPs7 nm Au NPs, 7 nm NiO NPs2 wt.% Au, 1 wt.% NiOConcomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 1.81 × 10?13 esu
Au NPs/Cu NPs@sodium borosilicate glass (1)Sodium borosilicate glass (96.7 wt.% SiO2, 2.7 wt.% B2O3, and 0.6 wt.% Na2O)Au NPs and Cu NPs12.89 nm Au NPs, 12.89 nm Cu NPs0.25 wt.% Au, 0.75 wt.% CuConcomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 3.1 × 10?12 esu[255]
Au NPs/Cu NPs@sodium borosilicate glass (2)Sodium borosilicate glass (96.7 wt.% SiO2, 2.7 wt.% B2O3, and 0.6 wt.% Na2O)Au NPs and Cu NPs18.08 nm Au NPs, 18.08 nm Cu NPs0.25 wt.% Au, 0.75 wt.% CuConcomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) =5.4 × 10?12 esu
Au NPs/Cu NPs@sodium borosilicate glass (3)Sodium borosilicate glass (96.7 wt.% SiO2, 2.7 wt.% B2O3, and 0.6 wt.% Na2O)Au NPs and Cu NPs22.3 nm Au NPs, 22.3 nm Cu NPs0.25 wt.% Au, 0.75 wt.% CuConcomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 4.4 × 10?12 esu
Cu NPs@borosilicate glassm)Sodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)Cu NPs9?34 (18.8)2Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 6.4 × 10?14 esu[14]
Cu2O NCs@borosilicate glassn)Sodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)Cu2O NCs1?6 (3.12)2Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 1.6 × 10?14 esu
CuO NCs@borosilicate glasso)Sodium borosilicate glass (75 wt.% SiO2, 20 wt.% B2O3, and 5 wt.% Na2O)CuO NCs1?5 (2.24)2Concomitant synthesis of glass matrix and NPs: sol-gel method combined with heat treatment in a suitable atmosphereNLO devices: χ(3)(800 nm) = 2.6 × 10?14 esu
Au NPs/Ag NPs@silica glassSilica glassAu NPs and Ag NPs3.7?63 (22)?Sol-gel technique combined with NP or NP precursors impregnation: sol-gel method and loading of NPsArt[156]
AuAg@silica glassSilica glassAuAg alloy NPs5.6?51.9 (16)?Sol-gel technique combined with NP or NP precursors impregnation: sol-gel method and loading of NPsArt
Au NPs@silica glassSilica glassAu NPs10?30?Sol-gel technique combined with NP or NP precursors impregnation: sol-gel method and loading of NPsNLO devices: β(532 nm) = ?1.37 × 10?10 m·W?1[256]
Sm2O3 NPs@borosilicate glassBorosilicate glass (85.17 wt.% SiO2, 14.83 wt.% B2O3)Sm2O3 NPs(2.7)5.12Sol-gel technique combined with NP or NP precursors impregnation: sol-gel method and loading of NP precursorsHigh-density optical storage, undersea communication, and color displays[257]
Sm2O3 NPs@sodium borosilicate glassSodium borosilicate glass (77.80 wt.% SiO2, 13.54 wt.% B2O3, and 8.65 wt.% Na2O)Sm2O3 NPs(4.1)4.44Sol-gel technique combined with NP or NP precursors impregnation: sol-gel method and loading of NP precursors
Tab.3  GNCs prepared by sol-gel techniques [14,15,241257]
Fig.15  (a) TEM image of Sb NPs embedded in sodium borosilicate glass. (b) Size distribution of Sb NPs in the glass matrix. (c) HRTEM of Sb NPs@sodium borosilicate glass. (d) SAED image of Sb NPs@sodium borosilicate glass. Reproduced with permission from Ref. [249] (Copyright 2014 Elsevier).
Fig.16  (a) TEM image of Au NPs embedded in sodium borosilicate glass. (b) Size distribution of Au NPs in the glass matrix. (c) HRTEM of Au NPs@sodium borosilicate glass. (d) SAED image of Au NPs@sodium borosilicate glass. Reproduced with permission from Ref. [252] (Copyright 2015 Springer Nature).
Fig.17  TEM images of (a) red GNC, (b) green GNC, and (c) blue GNC. HRTEM images of (d) red GNC, (e) green GNC, and (f) blue GNC. Size distribution images of (g) red GNC, (h) green GNC, and (i) blue GNC. Photographs of as-obtained (j) red GNC, (k) green GNC, and (l) blue GNC. Reproduced with permission from Ref. [14] (Copyright 2015 American Chemical Society).
CompositeHost matrixReinforcementSize of NPs (min?max (mean))/nmIon implantation techniqueApplicationRef.
Au NPs@silica glassSilica glassAu NPs(2)Single implantation: ion implantation — Au ions of 190 keV, ion fluence (4 × 1016 ion·cm?2), flux (2 μA·cm?2)?[282]
Au NPs@silica glassSilica glassAu NPs(3.6)Single implantation: ion implantation — Au ions of 190 keV, ion fluence (4 × 1016 ion·cm?2), flux (2 μA·cm?2); annealing (at 900 °C for 1 h)
Au NPs@silica glassSilica glassAu NPs(5.6)Single implantation: ion implantation — Au ions of 190 keV, ion fluence (4 × 1016 ion·cm?2), flux (2 μA·cm?2); annealing (at 900 °C for 3 h)
Au NPs@silica glassSilica glassAu NPs(12.6)Single implantation: ion implantation — Au ions of 190 keV, ion fluence (4 × 1016 ion·cm?2), flux (2 μA·cm?2); annealing (at 900 °C for 12 h)
Ag NPs@silica glassSilica glassAg NPs(7.7)Single implantation: ion implantation — Ag ions of 1 MeV, ion fluence (5 × 1016 ion·cm?2), flux (1 μA·cm?2)?[283]
Ag NPs@silica glassSilica glassAg NPs(2.7)Single implantation: ion implantation — Ag ions of 1 MeV, ion fluence (5 × 1016 ion·cm?2), flux (1 μA·cm?2); ion implantation — Si ions of 9.4 MeV, ion fluence (1 × 1014?8 × 1015 ion·cm?2)
Ag NPs@chalcohalide glassChalcohalide glass (48.80 wt.% GeS2, 36.04 wt.% Ga2S3, and 15.16 wt.% KBr)Ag NPs(100)Single implantation: ion implantation — Ag ions of 200 MeV, ion fluence (1 × 1016 ion·cm?2)NLO devices: χ(3)(800 nm) = 2.6 × 10?13 esu[284]
Ag NPs@chalcohalide glassChalcohalide glass (48.80 wt.% GeS2, 36.04 wt.% Ga2S3, and 15.16 wt.% KBr)Ag NPs(150)Single implantation: ion implantation — Ag ions of 200 MeV, ion fluence (5 × 1016 ion·cm?2)NLO devices: χ(3)(800 nm) = 2.8 × 10?13 esu
Ag NPs@chalcohalide glassChalcohalide glass (48.80 wt.% GeS2, 36.04 wt.% Ga2S3, and 15.16 wt.% KBr)Ag NPs(200)Single implantation: ion implantation — Ag ions of 200 MeV, ion fluence (1 × 1017 ion·cm?2)NLO devices: χ(3)(800 nm) = 3.3 × 10?13 esu
Ag NPs@chalcohalide glassChalcohalide glass (48.80 wt.% GeS2, 36.04 wt.% Ga2S3, and 15.16 wt.% KBr)Ag NPs(300)Single implantation: ion implantation — Ag ions of 200 MeV, ion fluence (2 × 1017 ion·cm?2)NLO devices: χ(3)(800 nm) = 1.4 × 10?13 esu
Ag NPs@silica glassSilica glassAg NPs(1.2)Single implantation: ion implantation — Ag ions of 330 keV, ion fluence (1 × 1016 ion·cm?2); annealing (at 600 °C for 1 h)?[285]
Ag NPs@silica glassSilica glassAg NPs(1)Single implantation: ion implantation — Ag ions of 1.2 MeV, ion fluence (1 × 1016 ion·cm?2); annealing (at 600 °C for 1 h)
Ag NPs@silica glassSilica glassAg NPs(1)Single implantation: ion implantation — Ag ions of 1.7 MeV, ion fluence (1 × 1016 ion·cm?2); annealing (at 600 °C for 1 h)
Au NPs@silica glassSilica glasAu NPs(2.84)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (3 × 1016 ion·cm?2), flux (1.5 μA·cm?2)Optoelectronics[286]
Au NPs@silica glassSilica glasAu NPs(2.66)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (4 × 1016 ion·cm?2), flux (1.5 μA·cm?2)
Au NPs@silica glassSilica glasAu NPs(3.18)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (5 × 1016 ion·cm?2), flux (1.5 μA·cm?2)
Au NPs@silica glassSilica glasAu NPs(3.02)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (6 × 1016 ion·cm?2), flux (1.5 μA·cm?2)
Au NPs@silica glassSilica glasAu NPs(9.14)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (7 × 1016 ion·cm?2); flux (1.5 μA·cm?2)
Au NPs@silica glassSilica glasAu NPs(9.98)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (8 × 1016 ion·cm?2), flux (1.5 μA·cm?2)
Au NPs@silica glassSilica glasAu NPs(11.68)Single implantation: ion implantation — Au ions of 60 keV, ion fluence (9 × 1016 ion·cm?2), flux (1.5 μA·cm?2)
Au NPs@borate glassBorate glass (10.66 wt.% B2O3, 67.12 wt.% PbO, 9.62 wt.% GeO2, 10.71 wt.% Bi2O3, and 1.89 wt.% Pr2O3)Au NPs(2.8)Single implantation: Melt-quenching for glass preparation (melting at 1250 °C for 1 h); annealing (at 330 °C for 2 h); ion implantation — Au ions of 300 keV, ion fluence (1 × 1016 ion·cm?2); annealing (at 330 °C for 12 h)Gain media for amplifiers in optical telecommunication windows[287]
Cu NPs@silica glassSilica glassCu NPs(20)Single implantation: ion implantation — Cu ions of 40 keV, ion fluence (5 × 1016 ion·cm?2), flux (5 μA·cm?2)?[288]
Cu NPs@silica glassSilica glassCu NPs6?10Single implantation: ion implantation — Cu ions of 200 keV, ion fluence (3 × 1016 ion·cm?2); annealing (at 400 °C for 1 h)NLO devices: χ(3)(532 nm) = 1.5 × 10?8 esu[289]
Au NPs@silica glassSilica glassAu NPs6?10Single implantation: ion implantation — Au ions of 1.5 MeV, ion fluence (1 × 1017 ion·cm?2); annealing (at 400 °C for 1 h)NLO devices: χ(3)(532 nm) = ?3.7 × 10?12 esu
Cu NPs@silica glassSilica glassCu NPs1?15 (5.6)Single implantation: ion implantation — Cu ions of 180 keV, ion fluence (1 × 1017 ion·cm?2), flux (1.5 μA·cm?2)NLO devices: χ(3)(532 nm) = ?2.1 × 10?7 esu, χ(3)(1064 nm) = ?1.2 × 10?7 esu[290]
Ag NPs@silica glassSilica glassAg NPs35?48Multiple implantation: ion implantation — Ag ions of 200 keV, ion fluence (5 × 1016 ion·cm?2), flux (1 μA·cm?2); ion implantation — Cu ions of 110 keV, ion fluence (5 × 1016 ion·cm?2), flux (1.5 μA·cm?2)?[291]
Ag NPs/Ni NPs@silica glassSilica glassAg NPs and Ni NPs0.5?2 nm Ag NPs, 0.5?4 nm Ni NPsMultiple implantation:ion on implantation — Ni ions of 60 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2); ion implantation — Ag ions of 70 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2); annealing (at 600 °C for 1 h)Optoelectronics, optical sensors, and antibacterial materials[292]
Ag NPs@silica glassSilica glassAg NPs3?17Single implantation: ion implantation — Ag ions of 35 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2)Optoelectronics, optical sensors, and antibacterial materials[293]
Ag NPs@silica glassSilica glassAg NPs4?8Multiple implantation: ion implantation — Zn ions of 50 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2); ion implantation — Ag ions of 35 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2)
Ag NPs/Zn NPs/AgZn NPs@silica glassSilica glassAg NPs, Zn NPs and AgZn alloy NPs2?12Multiple implantation: ion implantation — Ag ions of 35 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2); ion implantation — Zn ions of 50 keV, ion fluence (5 × 1016 ion·cm?2), flux (4 μA·cm?2)
Tab.4  GNCs prepared by ion implantation techniques [282?293]
Fig.18  Physical phenomena involved in the formation of metal NPs by ion implantation. Reproduced with permission from Ref. [295] (Copyright 2004 Elsevier).
Fig.19  TEM images of Ag NPs within silica glass (a) before and (b) after Si ion-irradiation. NP size distribution histograms are shown as insets. Reproduced with permission from Ref. [283] (Copyright 2014 Elsevier).
Fig.20  Cross-sectional bright-field TEM images of (a) the as-implanted and the annealed for (c) 1 h, (e) 3 h, and (g) 12 h GNCs. Au NPs size distribution in (b) the as-implanted and the annealed for (d) 1 h, (f) 3 h, and (h) 12 h GNCs. Reproduced with permission from Ref. [282] (Copyright 2002 AIP Publishing).
Fig.21  (a) Cross-sectional TEM image, (b) SAED result, and (c) Ag NP size distribution of the GNC prepared by Ag+ ion implantation. (d) Cross-sectional TEM image, (e) SAED result, and (f) Ag NP size distribution of the GNC prepared by Zn2+ ion implantation and Ag+ ion post-implantation. (g) Cross-sectional TEM image, (h) SAED result, and (i) Ag NP size distribution of the GNC prepared by Ag+ ion implantation and Zn2+ ion post-implantation. Reproduced with permission from Ref. [293] (Copyright 2013 AIP Publishing).
Fig.22  Schematic illustration of the annealing processes in a GNC formed by Cu+ ion implantation and Zn2+ ion post-implantation (fluence of 5 × 1016 ions·cm?2): (a) CuZn alloy NP; (b) Zn diffusion-driven realloying process; (c) Zn diffusion-driven formation of the Cu-rich core and Zn-rich shell structure; (d) Cu core and Zn shell NP. Reproduced with permission from Ref. [308] (Copyright 2013 American Chemical Society).
Fig.23  (a) Schematic illustration of thermally assisted ion-exchange. (b) The monovalent cation A is introduced into the glass matrix, which contains the monovalent cation B, by an interphase chemical potential gradient. To maintain charge neutrality, the monovalent cation B is released into the molten salt solution. (c) Schematic illustration of electric field-assisted ion-exchange.
CompositeHost matrixReinforcementSize of NPs (min-max (mean))/nmIon-exchange techniqueApplicationRef.
Ag NPs@borosilicate glassBorosilicate glass (52.70 wt.% SiO2, 11.11 wt.% B2O3, 24.71 wt.% Na2O, 8.13 wt.% Al2O3, and 3.35 wt.% NaF)Ag NPs(2.0 ± 1.00)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (0.99:99.01 wt.%), 310 °C for 1 hPhotoluminescence[324]
Ag NPs@borosilicate glassBorosilicate glass (52.70 wt.% SiO2, 11.11 wt.% B2O3, 24.71 wt.% Na2O, 8.13 wt.% Al2O3, and 3.35 wt.% NaF)Ag NPs(4.2 ± 2.2)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (3.84:96.16 wt.%), 310 °C for 1 h
Ag NPs@borosilicate glassBorosilicate glass (52.70 wt.% SiO2, 11.11 wt.% B2O3, 24.71 wt.% Na2O, 8.13 wt.% Al2O3, and 3.35 wt.% NaF)Ag NPs(6.2 ± 2.5)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (16.66:83.34 wt.%), 310 °C for 1 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(1.5 ± 1)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 350 °C for 1 h?[325]
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.0 ± 1.1)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 350 °C for 1 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.2 ± 1.1)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (33.32:66.68 wt.%), 350 °C for 1 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.3 ± 1.8)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (66.65:33.35 wt.%), 350 °C for 1 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(1.6 ± 1.0)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 380 °C for 15 min
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.0 ± 1.0)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 380 °C for 1.5 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.5 ± 1.2)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 380 °C for 4 h
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(1.8 ± 1.2)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 300 °C for 1 h?[325]
Ag NPs@silicate glassSilicate glass (40.45 wt.% SiO2, 15.26 wt.% Al2O3, 13.91 wt.% Na2O, 6.03 wt.% MgO, and 24.35 wt.% ZnO)Ag NPs(2.4 ± 1.2)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 400 °C for 1 h
Ag NPs@silicate glassSilicate glass (39.41 wt.% SiO2, 14.86 wt.% Al2O3, 13.55 wt.% Na2O, 5.88 wt.% MgO, 23.73 wt.% ZnO, and 2.57 wt.% Eu2O3)Ag NPs(3.0 ± 1.6)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 380 °C for 1 hPhotoluminescence[325]
Ag NPs@silicate glassSilicate glass (39.41 wt.% SiO2, 14.86 wt.% Al2O3, 13.55 wt.% Na2O, 5.88 wt.% MgO, 23.73 wt.% ZnO, and 2.57 wt.% Eu2O3)Ag NPs(3.3 ± 1.2)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 380 °C for 1 h
Ag NPs@silicate glassSilicate glass (39.41 wt.% SiO2, 14.86 wt.% Al2O3, 13.55 wt.% Na2O, 5.88 wt.% MgO, 23.73 wt.% ZnO, and 2.57 wt.% Eu2O3)Ag NPs(3.4 ± 1.5)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (33.32:66.68 wt.%), 380 °C for 1 h
Ag NPs@silicate glassSilicate glass (39.41 wt.% SiO2, 14.86 wt.% Al2O3, 13.55 wt.% Na2O, 5.88 wt.% MgO, 23.73 wt.% ZnO, and 2.57 wt.% Eu2O3)Ag NPs(3.6 ± 1.4)Direct formation of NPs: ion-exchange — AgNO3:NaNO3 melt (66.65:33.35 wt.%), 380 °C for 1 h
Ag NPs@Corning 0211 glassCorning 0211 glassAg NPs(10)Direct formation of NPs: ion-exchange — AgNO3:NaNO3:KNO3 melt (8.77:41.66:49.57 wt.%), 300 °C for 6 h; Al film evaporation; immersion in a KNO3 salt at 400 °C for 2 hNLO devices: β(800 nm) = 1.4 × 10?14 cm2·W?1[326]
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(2.8 ± 1)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for few min; post ion-exchange annealing — air atmosphere (450 °C for 1 h)Photoluminescence[327]
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(3.3 ± 1.2)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for few min; post ion-exchange annealing — air atmosphere (500 °C for 1 h)
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(4.0 ± 1.5)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for few min; post ion-exchange annealing — air atmosphere (550 °C for 1 h)
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(2.9)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for 2 min; post ion-exchange annealing — air atmosphere (500 °C for 1 h)Photoluminescence[328]
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(4.4)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for 2 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h)
Ag NPs@silicate glassSilicate glass (71.58 wt.% SiO2, 14.36 wt.% Na2O, 6.59 wt.% CaO, 2.67 wt.% MgO, 3.21 wt.% Al2O3, 0.94 wt.% K2O, 0.4 wt.% SO3, and 0.26 wt.% Fe2O3)Ag NPs(7.2)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (13.08:86.92 wt.%), 370 °C for 2 min; post ion-exchange annealing — air atmosphere (600 °C for 1 h)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (71.63 wt.% SiO2, 2.08 wt.% Al2O3, 0.5 wt.% Fe2O3, 0.19 wt.% TiO2, 0.59 wt.% SO3, 6.27 wt.% CaO, 2.8 wt.% MgO, 15.4 wt.% Na2O, and 0.53 wt.% K2O)Ag NPs(1.8 ± 1.1)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (33.33:66.66 wt.%), 360 °C for 1 h; post ion-exchange annealing — air atmosphere (450 °C for 30 min)?[329]
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (71.63 wt.% SiO2, 2.08 wt.% Al2O3, 0.5 wt.% Fe2O3, 0.19 wt.% TiO2, 0.59 wt.% SO3, 6.27 wt.% CaO, 2.8 wt.% MgO, 15.4 wt.% Na2O, and 0.53 wt.% K2O)Ag NPs(1.9 ± 1.2)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (33.33:66.66 wt.%), 360 °C for 1 h; post ion-exchange annealing — air atmosphere (500 °C for 30 min)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (71.63 wt.% SiO2, 2.08 wt.% Al2O3, 0.5 wt.% Fe2O3, 0.19 wt.% TiO2, 0.59 wt.% SO3, 6.27 wt.% CaO, 2.8 wt.% MgO, 15.4 wt.% Na2O, and 0.53 wt.% K2O)Ag NPs(2.2 ± 0.6)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (33.33:66.66 wt.%), 360 °C for 1 h; post ion-exchange annealing — air atmosphere (550 °C for 30 min)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (73.65 wt.% SiO2, 14.64 wt.% Na2O, 3.2 wt.% Al2O3, 7.5 wt.% CaO, and 1.0 wt.% MgO)Ag NPs(2)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (3.92:96.08 wt.%), 350 °C for 10 min; post ion-exchange annealing — air atmosphere (600 °C for 45 h)?[330]
Ag NPs@silicate glassSilicate glass (5.73 wt.% Na2O, 7.52 wt.% ZnO, 9.42 wt.% Al2O3, 5.55 wt.% SiO2, 36.42 wt.% Yb2O3, and 35.36 wt.% Er2O3)Ag NPs3?10Thermal annealing in air: ion-exchange — AgNO3:NaNO3:KNO3 melt (14:45:41 wt.%), 280 °C for 50 minPhotoluminescence[79]
Ag NPs@silicate glassSilicate glass (5.75 wt.% Na2O, 7.55 wt.% ZnO, 9.46 wt.% Al2O3, 5.58 wt.% SiO2, 36.58 wt.% Yb2O3, and 35.07 wt.% Ho2O3)Ag NPs10?60
Ag NPs@silicate glassSilicate glass (5.71 wt.% Na2O, 7.50 wt.% ZnO, 9.39 wt.% Al2O3, 5.54 wt.% SiO2, 36.31 wt.% Yb2O3, and 35.55 wt.% Tm2O3)Ag NPs10?40
Cu NPs@silicate glassBorosilicate glass (72.0 wt.% SiO2, 14.0 wt.% Na2O, 0.6 wt.% K2O, 7.1 wt.% CaO, 4.0 wt.% MgO, 1.9 wt.% Al2O3, 0.1 wt.% Fe2O3, and 0.3 wt.% SO3)Cu NPs(7)Thermal annealing in air: ion-exchange — CuSO4·5H2O:Na2SO4 melt (67.36:32.64 wt.%), 590 °C for 2 min; post ion-exchange annealing — air atmosphere (450 °C for 1 h)NLO devices[331]
Cu NPs@silicate glassBorosilicate glass (72.0 wt.% SiO2, 14.0 wt.% Na2O, 0.6 wt.% K2O, 7.1 wt.% CaO, 4.0 wt.% MgO, 1.9 wt.% Al2O3, 0.1 wt.% Fe2O3, and 0.3 wt.% SO3)Cu NPs(7)Thermal annealing in air: ion-exchange — CuSO4·5H2O:Na2SO4 melt (67.36:32.64 wt.%), 590 °C for 2 min; post ion-exchange annealing — air atmosphere (500 °C for 1 h)
Cu NPs@silicate glassBorosilicate glass (72.0 wt.% SiO2, 14.0 wt.% Na2O, 0.6 wt.% K2O, 7.1 wt.% CaO, 4.0 wt.% MgO, 1.9 wt.% Al2O3, 0.1 wt.% Fe2O3, and 0.3 wt.% SO3)Cu NPs(8)Thermal annealing in air: ion-exchange — CuSO4·5H2O:Na2SO4 melt (67.36:32.64 wt.%), 590 °C for 2 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h)
Cu NPs@silicate glassBorosilicate glass (72.0 wt.% SiO2, 14.0 wt.% Na2O, 0.6 wt.% K2O, 7.1 wt.% CaO, 4.0 wt.% MgO, 1.9 wt.% Al2O3, 0.1 wt.% Fe2O3, and 0.3 wt.% SO3)Cu NPs(9.5)Thermal annealing in air: ion-exchange — CuSO4·5H2O:Na2SO4 melt (67.36:32.64 wt.%), 590 °C for 2 min; post ion-exchange annealing — air atmosphere (600 °C for 1 h)
Cu NPs@silicate glassBorosilicate glass (72.0 wt.% SiO2, 14.0 wt.% Na2O, 0.6 wt.% K2O, 7.1 wt.% CaO, 4.0 wt.% MgO, 1.9 wt.% Al2O3, 0.1 wt.% Fe2O3, and 0.3 wt.% SO3)Cu NPs(10)Thermal annealing in air: ion-exchange — CuSO4·5H2O:Na2SO4 melt (67.36:32.64 wt.%), 590 °C for 2 min; post ion-exchange annealing — air atmosphere (650 °C for 1 h)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (69.36 wt.% SiO2, 15.63 wt.% Na2O, 3.04 wt.% Al2O3, 6.05 wt.% CaO, 3.41 wt.% MgO, 1.72 wt.% K2O, 0.53 wt.% SO3, and 0.27 wt.% TiO2)Ag NPs2?4Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (0.2:99.8 wt.%), 320 °C for 30 min; post ion-exchange annealing — H2 atmosphere (180 °C for 12 h)NLO devices[332]
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (69.36 wt.% SiO2, 15.63 wt.% Na2O, 3.04 wt.% Al2O3, 6.05 wt.% CaO, 3.41 wt.% MgO, 1.72 wt.% K2O, 0.53 wt.% SO3, and 0.27 wt.% TiO2)Ag NPs4?6Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (0.2:99.8 wt.%), 320 °C for 30 min; post ion-exchange annealing — H2 atmosphere (250 °C for 5 h)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(1.6)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (450 °C for 1 h)?[333]
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.0)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (500 °C for 1 h)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.6)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.7)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 266 nm, number of pulses = 50, laser fluence = 18 J·cm?2)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.7)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 266 nm, number of pulses = 200, laser fluence = 72 J·cm?2)?[333]
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.6)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 355 nm, number of pulses = 40, laser fluence = 14.4 J·cm?2)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.4)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 355 nm, number of pulses = 200, laser fluence = 72 J·cm?2)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.6)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 532 nm, number of pulses = 10, laser fluence = 3.6 J·cm?2)
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(2.2)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 532 nm, number of pulses = 50, laser fluence = 18 J·cm?2)?[333]
Ag NPs@silicate glassSilicate glass (69.59 wt.% SiO2, 15.17 wt.% Na2O, 5.08 wt.% MgO, 6.52 wt.% CaO, 1.73 wt.% Al2O3, 1.14 wt.% K2O, and 0.78 wt.% SO3)Ag NPs(1.9)Irradiation: ion-exchange — AgNO3:NaNO3 melt (1.98:98.02 wt.%), 320 °C for 20 min; post ion-exchange annealing — air atmosphere (550 °C for 1 h); post ion-exchange irradiation (λ = 532 nm, number of pulses = 200, laser fluence = 72 J·cm?2)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (74.2 wt.% SiO2, 14.3 wt.% Na2O, 1.9 wt.% Al2O3, 8.1 wt.% CaO, and 1.5 wt.% MgO)Ag NPs3?8 (7)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (3.92:96.08 wt.%), 320 °C for 10 min; post ion-exchange annealing—air atmosphere (600 °C for 45 h)?[334]
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (74.2 wt.% SiO2, 14.3 wt.% Na2O, 1.9 wt.% Al2O3, 8.1 wt.% CaO, and 1.5 wt.% MgO)Ag NPs(1)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (3.92:96.08 wt.%), 320 °C for 10 min; post ion-exchange annealing — UV-laser irradiation, λ = 193 nm, pulse energy density (30 mJ?cm?2), repetition frequency (10 Hz), pulse duration (20 ns), irradiation time (5 s)
Ag NPs@soda-lime silicate glassSoda-lime silicate glass (74.2 wt.% SiO2, 14.3 wt.% Na2O, 1.9 wt.% Al2O3, 8.1 wt.% CaO, and 1.5 wt.% MgO)Ag NPs(2)Thermal annealing in air: ion-exchange — AgNO3:NaNO3 melt (3.92:96.08 wt.%), 320 °C for 10 min; post ion-exchange annealing — UV-laser irradiation, λ =193 nm, pulse energy density (30 mJ?cm-2), repetition frequency (10 Hz), pulse duration (20 ns), irradiation time (30 min)?[334]
Ag NPs@silicate glassSilicate glass (71.92 wt.% SiO2, 13.31 wt.% Na2O, 4.15 wt.% MgO, 8.70 wt.% CaO, and 1.92 wt.% Al2O3)Ag NPs(4.93 ± 1.88)Irradiation: ion-exchange — AgNO3:NaNO3 melt (20:80 wt.%), 350 °C for 30 s; post ion-exchange irradiation — Ar+ ions of 200 keV, ion fluence (5 × 1015 ion·cm?2), flux (2 μA·cm?2)Optoelectronics[335]
Ag NPs@soda-lime silicate glassSoda-lime silicate glassAg NPs(4.2)Irradiation: ion-exchange — AgNO3:NaNO3 melt (2:98 wt.%), 400 °C for 2h; post ion-exchange irradiation — 100 kV electrons, flux (6.4 A·cm?2)?[336]
Tab.5  GNCs prepared by ion-exchange techniques [79,324336]
Fig.24  TEM images of GNCs prepared by ion-exchange in a molten bath with the AgNO3:NaNO3 molar ratio of (a) 1:1000, (b) 1:200, (c) 1:50, and (d) 1:10. The insets are the Ag NP size distribution histograms. Reproduced with permission from Ref. [324] (Copyright 2019 John Wiley and Sons).
Fig.25  Schematic illustration of the formation and growth of Ag NPs. Reproduced with permission from Ref. [325] (Copyright 2018 Elsevier).
Fig.26  Schematic illustration of the preparation of Ag NPs within a soda-lime silicate glass by ion-exchange and subsequent annealing. Reproduced with permission from Ref. [329] (Copyright 2012 American Chemical Society).
Fig.27  TEM images and corresponding Ag NP size distributions of the GNC treated (after ion-exchange) at (a)(b) 450 °C, (c)(d) 500 °C, (e)(f) 550 °C, (g)(h) 600 °C, and (i)(j) 650 °C. Reproduced with permission from Ref. [331] (Copyright 2019 Elsevier).
Fig.28  Formation and growth of metal NPs by high power laser irradiation.
Fig.29  Schematic illustration of the evolution of Ag species as a function of the different post ion-exchange treatments. Reproduced with permission from Ref. [333] (Copyright 2021 Elsevier).
Fig.30  Schematic illustration of the preparation of Ag NPs within an Ag+?Na+ ion-exchanged soda-lime silicate glass. Reproduced with permission from Ref. [335] (Copyright 2021 Elsevier).
CompositeHost matrixReinforcementSize of NPs (min?max (mean))/nmLoading of NPs (wt.% in excess)Ion-exchange techniqueApplicationRef.
Ag NPs@aluminosilicate glassAluminosilicate glass (75.63 wt.% SiO2, 8.83 wt.% Na2O, 7.92 wt.% CaO, 4.22 wt.% MgO, 1.81 wt.% SnO2, 0.74 wt.% Al2O3, 0.43 wt.% Fe2O3, 0.27 wt.% SO3, and 0.14 wt.% K2O)Ag NPs2.5?6?Staining process: pigment (red ochre); annealing (T < 660 °C for 1 h and 40 min)Art[371]
Cu NPs@aluminosilicate glassAluminosilicate glass (77.82 wt.% SiO2, 6.52 wt.% Na2O, 7.50 wt.% CaO, 4.24 wt.% MgO, 1.88 wt.% SnO2, 0.76 wt.% Al2O3, 0.03 wt.% Fe2O3, 0.25 wt.% SO3, and 1.00 wt.% K2O)Cu NPs25?40?Staining process: pigment (red ochre); annealing (T < 660 °C for 1 h and 40 min)
Au NPs@silica glassSilica glassAu NPs3?100.05Spark plasma sintering: uniaxial pressure (50 MPa), in vacuum at 1020 °C for 3 minNLO devicesβ(720 nm) = 5.72 × 10?12 m·W?1[372]
GaAs NPs@silica glassSilica glassGaAs NPs2.7?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (15 W), sputtering time (30 s)?[373]
GaAs NPs@silica glassSilica glassGaAs NPs4.4?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (15 W), sputtering time (60 s)
GaAs NPs@silica glassSilica glassGaAs NPs7.7?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (15 W), sputtering time (90 s)
Au NPs@silica glassSilica glassAu NPs2.43?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (10 W), sputtering time (30 s)
Au NPs@silica glassSilica glassAu NPs3.64?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (10 W), sputtering time (60 s)
Au NPs@silica glassSilica glassAu NPs8.09?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (10 W), sputtering time (120 s)?[373]
Au NPs@silica glassSilica glassAu NPs17.5?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (10 W), sputtering time (300 s)
Au NPs@silica glassSilica glassAu NPs47.08?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 4.7 mTorr Ar atmosphere at room temperature, radio frequency power (10 W), sputtering time (600 s)
Cu NPs@silica glassSilica glassCu NPs14?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 0.003?0.004 mTorr Ar atmosphere at room temperature, radio frequency power, silica target (250 W), radio frequency power, Cu target (25 W), co-sputtering time (105 min)?[374]
Cu NPs@silica glassSilica glassCu NPs12?Radio frequency sputtering: 13.56 MHz radio frequency sputtering, 0.003?0.004 mTorr Ar atmosphere at room temperature, radio frequency power, silica target (250 W), radio frequency power, Cu target (40 W), co-sputtering time (90 min)
Ag NPs@mesoporous bioactive glassesMesoporous bioactive glassa)Ag NPs(9 ± 4)?Spray pyrolysis: dispersion of precursors into droplets, preheating at 400 °C, calcination at 700 °C, annealing 500 °CAntibacterial activity[154]
Ag NPs@mesoporous bioactive glassesMesoporous bioactive glassb)Ag NPs(7 ± 3)?Spray pyrolysis: dispersion of precursors into droplets, preheating at 400 °C, calcination at 700 °C, annealing 500 °C
Ag NPs@Mesoporous bioactive glassesMesoporous bioactive glassa)Ag NPs(8 ± 2)1.64 mol.%Spray pyrolysis: dispersion of precursors into droplets, preheating at 400 °C, calcination at 700 °C, annealing 500 °CAntibacterial activity[375]
Ag NPs@mesoporous bioactive glassesMesoporous bioactive glassa)Ag NPs(8 ± 3)3.28 mol.%Spray pyrolysis: dispersion of precursors into droplets, preheating at 400 °C, calcination at 700 °C, annealing 500 °C
Ag NPs@mesoporous bioactive glassesMesoporous bioactive glassa)Ag NPs(9 ± 3)6.56 mol.%Spray pyrolysis: dispersion of precursors into droplets, preheating at 400 °C, calcination at 700 °C, annealing 500 °C
Au NPs@silica glassSilica glassAg NPs(50)?Chemical vapor deposition: aerosol assisted chemical vapor deposition, Au NPs in toluene, aerosol generation (ultrasonic humidification), N2 flow rate (1 L·min?1), glass temperature 450 °C?[376]
Tab.6  GNCs prepared by staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and CVD techniques [371376]
Fig.31  Schematic illustration of the features of a spark plasma sintering apparatus.
Fig.32  Schematic illustration of the radio frequency sputtering process.
Fig.33  TEM images of GaAs NPs embedded in silica glass prepared by radio frequency sputtering for (a) 30 s, (b) 60 s, (c) 90 s, (d) 120 s, and (e) 240 s. Reproduced with permission from Ref. [373] (Copyright 1997 AIP Publishing).
Fig.34  TEM images of Au NPs embedded in silica glass prepared by radio frequency sputtering for (a) 30 s, (b) 60 s, (c) 120 s, (d) 300 s, and (e) 600 s. Reproduced with permission from Ref. [373] (Copyright 1997 AIP Publishing).
Fig.35  Cross-sectional TEM images of the GNC made of Au47Cu53 alloy embedded within a glass matrix: (a) low-magnification bright-field image (the inset is the size-histogram); (b) high-resolution image of an Au47Cu53 alloy embedded within a glass matrix. Reproduced with permission from Ref. [397] (Copyright 2007 Elsevier).
Fig.36  Schematic illustration of the steps to prepare GNCs by spray pyrolysis.
Fig.37  Schematic illustration of the AACVD system.
1 J, Lee S, Mahendra P J J Alvarez . Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.ACS Nano, 2010, 4(7): 3580–3590
https://doi.org/10.1021/nn100866w pmid: 20695513
2 Z, Yang J, Ren Z, Zhang , et al.. Recent advancement of nanostructured carbon for energy applications.Chemical Reviews, 2015, 115(11): 5159–5223
https://doi.org/10.1021/cr5006217 pmid: 25985835
3 A S, Aricò P, Bruce B, Scrosati , et al.. Nanostructured materials for advanced energy conversion and storage devices.Nature Materials, 2005, 4(5): 366–377
https://doi.org/10.1038/nmat1368 pmid: 15867920
4 F, Sanchez K Sobolev . Nanotechnology in concrete — a review.Construction and Building Materials, 2010, 24(11): 2060–2071
https://doi.org/10.1016/j.conbuildmat.2010.03.014
5 L, Shang T, Bian B, Zhang , et al.. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.Angewandte Chemie International Edition, 2014, 53(1): 250–254
https://doi.org/10.1002/anie.201306863 pmid: 24288240
6 Q, Yuan H H, Duan L L, Li , et al.. Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina.Advanced Materials, 2010, 22(13): 1475–1478
https://doi.org/10.1002/adma.200904223 pmid: 20437494
7 Y, Ohko T, Tatsuma T, Fujii , et al.. Multicolour photochromism of TiO2 films loaded with silver nanoparticles.Nature Materials, 2003, 2(1): 29–31
https://doi.org/10.1038/nmat796 pmid: 12652669
8 Y, Lykhach T, Staudt N, Tsud , et al.. Enhanced reactivity of Pt nanoparticles supported on ceria thin films during ethylene dehydrogenation.Physical Chemistry Chemical Physics, 2011, 13(1): 253–261
https://doi.org/10.1039/C0CP00345J pmid: 21063620
9 A, Mitra G De . Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 145–163
10 J, Fonseca J Lu . Single-atom catalysts designed and prepared by the atomic layer deposition technique.ACS Catalysis, 2021, 11(12): 7018–7059
https://doi.org/10.1021/acscatal.1c01200
11 B Karmakar . Chapter 1: Fundamentals of glass and glass nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 3–53
12 E D, Zanotto J C Mauro . The glassy state of matter: its definition and ultimate fate.Journal of Non-Crystalline Solids, 2017, 471: 490–495
https://doi.org/10.1016/j.jnoncrysol.2017.05.019
13 J, Fonseca T, Gong L, Jiao , et al.. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses.Journal of Materials Chemistry A, 2021, 9(17): 10562–10611
https://doi.org/10.1039/D1TA01043C
14 W, Xiang H, Gao L, Ma , et al.. Valence state control and third-order nonlinear optical properties of copper embedded in sodium borosilicate glass.ACS Applied Materials & Interfaces, 2015, 7(19): 10162–10168
https://doi.org/10.1021/acsami.5b00218 pmid: 25928895
15 J, Zhong W, Xiang Z, Chen , et al.. Microstructures and third-order optical nonlinearities of Cu2In nanoparticles in glass matrix.Journal of Alloys and Compounds, 2013, 572: 137–144
https://doi.org/10.1016/j.jallcom.2013.03.164
16 S, Chatterjee S K, Saha D Chakravorty . Chapter 2: Glass-based nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 57–88
17 V, Amendola R, Pilot M, Frasconi , et al.. Surface plasmon resonance in gold nanoparticles: a review.Journal of Physics: Condensed Matter, 2017, 29(20): 203002
https://doi.org/10.1088/1361-648X/aa60f3 pmid: 28426435
18 B A Korgel . Materials science: composite for smarter windows.Nature, 2013, 500(7462): 278–279
https://doi.org/10.1038/500278a pmid: 23955225
19 S, Mangin M, Gottwald C H, Lambert , et al.. Engineered materials for all-optical helicity-dependent magnetic switching.Nature Materials, 2014, 13(3): 286–292
https://doi.org/10.1038/nmat3864 pmid: 24531398
20 A, Llordés G, Garcia J, Gazquez , et al.. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites.Nature, 2013, 500(7462): 323–326
https://doi.org/10.1038/nature12398 pmid: 23955232
21 J M, Castro D F, Geraghty B R, West , et al.. Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers.Applied Optics, 2004, 43(33): 6166–6173
https://doi.org/10.1364/AO.43.006166 pmid: 15605557
22 D L, Veasey D S, Funk P M, Peters , et al.. Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass.Journal of Non-Crystalline Solids, 2000, 263–264: 369–381
https://doi.org/10.1016/S0022-3093(99)00677-8
23 A, Tervonen B R, West S K Honkanen . Ion-exchanged glass waveguide technology: a review.Optical Engineering, 2011, 50(7): 071107
https://doi.org/10.1117/1.3559213
24 J, Choi M, Bellec A, Royon , et al.. Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass.Optics Letters, 2012, 37(6): 1029–1031
https://doi.org/10.1364/OL.37.001029 pmid: 22446213
25 A, Royon K, Bourhis M, Bellec , et al.. Silver clusters embedded in glass as a perennial high capacity optical recording medium.Advanced Materials, 2010, 22(46): 5282–5286
https://doi.org/10.1002/adma.201002413 pmid: 20957765
26 M N, Azlan S S, Hajer M K, Halimah , et al.. Comprehensive comparison on optical properties of samarium oxide (micro/nano) particles doped tellurite glass for optoelectronics applications.Journal of Materials Science Materials in Electronics, 2021, 32(11): 14174–14185
https://doi.org/10.1007/s10854-021-05961-z
27 Y J, Oh K H Jeong . Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering.Advanced Materials, 2012, 24(17): 2234–2237
https://doi.org/10.1002/adma.201104696 pmid: 22454295
28 T, Kurobori S Nakamura . A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass.Radiation Measurements, 2012, 47(10): 1009–1013
https://doi.org/10.1016/j.radmeas.2012.09.003
29 M, Kato K, Chida T, Moritake , et al.. Direct dose measurement on patient during percutaneous coronary intervention procedures using radiophotoluminescence glass dosimeters.Radiation Protection Dosimetry, 2017, 175(1): 31–37
pmid: 27624894
30 S, Werner J, Navaridas M Luján . A survey on optical network-on-chip architectures.ACM Computing Surveys, 2017, 50(6): 1–37
https://doi.org/10.1145/3131346
31 A M, Heidt Z, Li J, Sahu , et al.. 100 kW Peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.Optics Letters, 2013, 38(10): 1615–1617
https://doi.org/10.1364/OL.38.001615 pmid: 23938887
32 M, Li S, Huang Q, Wang , et al.. Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser.Optics Letters, 2014, 39(3): 693–696
https://doi.org/10.1364/OL.39.000693 pmid: 24487901
33 S I, Najafi P, Lefebvre J, Albert , et al.. Ion-exchanged Mach‒Zehnder interferometers in glass.Applied Optics, 1992, 31(18): 3381–3383
https://doi.org/10.1364/AO.31.003381 pmid: 20725293
34 P Chakraborty . Metal nanoclusters in glasses as non-linear photonic materials.Journal of Materials Science, 1998, 33(9): 2235–2249
https://doi.org/10.1023/A:1004306501659
35 R F Jr Haglund . Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials.Materials Science and Engineering A, 1998, 253(1‒2): 275–283
https://doi.org/10.1016/S0921-5093(98)00736-9
36 M J, Weber D, Milam W L Smith . Nonlinear refractive index of glasses and crystals.Optical Engineering, 1978, 17(5): 463–469
https://doi.org/10.1117/12.7972266
37 A I, Ryasnyansky B, Palpant S, Debrus , et al.. Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by Ion implantation.Journal of the Optical Society of America B, 2006, 23(7): 1348–1353
https://doi.org/10.1364/JOSAB.23.001348
38 D S, Chemla D A B Miller . Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures.Journal of the Optical Society of America B, 1985, 2(7): 1155–1173
https://doi.org/10.1364/JOSAB.2.001155
39 A, Kawabata R Kubo . Electronic properties of fine metallic particles.II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1966, 21(9): 1765–1772
https://doi.org/10.1143/JPSJ.21.1765
40 W P Halperin . Quantum size effects in metal particles.Reviews of Modern Physics, 1986, 58(3): 533–606
https://doi.org/10.1103/RevModPhys.58.533
41 R F Jr, Haglund L, Yang R H III, Magruder , et al.. Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91(1‒4): 493–504
https://doi.org/10.1016/0168-583X(94)96274-X
42 J C, Garland D B Tanner . Electrical Transport and Optical Properties of Inhomogeneous Media. New York, USA: American Institute of Physics, 1978
43 Y Q, Li C C, Sung R, Inguva , et al.. Nonlinear-optical properties of semiconductor composite materials.Journal of the Optical Society of America B, 1989, 6(4): 814–817
https://doi.org/10.1364/JOSAB.6.000814
44 D K Hale . The physical properties of composite materials.Journal of Materials Science, 1976, 11(11): 2105–2141
https://doi.org/10.1007/PL00020339
45 J W, Haus N, Kalyaniwalla R, Inguva , et al.. Nonlinear-optical properties of conductive spheroidal particle composites.Journal of the Optical Society of America B, 1989, 6(4): 797–807
https://doi.org/10.1364/JOSAB.6.000797
46 W, Hou S B Cronin . A review of surface plasmon resonance-enhanced photocatalysis.Advanced Functional Materials, 2013, 23(13): 1612–1619
https://doi.org/10.1002/adfm.201202148
47 S, Kabi A Ghosh . Structural investigation on silver phosphate glasses embedded with nanoparticles.Journal of Alloys and Compounds, 2012, 520: 238–243
https://doi.org/10.1016/j.jallcom.2012.01.031
48 Q Q, Wang J B, Han H M, Gong , et al.. Linear and nonlinear optical properties of Ag nanowire polarizing glass.Advanced Functional Materials, 2006, 16(18): 2405–2408
https://doi.org/10.1002/adfm.200600096
49 G, Lin H H, Pan J R, Qiu , et al.. Nonlinear optical properties of lead nanocrystals embedding glass induced by thermal treatment and femtosecond laser irradiation.Chemical Physics Letters, 2011, 516(4‒6): 186–191
https://doi.org/10.1016/j.cplett.2011.09.069
50 S, Qu Y, Zhang H, Li , et al.. Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser.Optical Materials, 2006, 28(3): 259–265
https://doi.org/10.1016/j.optmat.2005.01.011
51 G, Lin D Z, Tan F F, Luo , et al.. Linear and nonlinear optical properties of glasses doped with Bi nanoparticles.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2312–2315
https://doi.org/10.1016/j.jnoncrysol.2010.11.052
52 F, Hache D, Ricard C Flytzanis . Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects.Journal of the Optical Society of America B, 1986, 3(12): 1647–1655
https://doi.org/10.1364/JOSAB.3.001647
53 N E, Christensen B O Seraphin . Relativistic band calculation and the optical properties of gold.Physical Review B, 1971, 4(10): 3321–3344
https://doi.org/10.1103/PhysRevB.4.3321
54 F, Hache D, Ricard C, Flytzanis , et al.. The optical kerr effect in small metal particles and metal colloids: The case of gold.Applied Physics A: Materials Science & Processing, 1988, 47: 347–357
55 L M Liz-Marzán . Tailoring surface plasmons through the morphology and assembly of metal nanoparticles.Langmuir, 2006, 22(1): 32–41
https://doi.org/10.1021/la0513353 pmid: 16378396
56 M A El-Sayed . Some interesting properties of metals confined in time and nanometer space of different shapes.Accounts of Chemical Research, 2001, 34(4): 257–264
https://doi.org/10.1021/ar960016n pmid: 11308299
57 S, Link M A El-Sayed . Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.International Reviews in Physical Chemistry, 2000, 19(3): 409–453
https://doi.org/10.1080/01442350050034180
58 A, Moores F Goettmann . The plasmon band in noble metal nanoparticles: an introduction to theory and applications.New Journal of Chemistry, 2006, 30(8): 1121–1132
https://doi.org/10.1039/b604038c
59 P K, Jain K S, Lee I H, El-Sayed , et al.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
https://doi.org/10.1021/jp057170o pmid: 16599493
60 S, Eustis M A El-Sayed . Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chemical Society Reviews, 2006, 35(3): 209–217
https://doi.org/10.1039/B514191E pmid: 16505915
61 G, De S K, Medda S, De , et al.. Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position.Bulletin of Materials Science, 2008, 31(3): 479–485
https://doi.org/10.1007/s12034-008-0075-4
62 S, Underwood P Mulvaney . Effect of the solution refractive index on the color of gold colloids.Langmuir, 1994, 10(10): 3427–3430
https://doi.org/10.1021/la00022a011
63 S K, Ghosh S, Nath S, Kundu , et al.. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids.The Journal of Physical Chemistry B, 2004, 108(37): 13963–13971
https://doi.org/10.1021/jp047021q
64 W, Rechberger A, Hohenau A, Leitner , et al.. Optical properties of two interacting gold nanoparticles.Optics Communications, 2003, 220(1‒3): 137–141
https://doi.org/10.1016/S0030-4018(03)01357-9
65 P K, Jain W, Qian M A El-Sayed . Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.The Journal of Physical Chemistry B, 2006, 110(1): 136–142
https://doi.org/10.1021/jp055562p pmid: 16471511
66 K H, Su Q H, Wei X, Zhang , et al.. Interparticle coupling effects on plasmon resonances of nanogold particles.Nano Letters, 2003, 3(8): 1087–1090
https://doi.org/10.1021/nl034197f
67 P K, Jain S, Eustis M A El-Sayed . Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.The Journal of Physical Chemistry B, 2006, 110(37): 18243–18253
https://doi.org/10.1021/jp063879z pmid: 16970442
68 S, De G De . In-situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2‒TiO2‒PEO hybrid films.The Journal of Physical Chemistry C, 2008, 112(28): 10378–10384
https://doi.org/10.1021/jp801625u
69 S K, Medda M, Mitra G De . Tuning of Ag-SPR band position in refractive index controlled inorganic–organic hybrid SiO2–PEO–TiO2 films.Journal of Chemical Sciences, 2008, 120(6): 565–572
https://doi.org/10.1007/s12039-008-0086-0
70 J, Zhang Y, Fu M H, Chowdhury , et al.. Plasmon-coupled fluorescence probes: effect of emission wavelength on fluorophore-labeled silver particles.The Journal of Physical Chemistry C, 2008, 112(25): 9172–9180
https://doi.org/10.1021/jp8000493 pmid: 19714260
71 Y, Zhang A, Dragan C D Geddes . Wavelength dependence of metal-enhanced fluorescence.The Journal of Physical Chemistry C, 2009, 113(28): 12095–12100
https://doi.org/10.1021/jp9005668
72 J, Zhang Y, Fu M H, Chowdhury , et al.. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles.Nano Letters, 2007, 7(7): 2101–2107
https://doi.org/10.1021/nl071084d pmid: 17580926
73 T Katsuaki . Field enhancement around metal nanoparticles and nanoshells: a systematic investigation.The Journal of Physical Chemistry C, 2008, 112(40): 15721–15728
https://doi.org/10.1021/jp8060009
74 J Zhu . Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres.Applied Surface Science, 2007, 253(21): 8729–8733
https://doi.org/10.1016/j.apsusc.2007.04.050
75 S A, Jupri S K, Ghoshal N N, Yusof , et al.. Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium‒zinc-sulfophosphate glass system.Optics and Laser Technology, 2020, 126: 106134
https://doi.org/10.1016/j.optlastec.2020.106134
76 A D, Sontakke K, Biswas K Annapurna . Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses.Journal of Luminescence, 2009, 129(11): 1347–1355
https://doi.org/10.1016/j.jlumin.2009.06.027
77 R T, Karunakaran K, Marimuthu Babu S, Surendra , et al.. Structural, optical and thermal studies of Eu3+ ions in lithium fluoroborate glasses.Solid State Sciences, 2009, 11(11): 1882–1889
https://doi.org/10.1016/j.solidstatesciences.2009.08.001
78 Raju C, Nageswara S, Sailaja Raju S, Hemasundara , et al.. Emission analysis of CdO–Bi2O3–B2O3 glasses doped with Eu3+ and Tb3+.Ceramics International, 2014, 40(6): 7701–7709
https://doi.org/10.1016/j.ceramint.2013.12.111
79 P, Vařák P, Nekvindová S, Vytykáčová , et al.. Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (RE = Ho, Er, Tm) after silver ion exchange.Journal of Non-Crystalline Solids, 2021, 557: 120580
https://doi.org/10.1016/j.jnoncrysol.2020.120580
80 C, Canevali M, Mattoni F, Morazzoni , et al.. Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus.Journal of the American Chemical Society, 2005, 127(42): 14681–14691
https://doi.org/10.1021/ja052502o pmid: 16231922
81 W, Cao F, Huang Z, Wang , et al.. Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses.Optics Letters, 2018, 43(14): 3281–3284
https://doi.org/10.1364/OL.43.003281 pmid: 30004486
82 F, Huang F, E R, Lei , et al.. Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses.Journal of Luminescence, 2019, 213: 370–375
https://doi.org/10.1016/j.jlumin.2019.05.050
83 R, Vijayakumar K Marimuthu . Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses.Journal of Alloys and Compounds, 2016, 665: 294–303
https://doi.org/10.1016/j.jallcom.2016.01.049
84 M, Kamrádek I, Kašík J, Aubrecht , et al.. Nanoparticle and solution doping for efficient holmium fiber lasers.IEEE Photonics Journal, 2019, 11(5): 1–10
https://doi.org/10.1109/JPHOT.2019.2940747
85 C C, Baker E J, Friebele A A, Burdett , et al.. Nanoparticle doping for high power fiber lasers at eye-safer wavelengths.Optics Express, 2017, 25(12): 13903–13915
https://doi.org/10.1364/OE.25.013903 pmid: 28788833
86 W, Zhang J, Lin M, Cheng , et al.. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles.Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 159: 39–52
https://doi.org/10.1016/j.jqsrt.2015.03.002
87 S, Meng G, Zhao J, Hou , et al.. High performance of near-infrared emission for S-band amplifier from Tm3+-doped bismuth glass incorporated with Ag nanoparticles.Journal of Luminescence, 2020, 224: 117313
https://doi.org/10.1016/j.jlumin.2020.117313
88 Y M, Sgibnev N V, Nikonorov A I Ignatiev . High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters.Journal of Luminescence, 2017, 188: 172–179
https://doi.org/10.1016/j.jlumin.2017.04.028
89 J, Zmojda P, Miluski M Kochanowicz . Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications.Applied Sciences, 2018, 8(5): 790
https://doi.org/10.3390/app8050790
90 H, Fares H, Elhouichet B, Gelloz , et al.. Surface plasmon resonance induced Er3+ photoluminescence enhancement in tellurite glass.Journal of Applied Physics, 2015, 117(19): 193102
https://doi.org/10.1063/1.4921436
91 S E, Kichanov D P, Kozlenko Y E, Gorshkova , et al.. Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses.Journal of Nanoparticle Research, 2018, 20(3): 54
https://doi.org/10.1007/s11051-018-4156-z
92 M Moskovits . Surface-enhanced spectroscopy.Reviews of Modern Physics, 1985, 57(3): 783–826
https://doi.org/10.1103/RevModPhys.57.783
93 S, Nie S R Emory . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science, 1997, 275(5303): 1102–1106
https://doi.org/10.1126/science.275.5303.1102 pmid: 9027306
94 A, Simo V, Joseph R, Fenger , et al.. Long-term stable silver subsurface ion-exchanged glasses for SERS applications.ChemPhysChem, 2011, 12(9): 1683–1688
https://doi.org/10.1002/cphc.201100098 pmid: 21626643
95 C L, Haynes A D, McFarland Duyne R P Van . Surface-enhanced Raman spectroscopy.Analytical Chemistry, 2005, 77(17): 338A–346A
https://doi.org/10.1021/ac053456d
96 G C Schatz . Theoretical studies of surface enhanced Raman scattering.Accounts of Chemical Research, 1984, 17(10): 370–376
https://doi.org/10.1021/ar00106a005
97 M R, Dousti M R, Sahar R J, Amjad , et al.. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium-zinc-tellurite glass.Journal of Luminescence, 2013, 143: 368–373
https://doi.org/10.1016/j.jlumin.2013.04.017
98 M Moskovits . Surface-enhanced Raman spectroscopy: a brief perspective.In: Kneipp K, Moskovits M, Kneipp H, eds. Surface-enhanced Raman scattering. Topics in Applied Physics. Berlin, Heidelberg: Springer, 2006, 103
99 A, Campion P Kambhampati . Surface-enhanced Raman scattering.Chemical Society Reviews, 1998, 27(4): 241–250
https://doi.org/10.1039/a827241z
100 X M, Qian S M Nie . Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.Chemical Society Reviews, 2008, 37(5): 912–920
https://doi.org/10.1039/b708839f pmid: 18443676
101 M, Fleischmann P J, Hendra A J McQuillan . Raman spectra of pyridine adsorbed at a silver electrode.Chemical Physics Letters, 1974, 26(2): 163–166
https://doi.org/10.1016/0009-2614(74)85388-1
102 D, Liu X, Chen Y, Hu , et al.. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.Nature Communications, 2018, 9: 193
https://doi.org/10.1038/s41467-017-02627-5 pmid: 29335471
103 J, Kneipp H, Kneipp K Kneipp . SERS — a single-molecule and nanoscale tool for bioanalytics.Chemical Society Reviews, 2008, 37(5): 1052–1060
https://doi.org/10.1039/b708459p pmid: 18443689
104 S M, Wells S D, Retterer J M, Oran , et al.. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.ACS Nano, 2009, 3(12): 3845–3853
https://doi.org/10.1021/nn9010939 pmid: 19911835
105 H, Wang C S, Levin N J Halas . Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.Journal of the American Chemical Society, 2005, 127(43): 14992–14993
https://doi.org/10.1021/ja055633y pmid: 16248615
106 P, Pal A, Bonyár M, Veres , et al.. A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio.Sensors and Actuators A: Physical, 2020, 314: 112225
https://doi.org/10.1016/j.sna.2020.112225
107 C M, Chou Thi L T, Thanh Nhu N T, Quynh , et al.. Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis.Applied Sciences, 2020, 10(14): 5015
https://doi.org/10.3390/app10145015
108 A, Yahata H, Ishii K, Nakamura , et al.. Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering.Advanced Powder Technology, 2019, 30(12): 2957–2963
https://doi.org/10.1016/j.apt.2019.09.003
109 L C S, Belusso G F, Lenz E E, Fiorini , et al.. Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst.Applied Surface Science, 2019, 473: 303–312
https://doi.org/10.1016/j.apsusc.2018.12.155
110 J B, Goodenough M H Braga . Batteries for electric road vehicles.Dalton Transactions, 2018, 47(3): 645–648
https://doi.org/10.1039/C7DT03026F pmid: 29199286
111 M H, Braga N S, Grundish A J, Murchison , et al.. Alternative strategy for a safe rechargeable battery.Energy & Environmental Science, 2017, 10(1): 331–336
https://doi.org/10.1039/C6EE02888H
112 C, Mikolajczak M, Kahn K, White , et al.. Lithium-Ion Batteries Hazard and Use Assessment.Springer, 2011, ISBN-13: 978–1461434856
113 M H, Braga A J, Murchison J A, Ferreira , et al.. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells.Energy & Environmental Science, 2016, 9(3): 948–954
https://doi.org/10.1039/C5EE02924D
114 N, Kamaya K, Homma Y, Yamakawa , et al.. A lithium superionic conductor.Nature Materials, 2011, 10(9): 682–686
https://doi.org/10.1038/nmat3066 pmid: 21804556
115 M, Duclot J L Souquet . Glassy materials for lithium batteries: electrochemical properties and devices performances.Journal of Power Sources, 2001, 97‒98: 610–615
https://doi.org/10.1016/S0378-7753(01)00641-3
116 J, Janek W G Zeier . A solid future for battery development.Nature Energy, 2016, 1(9): 16141
https://doi.org/10.1038/nenergy.2016.141
117 Stephan A, Manuel K S Nahm . Review on composite polymer electrolytes for lithium batteries.Polymer, 2006, 47(16): 5952–5964
https://doi.org/10.1016/j.polymer.2006.05.069
118 M Z A Munshi . Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific, 1995
119 S, Troy A, Schreiber T, Reppert , et al.. Life cycle assessment and resource analysis of all-solid-state batteries.Applied Energy, 2016, 169: 757–767
https://doi.org/10.1016/j.apenergy.2016.02.064
120 E A, Mohamed E, Nabhan A, Ratep , et al.. Influence of BaTiO3 nanoparticles/clusters on the structural and dielectric properties of glasses-nanocomposites.Physical Review B: Condensed Matter, 2020, 589: 412220
https://doi.org/10.1016/j.physb.2020.412220
121 E A, Mohamed M G, Moustafa I Kashif . Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix.Journal of Non-Crystalline Solids, 2018, 482: 223–229
https://doi.org/10.1016/j.jnoncrysol.2017.12.048
122 A A, Menazea A M, Abdelghany N A, Hakeem , et al.. Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd:YAG nanosecond laser pulses: characterization and dielectric studies.Journal of Electronic Materials, 2020, 49(1): 826–832
https://doi.org/10.1007/s11664-019-07736-z
123 A A, Menazea A M, Abdelghany N A, Hakeem , et al.. Nd:YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies.Silicon, 2020, 12(1): 13–20
https://doi.org/10.1007/s12633-019-0094-3
124 E K, Abdel-Khalek M A, Elsharkawy M A, Motawea , et al.. Dielectric and thermal properties of tetragonal PbTiO3 nanoparticles/clusters embedded in lithium tetraborate glass matrix.Silicon, 2021, 13: 2993–3002
https://doi.org/10.1007/s12633-020-00648-2
125 P R, Rejikumar P V, Jyothy S, Mathew , et al.. Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass.Physical Review B: Condensed Matter, 2010, 405: 1513–1517
126 A M, Abdelghany H M, Zeyada H A, ElBatal , et al.. AC conductivity and dielectric behavior of silicophosphate glass doped by Nd2O3.Silicon, 2017, 9(3): 347–354
https://doi.org/10.1007/s12633-016-9498-5
127 K, Yang J, Liu B, Shen , et al.. Large improvement on energy storage and charge‒discharge properties of Gd2O3-doped BaO‒K2O‒Nb2O5‒SiO2 glass-ceramic dielectrics.Materials Science and Engineering B, 2017, 223: 178–184
https://doi.org/10.1016/j.mseb.2017.06.011
128 J, Fonseca S Choi . Electro-and photoelectro-catalysts derived from bimetallic amorphous metal-organic frameworks.Catalysis Science & Technology, 2020, 10(24): 8265–8282
https://doi.org/10.1039/D0CY01600D
129 L D, Ellis N A, Rorrer K P, Sullivan , et al.. Chemical and biological catalysis for plastics recycling and upcycling.Nature Catalysis, 2021, 4(7): 539–556
https://doi.org/10.1038/s41929-021-00648-4
130 R Schlögl . Heterogeneous catalysis.Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
https://doi.org/10.1002/anie.201410738 pmid: 25693734
131 D, Gärtner S, Sandl von Wangelin A Jacobi . Homogeneous vs.heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology, 2020, 10(11): 3502–3514
https://doi.org/10.1039/D0CY00644K
132 A F, Lee J A, Bennett J C, Manayil , et al.. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification.Chemical Society Reviews, 2014, 43(22): 7887–7916
https://doi.org/10.1039/C4CS00189C pmid: 24957179
133 S A, Khan N, Khan U, Irum , et al.. Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant.International Journal of Biological Macromolecules, 2020, 153: 806–816
https://doi.org/10.1016/j.ijbiomac.2020.03.013 pmid: 32145236
134 C, Gao F, Lyu Y Yin . Encapsulated metal nanoparticles for catalysis.Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237 pmid: 32585087
135 R, Jin G, Li S, Sharma , et al.. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures.Chemical Reviews, 2021, 121(2): 567–648
https://doi.org/10.1021/acs.chemrev.0c00495 pmid: 32941029
136 S, Majhi K, Sharma R, Singh , et al.. Development of silver nanoparticles decorated on functional glass slide as highly efficient and recyclable dip catalyst.ChemistrySelect, 2020, 5(40): 12365–12370
https://doi.org/10.1002/slct.202002492
137 K, Mennecke R, Cecilia T N, Glasnov , et al.. Palladium(0) nanoparticles on glass‒polymer composite materials as recyclable catalysts: a comparison study on their use in batch and continuous flow processes.Advanced Synthesis & Catalysis, 2008, 350(5): 717–730
https://doi.org/10.1002/adsc.200700510
138 A, Elhage B, Wang N, Marina , et al.. Glass wool: a novel support for heterogeneous catalysis.Chemical Science, 2018, 9(33): 6844–6852
https://doi.org/10.1039/C8SC02115E pmid: 30310617
139 G F, Lenz R, Schneider de Aguiar K M F, Rossi , et al.. Self-supported nickel nanoparticles on germanophosphate glasses: synthesis and applications in catalysis.RSC Advances, 2019, 9(30): 17157–17164
https://doi.org/10.1039/C9RA02927C pmid: 35519891
140 X, Luo M, Meng R, Li , et al.. Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching.Materials & Design, 2020, 196: 109109
https://doi.org/10.1016/j.matdes.2020.109109
141 K, Zheng A R Boccaccini . Sol-gel processing of bioactive glass nanoparticles: a review.Advances in Colloid and Interface Science, 2017, 249: 363–373
https://doi.org/10.1016/j.cis.2017.03.008 pmid: 28364954
142 D S Brauer . Bioactive glasses — structure and properties.Angewandte Chemie International Edition, 2015, 54(14): 4160–4181
https://doi.org/10.1002/anie.201405310 pmid: 25765017
143 J R Jones . Review of bioactive glass: from Hench to hybrids.Acta Biomaterialia, 2013, 9(1): 4457–4486
https://doi.org/10.1016/j.actbio.2012.08.023 pmid: 22922331
144 V, Miguez-Pacheco L L, Hench A R Boccaccini . Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues.Acta Biomaterialia, 2015, 13: 1–15
https://doi.org/10.1016/j.actbio.2014.11.004 pmid: 25462853
145 F, Baino G, Novajra V, Miguez-Pacheco , et al.. Bioactive glasses: special applications outside the skeletal system.Journal of Non-Crystalline Solids, 2016, 432: 15–30
https://doi.org/10.1016/j.jnoncrysol.2015.02.015
146 L L, Hench R J, Splinter W C, Allen , et al.. Bonding mechanisms at the interface of ceramic prosthetic materials.Journal of Biomedical Materials Research, 1971, 5(6): 117–141
https://doi.org/10.1002/jbm.820050611
147 M, Erol-Taygun K, Zheng A R Boccaccini . Nanoscale bioactive glasses in medical applications.International Journal of Applied Glass Science, 2013, 4(2): 136–148
https://doi.org/10.1111/ijag.12029
148 C, Vichery J M Nedelec . Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications.Materials, 2016, 9(4): 288–295
https://doi.org/10.3390/ma9040288 pmid: 28773412
149 J, Hum A R Boccaccini . Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review.Journal of Materials Science: Materials in Medicine, 2012, 23(10): 2317–2333
https://doi.org/10.1007/s10856-012-4580-z pmid: 22361998
150 C, Wu W, Fan J Chang . Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells.Journal of Materials Chemistry B, 2013, 1(21): 2710–2718
https://doi.org/10.1039/c3tb20275e pmid: 32260976
151 G, Blackburn T G, Scott I S, Bayer , et al.. Bionanomaterials for bone tumor engineering and tumor destruction.Journal of Materials Chemistry B, 2013, 1(11): 1519–1534
https://doi.org/10.1039/c3tb00536d pmid: 32260715
152 A C, Jayalekshmi S P, Victor C P Sharma . Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.Colloids and Surfaces B: Biointerfaces, 2013, 101: 196–204
https://doi.org/10.1016/j.colsurfb.2012.06.027 pmid: 22809595
153 C, Wu W, Fan Y, Zhu , et al.. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.Acta Biomaterialia, 2011, 7(10): 3563–3572
https://doi.org/10.1016/j.actbio.2011.06.028 pmid: 21745610
154 S J, Shih W L, Tzeng R, Jatnika , et al.. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 899–907
https://doi.org/10.1002/jbm.b.33273 pmid: 25171327
155 J, Li D, Zhai F, Lv , et al.. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing.Acta Biomaterialia, 2016, 36: 254–266
https://doi.org/10.1016/j.actbio.2016.03.011 pmid: 26965395
156 M G, Ventura A J, Parola de Matos A Pires . Influence of heat treatment on the colour of Au and Ag glasses produced by the sol-gel pathway.Journal of Non-Crystalline Solids, 2011, 357(4): 1342–1349
https://doi.org/10.1016/j.jnoncrysol.2010.12.013
157 P, Mazzold S, Carturan A, Quaranta , et al.. Ion exchange process: history, evolution and applications.Rivista del Nuovo Cimento, 2013, 36: 397–460
https://doi.org/10.1393/ncr/i2013-10092-1
158 G, Molina S, Murcia J, Molera , et al.. Color and dichroism of silver-stained glasses.Journal of Nanoparticle Research, 2013, 15(9): 1932
https://doi.org/10.1007/s11051-013-1932-7
159 T, Pradell J, Molera J, Roque , et al.. Ionic-exchange mechanism in the formation of medieval luster decorations.Journal of the American Ceramic Society, 2005, 88(5): 1281–1289
https://doi.org/10.1111/j.1551-2916.2005.00223.x
160 T, Palomar P, Redol Almeida I, Cruz , et al.. The influence of environment in the alteration of the stained-glass windows in Portuguese monuments.Heritage, 2018, 1(2): 365–376
https://doi.org/10.3390/heritage1020025
161 T, Palomar C, Grazia Cardoso I, Pombo , et al.. Analysis of chromophores in stained-glass windows using visible hyperspectral imaging in-situ.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117378
https://doi.org/10.1016/j.saa.2019.117378 pmid: 31323494
162 C, Machado A, Machado T, Palomar , et al.. Debitus grisailles for stained-glass conservation: an analytical study.Conservar Património, 2020, 34: 65–72
https://doi.org/10.14568/cp2018067
163 F, Gonella P Mazzoldi . Chapter 2: Metal nanocluster composite glasses.Handbook of Nanostructured Materials and Nanotechnology, 2000, 4: 81–158
164 L C, Liu S H Risbud . Quantum-dot size-distribution analysis and precipitation stages in semiconductor doped glasses.Journal of Applied Physics, 1990, 68(1): 28–32
https://doi.org/10.1063/1.347130
165 T M, Machado R F, Falci I L, Silva , et al.. Erbium 1.55 μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses.Materials Chemistry and Physics, 2019, 224: 73–78
https://doi.org/10.1016/j.matchemphys.2018.11.059
166 T M, Machado R F, Falci G F S, Andrade , et al.. Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses.Physical Chemistry Chemical Physics, 2020, 22(23): 13118–13122
https://doi.org/10.1039/D0CP01690J pmid: 32490492
167 R, Rajaramakrishna C, Saiyasombat R V, Anavekar , et al.. Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass.Journal of Non-Crystalline Solids, 2014, 406: 107–110
https://doi.org/10.1016/j.jnoncrysol.2014.09.052
168 R, Rajaramakrishna S, Karuthedath R V, Anavekar , et al.. Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles.Journal of Non-Crystalline Solids, 2012, 358(14): 1667–1672
https://doi.org/10.1016/j.jnoncrysol.2012.04.031
169 F, Chen S, Dai T, Xu , et al.. Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses.Chemical Physics Letters, 2011, 514(1‒3): 79–82
https://doi.org/10.1016/j.cplett.2011.08.011
170 R, Ma J, Qian S, Cui , et al.. Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass.Journal of Luminescence, 2014, 152: 222–225
https://doi.org/10.1016/j.jlumin.2013.10.036
171 Z, Guo S, Ye T, Liu , et al.. SmF3 doping and heat treatment manipulated Ag species evaluation and efficient energy transfer from Ag nanoclusters to Sm3+ ions in oxyfluoride glass.Journal of Non-Crystalline Solids, 2017, 458: 80–85
https://doi.org/10.1016/j.jnoncrysol.2016.11.026
172 S P, Singh B Karmakar . Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag:bismuth glass nanocomposites.Plasmonics, 2011, 6(3): 457–467
https://doi.org/10.1007/s11468-011-9224-5
173 Rao G, Venkateswara H D Shashikala . Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO‒CaF2‒P2O5 glass.Journal of Alloys and Compounds, 2015, 622: 108–114
https://doi.org/10.1016/j.jallcom.2014.09.156
174 B N, Swetha K Keshavamurthy . Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses.Applied Surface Science, 2020, 525: 146505
https://doi.org/10.1016/j.apsusc.2020.146505
175 Danmallam I, Mohammed S K, Ghoshal R, Ariffin , et al.. Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd‒Ofelt calculation.Optical Materials, 2020, 105: 109889
https://doi.org/10.1016/j.optmat.2020.109889
176 J, Qiu M, Shirai T, Nakaya , et al.. Space-selective precipitation of metal nanoparticles inside glasses.Applied Physics Letters, 2002, 81(16): 3040–3042
https://doi.org/10.1063/1.1509095
177 J, Qiu X, Jiang C, Zhu , et al.. Manipulation of gold nanoparticles inside transparent materials.Angewandte Chemie International Edition, 2004, 43(17): 2230–2234
https://doi.org/10.1002/anie.200352380 pmid: 15108130
178 X, Hu Q, Zhao X, Jiang , et al.. Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass.Solid State Communications, 2006, 138(1): 43–46
https://doi.org/10.1016/j.ssc.2006.01.007
179 Y, Teng B, Qian N, Jiang , et al.. Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses.Chemical Physics Letters, 2010, 485(1‒3): 91–94
https://doi.org/10.1016/j.cplett.2009.12.010
180 J M P, Almeida Boni L, De W, Avansi , et al.. Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass.Optics Express, 2012, 20(14): 15106–15113
https://doi.org/10.1364/OE.20.015106 pmid: 22772208
181 S, Chen T, Akai K, Kadono , et al.. Reversible control of silver nanoparticle generation and dissolution in soda-lime silicate glass through X-ray irradiation and heat treatment.Applied Physics Letters, 2001, 79(22): 3687–3689
https://doi.org/10.1063/1.1418257
182 J, Sheng K, Kadono T Yazawa . Nanosized gold clusters formation in selected areas of soda-lime silicate glass.Journal of Non-Crystalline Solids, 2003, 324(3): 295–299
https://doi.org/10.1016/S0022-3093(03)00320-X
183 E, Valentin H, Bernas C, Ricolleau , et al.. Ion beam “photography”: decoupling nucleation and growth of metal clusters in glass.Physical Review Letters, 2001, 86(1): 99–102
https://doi.org/10.1103/PhysRevLett.86.99 pmid: 11136103
184 H K, Farag M A Marzouk . Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses.Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15480–15487
https://doi.org/10.1007/s10854-017-7435-z
185 A S, Asyikin M K, Halimah A A, Latif , et al.. Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles.Journal of Non-Crystalline Solids, 2020, 529: 119777
https://doi.org/10.1016/j.jnoncrysol.2019.119777
186 J R, Orives W R, Viali M, Magnani , et al.. Incorporation of CdFe2O4‒SiO2 nanoparticles in SbPO4‒ZnO‒PbO glasses by melt-quenching process.Eclética Química Journal, 2018, 43(2): 32–43
https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p32-43
187 W, Widanarto M R, Sahar S K, Ghoshal , et al.. Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide.Materials Letters, 2013, 108: 289–292
https://doi.org/10.1016/j.matlet.2013.06.109
188 W, Widanarto M R, Sahar S K, Ghoshal , et al.. Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass.Journal of Magnetism and Magnetic Materials, 2013, 326: 123–128
https://doi.org/10.1016/j.jmmm.2012.08.042
189 P, Anigrahawati M R, Sahar S K Ghoshal . Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass.Materials Chemistry and Physics, 2015, 155: 155–161
https://doi.org/10.1016/j.matchemphys.2015.02.014
190 D F, Franco A C, Sant’Ana Oliveira L F C, De , et al.. The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties.Journal of Materials Chemistry C, 2015, 3(15): 3803–3808
https://doi.org/10.1039/C5TC00102A
191 O N, Egorova S L, Semjonov V V, Velmiskin , et al.. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.Optics Express, 2014, 22(7): 7632–7637
https://doi.org/10.1364/OE.22.007632 pmid: 24718138
192 Z M, Sathi J, Zhang Y, Luo , et al.. Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping.Optical Materials Express, 2015, 5(10): 2096–2105
https://doi.org/10.1364/OME.5.002096
193 T, Wei F, Chen Y, Tian , et al.. Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 126: 53–58
https://doi.org/10.1016/j.saa.2014.01.134 pmid: 24583472
194 D D, Chen Q, Qian M Y, Peng , et al.. Effect of Ce3+, Dy3+, and Tb3+ additions on the spectroscopic properties of Er3+/Yb3+ codoped tellurite glasses.Physica B: Condensed Matter, 2010, 405(21): 4453–4456
https://doi.org/10.1016/j.physb.2010.08.014
195 L, Li Y, Yang D, Zhou , et al.. Influence of the Eu2+ on the silver aggregates formation in Ag+–Na+ ion-exchanged Eu3+-doped sodium-aluminosilicate glasses.Journal of the American Ceramic Society, 2014, 97(4): 1110–1114
https://doi.org/10.1111/jace.12745
196 C, Worsch M, Büttner P, Schaaf , et al.. Magnetic properties of multicore magnetite nanoparticles prepared by glass crystallization.Journal of Materials Science, 2013, 48(6): 2299–2307
https://doi.org/10.1007/s10853-012-7009-7
197 R, Harizanova G, Völksch C Rüssel . Microstructures formed during devitrification of Na2O·Al2O3·B2O3·SiO2·Fe2O3 glasses.Journal of Materials Science, 2010, 45(5): 1350–1353
https://doi.org/10.1007/s10853-009-4090-7
198 C, Worsch P, Schaaf R, Harizanova , et al.. Magnetisation effects of multicore magnetite nanoparticles crystallised from a silicate glass.Journal of Materials Science, 2012, 47(15): 5886–5890
https://doi.org/10.1007/s10853-012-6490-3
199 S, Woltz R, Hiergeist P, Görnert , et al.. Magnetite nanoparticles prepared by the glass crystallization method and their physical properties.Journal of Magnetism and Magnetic Materials, 2006, 298(1): 7–13
https://doi.org/10.1016/j.jmmm.2005.02.067
200 C, Burda X, Chen R, Narayanan , et al.. Chemistry and properties of nanocrystals of different shapes.Chemical Reviews, 2005, 105(4): 1025–1102
https://doi.org/10.1021/cr030063a pmid: 15826010
201 R D Maurer . Nucleation and growth in a photosensitive glass.Journal of Applied Physics, 1958, 29(1): 1–8
https://doi.org/10.1063/1.1722926
202 K, Zhang D, Zhou J, Qiu , et al.. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass.Journal of the American Ceramic Society, 2020, 103(4): 2463–2470
https://doi.org/10.1111/jace.16966
203 D, Manzani J M P, Almeida M, Napoli , et al.. Nonlinear optical properties of tungsten lead-pyrophosphate glasses containing metallic copper nanoparticles.Plasmonics, 2013, 8(4): 1667–1674
https://doi.org/10.1007/s11468-013-9585-z
204 J, Qiu C, Zhu T, Nakaya , et al.. Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser.Applied Physics Letters, 2001, 79(22): 3567–3569
https://doi.org/10.1063/1.1421640
205 H, Zeng J, Qiu Z, Ye , et al.. Irradiation assisted fabrication of gold nanoparticles-doped glasses.Journal of Crystal Growth, 2004, 267(1‒2): 156–160
https://doi.org/10.1016/j.jcrysgro.2004.03.041
206 H, Hosono N, Matsunami A, Kudo , et al.. Novel approach for synthesizing Ge fine particles embedded in glass by ion implantation: formation of Ge nanocrystal in SiO2‒GeO2 glasses by proton implantation.Applied Physics Letters, 1994, 65(13): 1632–1634
https://doi.org/10.1063/1.112934
207 H, Hosono K, Kawamura Y, Kameshima , et al.. Nanometer-sized Ge particles in GeO2–SiO2 glasses produced by proton implantation: combined effects of electronic excitation and chemical reaction.Journal of Applied Physics, 1997, 82(9): 4232–4235
https://doi.org/10.1063/1.366228
208 I M, Lifshitz V V Slyozov . The kinetics of precipitation from supersaturated solid solutions.Journal of Physics and Chemistry of Solids, 1961, 19(1‒2): 35–50
https://doi.org/10.1016/0022-3697(61)90054-3
209 L R, Houk S R, Challa B, Grayson , et al.. The definition of “critical radius” for a collection of nanoparticles undergoing Ostwald ripening.Langmuir, 2009, 25(19): 11225–11227
https://doi.org/10.1021/la902263s pmid: 19715330
210 Y, Azlina M N, Azlan M K, Halimah , et al.. Optical performance of neodymium nanoparticles doped tellurite glasses.Physica B: Condensed Matter, 2020, 577: 411784
https://doi.org/10.1016/j.physb.2019.411784
211 Noorazlan A, Muhammad Kamari H, Mohamed S S, Zulkefly , et al.. Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system.Journal of Nanomaterials, 2013, 2013: 940917
https://doi.org/10.1155/2013/940917
212 M K, Halimah A A, Awshah A M, Hamza , et al.. Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system.Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3785–3794
https://doi.org/10.1007/s10854-020-02907-9
213 J R, Orives W R, Viali S H, Santagneli , et al.. Phosphate glasses via coacervation route containing CdFe2O4 nanoparticles: structural, optical and magnetic characterization.Dalton transactions, 2018, 47(16): 5771–5779
https://doi.org/10.1039/C8DT00560E pmid: 29637950
214 J R, Orives B P, Pichon D, Mertz , et al.. Phosphate glasses containing monodisperse Fe3−δO4@SiO2 stellate nanoparticles obtained by melt-quenching process.Ceramics International, 2020, 46(8): 12120–12127
https://doi.org/10.1016/j.ceramint.2020.01.257
215 L L, Hench J K West . The sol-gel process.Chemical Reviews, 1990, 90(1): 33–72
https://doi.org/10.1021/cr00099a003
216 T Graham . On the properties of silicic acid and other analogous colloidal substances.Journal of the Chemical Society, 1864, 17: 318–327
https://doi.org/10.1039/JS8641700318
217 H Dislich . New routes to multicomponent oxide glasses.Angewandte Chemie International Edition, 1971, 10(6): 363–370
https://doi.org/10.1002/anie.197103631
218 B E Yoldas . Monolithic glass formation by chemical polymerization.Journal of Materials Science, 1979, 14(8): 1843–1849
https://doi.org/10.1007/BF00551023
219 I, Razdobreev Hamzaoui H, El V Y, Ivanov , et al.. Optical spectroscopy of bismuth-doped pure silica fiber preform.Optics Letters, 2010, 35(9): 1341–1343
https://doi.org/10.1364/OL.35.001341 pmid: 20436562
220 M Vallet-Regí . Ceramics for medical applications.Journal of the Chemical Society — Dalton Transactions: Inorganic Chemistry, 2001, 2(2): 97–108
https://doi.org/10.1039/b007852m
221 G, Kaur G, Pickrell N, Sriranganathan , et al.. Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(6): 1248–1275
https://doi.org/10.1002/jbm.b.33443 pmid: 26060931
222 Hamzaoui H, El L, Bigot G, Bouwmans , et al.. From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route.Optical Materials Express, 2011, 1(2): 234–242
https://doi.org/10.1364/OME.1.000234
223 C J, Brinker G W Scherer . Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York, USA: Academic Press, 1990
224 J, Zarzycki M, Prassas J Phalippou . Synthesis of glasses from gels: the problem of monolithic gels.Journal of Materials Science, 1982, 17(11): 3371–3379
https://doi.org/10.1007/BF01203507
225 D R Ulrich . Prospects of sol-gel processes.Journal of Non-Crystalline Solids, 1988, 100(1‒3): 174–193
https://doi.org/10.1016/0022-3093(88)90015-4
226 F, Kirkbir H, Murata D, Meyers , et al.. Drying and sintering of sol-gel derived large SiO2 monoliths.Journal of Sol-Gel Science and Technology, 1996, 6(3): 203–217
https://doi.org/10.1007/BF00402691
227 K Kajihara . Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses.Journal of Asian Ceramic Societies, 2013, 1(2): 121–133
https://doi.org/10.1016/j.jascer.2013.04.002
228 T, Adachi S Sakka . Preparation of monolithic silica gel and glass by the sol-gel method using N, N-dimethylformamide.Journal of Materials Science, 1987, 22(12): 4407–4410
https://doi.org/10.1007/BF01132038
229 J B, Chan J Jonas . Effect of various amide additives on the tetramethoxysilane sol-gel process.Journal of Non-Crystalline Solids, 1990, 126(1‒2): 79–86
https://doi.org/10.1016/0022-3093(90)91025-M
230 F, Kirkbir H, Murata D, Meyers , et al.. Drying of large monolithic aerogels between atmospheric and supercritical pressures.Journal of Sol-Gel Science and Technology, 1998, 13(1/3): 311–316
https://doi.org/10.1023/A:1008668009340
231 R K Iler . The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York, USA: John Wiley and Sons Ltd., 1979
232 M, Yamane S, Aso S, Okano , et al.. Low temperature synthesis of a monolithic silica glass by the pyrolysis of a silica gel.Journal of Materials Science, 1979, 14(3): 607–611
https://doi.org/10.1007/BF00772720
233 S, Hæreid M A, Einarsrud G W Scherer . Mechanical strengthening of TMOS-based alcogels by aging in silane solutions.Journal of Sol-Gel Science and Technology, 1994, 3: 199–204
https://doi.org/10.1007/BF00486558
234 T, Kawaguchi H, Hishikura J, Iura , et al.. Monolithic dried gels and silica glass prepared by the sol-gel process.Journal of Non-Crystalline Solids, 1984, 63(1‒2): 61–69
https://doi.org/10.1016/0022-3093(84)90386-7
235 A, Sarkar S R, Chaudhuri S, Wang , et al.. Drying of alkoxide gels-observation of an alternate phenomenology.Journal of Sol-Gel Science and Technology, 1994, 2(1‒3): 865–870
https://doi.org/10.1007/BF00486366
236 H, Murata D E, Meyers F, Kirkbir , et al.. Drying and sintering of bulk silica gels.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 397–402
https://doi.org/10.1007/BF02436872
237 G W, Scherer D M Smith . Cavitation during drying of a gel.Journal of Non-Crystalline Solids, 1995, 189(3): 197–211
https://doi.org/10.1016/0022-3093(95)00222-7
238 D M, Smith D, Stein J M, Anderson , et al.. Preparation of low-density xerogels at ambient pressure.Journal of Non-Crystalline Solids, 1995, 186: 104–112
https://doi.org/10.1016/0022-3093(95)00040-2
239 K, Susa I, Matsuyama S, Satoh , et al.. Sol-gel derived Ge-doped silica glass for optical fiber application: I.Preparation of gel and glass and their characterization. Journal of Non-Crystalline Solids, 1990, 119(1): 21–28
https://doi.org/10.1016/0022-3093(90)90236-F
240 K, Susa I, Matsuyama S Satoh . Sol-gel derived Ge-doped silica glass for optical fiber application.II. Excess optical loss. Journal of Non-Crystalline Solids, 1991, 128(2): 118–125
https://doi.org/10.1016/0022-3093(91)90503-X
241 B, Breitscheidel J, Zieder U Schubert . Metal complexes in inorganic matrices.7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chemistry of Materials, 1991, 3(3): 559–566
https://doi.org/10.1021/cm00015a037
242 C, Lembacher U Schubert . Nanosized platinum particles by sol-gel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size.New Journal of Chemistry, 1998, 22(7): 721–724
https://doi.org/10.1039/a709224e
243 G, Trimmel C, Lembacher G, Kickelbick , et al.. Sol-gel processing of alkoxysilyl-substituted nickel complexes for the preparation of highly dispersed nickel in silica.New Journal of Chemistry, 2002, 26(6): 759–765
https://doi.org/10.1039/b110612k
244 C M, Lukehart S B, Milne S R Stock . Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors.Chemistry of Materials, 1998, 10(3): 903–908
https://doi.org/10.1021/cm970673p
245 J P, Carpenter C M, Lukehart S R, Stock , et al.. Formation of a nanocomposite containing particles of Co3C from a single-source precursor bound to a silica xerogel host matrix.Chemistry of Materials, 1995, 7(1): 201–205
https://doi.org/10.1021/cm00049a030
246 J P, Carpenter C M, Lukehart D O, Henderson , et al.. Formation of crystalline germanium nanoclusters in a silica xerogel matrix from an organogermanium precursor.Chemistry of Materials, 1996, 8(6): 1268–1274
https://doi.org/10.1021/cm950548i
247 J P, Carpenter C M, Lukehart S B, Milne , et al.. Organometallic compounds as single-source precursors to nanocomposite materials: an overview.Journal of Organometallic Chemistry, 1998, 557(1): 121–130
https://doi.org/10.1016/S0022-328X(97)00740-7
248 H, Mathieu T, Richard J, Allègre , et al.. Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the sol-gel process.Journal of Applied Physics, 1995, 77(1): 287–293
https://doi.org/10.1063/1.359389
249 J, Zhong X, Ma H, Lu , et al.. Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles.Journal of Alloys and Compounds, 2014, 607: 177–182
https://doi.org/10.1016/j.jallcom.2014.04.080
250 J, Zhong W, Xiang H, Zhao , et al.. Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass.Journal of Alloys and Compounds, 2012, 537: 269–274
https://doi.org/10.1016/j.jallcom.2012.05.046
251 L, Pei X, Liang W, Cai , et al.. Photocatalytic activity in monodisperse In2O3 nanocrystals incorporated into transparent silica glassy matrix.Journal of Alloys and Compounds, 2015, 626: 131–135
https://doi.org/10.1016/j.jallcom.2014.11.165
252 H, Gao W, Xiang X, Ma , et al.. Sol-gel synthesis and third-order optical nonlinearity of Au nanoparticles doped monolithic glass.Gold Bulletin, 2015, 48(3‒4): 153–159
https://doi.org/10.1007/s13404-015-0173-1
253 J, Zhong W Xiang . Sol-gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass.Journal of Non-Crystalline Solids, 2017, 462: 17–22
https://doi.org/10.1016/j.jnoncrysol.2017.02.005
254 Y, Huang W, Xiang S, Lin , et al.. The synthesis of bimetallic gold plus nickel nanoparticles dispersed in a glass host and behavior-enhanced optical nonlinearities.Journal of Non-Crystalline Solids, 2017, 459: 142–149
https://doi.org/10.1016/j.jnoncrysol.2017.01.007
255 Y, Zhang Y, Jin M, He , et al.. Optical properties of bimetallic Au‒Cu nanocrystals embedded in glass.Materials Research Bulletin, 2018, 98: 94–102
https://doi.org/10.1016/j.materresbull.2017.10.009
256 Rouge A, Le Hamzaoui H, El B, Capoen , et al.. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass.Materials Research Express, 2015, 2(5): 055009
https://doi.org/10.1088/2053-1591/2/5/055009
257 E E, Campos-Zuñiga I L, Alonso-Lemus V, Agarwal , et al.. Sol-gel synthesis for stable green emission in samarium doped borosilicate glasses.Ceramics International, 2019, 45(18): 24052–24059
https://doi.org/10.1016/j.ceramint.2019.08.110
258 U, Schubert S, Amberg-Schwab B Breitscheidel . Metal complexes in inorganic matrices.4. Small metal particles in palladium‒silica composites by sol-gel processing of metal complexes. Chemistry of Materials, 1989, 1(6): 576–578
https://doi.org/10.1021/cm00006a005
259 U Schubert . Metal oxide/silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors.Advanced Engineering Materials, 2004, 6(3): 173–176
https://doi.org/10.1002/adem.200300548
260 U Schubert . Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes.Polymer International, 2009, 58(3): 317–322
https://doi.org/10.1002/pi.2526
261 G, Trimmel U Schubert . Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels.Journal of Non-Crystalline Solids, 2001, 296(3): 188–200
https://doi.org/10.1016/S0022-3093(01)00911-5
262 W, Moerke R, Lamber U, Schubert , et al.. Metal complexes in inorganic matrices.11. Composition of highly dispersed bimetallic Ni, Pd alloy particles prepared by sol-gel processing: electron microscopy and FMR study. Chemistry of Materials, 1994, 6(10): 1659–1666
https://doi.org/10.1021/cm00046a018
263 A, Kaiser C, Görsmann U Schubert . Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 795–799
https://doi.org/10.1007/BF02436940
264 M, Malenovska M A, Neouze U, Schubert , et al.. Multi-component hybrid organic‒inorganic particles with highly dispersed silver nanoparticles in the external shell.Dalton Transactions, 2008, (34): 4647–4651
https://doi.org/10.1039/b806820h pmid: 19024364
265 R Reisfeld . Prospects of sol-gel technology towards luminescent materials.Optical Materials, 2001, 16(1‒2): 223707
https://doi.org/10.1016/S0925-3467(00)00052-5
266 G, Yang S, Cheng C, Li , et al.. Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy.Journal of Applied Physics, 2014, 116(22): 1–6
https://doi.org/10.1063/1.4903955
267 A C, Yanes A, Santana-Alonso J, Méndez-Ramos , et al.. Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: structure and high efficient UV up-conversion.Advanced Functional Materials, 2011, 21(16): 3136–3142
https://doi.org/10.1002/adfm.201100146
268 M, Zhang H, Fan B, Xi , et al.. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles.The Journal of Physical Chemistry C, 2007, 111(18): 6652–6657
https://doi.org/10.1021/jp068919d
269 G, Wang W, Qin J, Zhang , et al.. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles.The Journal of Physical Chemistry C, 2008, 112(32): 12161–12167
https://doi.org/10.1021/jp8004713
270 E, Kalwarczyk P, Kabaciński T M, Kardaś , et al.. A Seedless method for gold nanoparticle growth inside a silica matrix: fabrication of materials capable of third-harmonic generation in the near-infrared.ChemPlusChem, 2019, 84(5): 525–533
https://doi.org/10.1002/cplu.201900224 pmid: 31943903
271 P, Melnikov I V, Arkhangelsky V A, Nascimento , et al.. Thermolysis mechanism of samarium nitrate hexahydrate.Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1537–1541
https://doi.org/10.1007/s10973-014-4067-x
272 A, Gaddam H R, Fernandes D U, Tulyaganov , et al.. The structural role of lanthanum oxide in silicate glasses.Journal of Non-Crystalline Solids, 2019, 505: 18–27
https://doi.org/10.1016/j.jnoncrysol.2018.10.023
273 C A Harper . Handbook of Ceramics, Glasses, and Diamonds.New York, USA: McGraw-Hill, 2001
274 E J A, Pope J D Mackenzie . Nd-doped silica glass I: structural evolution in the sol-gel state.Journal of Non-Crystalline Solids, 1988, 106(1‒3): 236–241
https://doi.org/10.1016/0022-3093(88)90266-9
275 R, Campostrini G, Carturan M, Ferrari , et al.. Luminescence of Eu3+ ions during thermal densification of SiO2 gel.Journal of Materials Research, 1992, 7(3): 745–753
https://doi.org/10.1557/JMR.1992.0745
276 E J A, Pope J D Mackenzie . Sol-gel processing of neodymian-silica glass.Journal of the American Ceramic Society, 1993, 76(5): 1325–1328
https://doi.org/10.1111/j.1151-2916.1993.tb03759.x
277 S, Chakrabarti J, Sahu M, Chakraborty , et al.. Monophasic silica glasses with large neodymia concentration.Journal of Non-Crystalline Solids, 1994, 180(1): 96–101
https://doi.org/10.1016/0022-3093(94)90403-0
278 A, Monteil S, Chaussedent G, Alombert-Goget , et al.. Clustering of rare earth in glasses, aluminum effect: experiments and modeling.Journal of Non-Crystalline Solids, 2004, 348: 44–50
https://doi.org/10.1016/j.jnoncrysol.2004.08.124
279 M, Langlet C, Coutier W, Meffre , et al.. Microstructural and spectroscopic study of sol-gel derived Nd-doped silica glasses.Journal of Luminescence, 2002, 96(2‒4): 295–309
https://doi.org/10.1016/S0022-2313(01)00213-7
280 M W, Sckerl S, Guldberg-Kjaer Poulsen M, Rysholt , et al.. Precipitate coarsening and self organization in erbium-doped silica.Physical Review B: Condensed Matter, 1999, 59(21): 13494–13497
https://doi.org/10.1103/PhysRevB.59.13494
281 A L Stepanov . Chapter 4: Laser annealing of metal nanoparticles synthesized in glasses by ion implantation.Glass Nanocomposites Synthesis, Properties and Applications, 2016, 115–130
282 Marchi G, De G, Mattei P, Mazzoldi , et al.. Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere.Journal of Applied Physics, 2002, 92(8): 4249–4254
https://doi.org/10.1063/1.1506423
283 S K, Srivastava P, Gangopadhyay S, Amirthapandian , et al.. Effects of high-energy Si ion-irradiations on optical responses of Ag metal nanoparticles in a SiO2 matrix.Chemical Physics Letters, 2014, 607: 100–104
https://doi.org/10.1016/j.cplett.2014.05.059
284 Q, Liu X, He X, Zhou , et al.. Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2–24Ga2S3–20KBr chalcohalide glasses.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2320–2323
https://doi.org/10.1016/j.jnoncrysol.2011.02.050
285 S, Vytykacova B, Svecova P, Nekvindova , et al.. The formation of silver metal nanoparticles by ion implantation in silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 245–250
https://doi.org/10.1016/j.nimb.2015.10.016
286 B, Zhang R, Sato K, Oyoshi , et al.. Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 447: 38–42
https://doi.org/10.1016/j.nimb.2019.03.049
287 A, Herrera N M Balzaretti . Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3‒PbO‒Bi2O3‒GeO2 glass.Journal of Luminescence, 2017, 181: 147–152
https://doi.org/10.1016/j.jlumin.2016.09.013
288 A L, Stepanov M F, Galyautdinov A B, Evlyukhin , et al.. Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation.Applied Physics A: Materials Science & Processing, 2013, 111(1): 261–264
https://doi.org/10.1007/s00339-012-7474-5
289 B, Ghosh P, Chakraborty B P, Singh , et al.. Enhanced nonlinear optical responses in metal–glass nanocomposites.Applied Surface Science, 2009, 256(2): 389–394
https://doi.org/10.1016/j.apsusc.2009.05.093
290 Y H, Wang Y M, Wang J D, Lu , et al.. Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass.Optics Communications, 2010, 283(3): 486–489
https://doi.org/10.1016/j.optcom.2009.10.035
291 X H, Xiao F, Ren J B, Wang , et al.. Formation of aligned silver nanoparticles by ion implantation.Materials Letters, 2007, 61(22): 4435–4437
https://doi.org/10.1016/j.matlet.2007.02.017
292 Y, Shen T, Qi Y, Qiao , et al.. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2.Applied Surface Science, 2016, 363: 310–317
https://doi.org/10.1016/j.apsusc.2015.11.135
293 J, Wang G, Jia B, Zhang , et al.. Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: synthesis of the modified Ag nanoparticles.Journal of Applied Physics, 2013, 113(3): 034304
https://doi.org/10.1063/1.4775820
294 L C, Nistor Landuyt J, van J B, Barton , et al.. Colloid size distribution in ion implanted glass.Journal of Non-Crystalline Solids, 1993, 162(3): 217–224
https://doi.org/10.1016/0022-3093(93)91240-4
295 A L, Stepanov V N Popok . Nanostructuring of silicate glass under low-energy Ag-ion implantation.Surface Science, 2004, 566‒568: 1250–1254
https://doi.org/10.1016/j.susc.2004.06.141
296 H, Gnaser A, Brodyanski B Reuscher . Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology.Surface and Interface Analysis, 2008, 40(11): 1415–1422
https://doi.org/10.1002/sia.2915
297 S, Stanek P, Nekvindova B, Svecova , et al.. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 350–354
https://doi.org/10.1016/j.nimb.2015.09.078
298 K, Fukumi A, Chayahara K, Kadono , et al.. Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties.Journal of Applied Physics, 1994, 75(6): 3075–3080
https://doi.org/10.1063/1.356156
299 A C, Yanes J del-Castillo . Enhanced emission via energy transfer in RE co-doped SiO2–KYF4 nano-glass-ceramics for white LEDs.Journal of Alloys and Compounds, 2016, 658: 170–176
https://doi.org/10.1016/j.jallcom.2015.10.137
300 Y H, Wang F, Liu H, Cheng , et al.. Third order non-linear optical response of Cu nanoclusters by ion implantation in silicate glass under 532 and 1064 nm laser excitations.Materials Research Innovations, 2014, 18(4): 241–244
https://doi.org/10.1179/1433075X13Y.0000000150
301 F, Gonella G, Mattei P, Mazzoldi , et al.. Au‒Cu alloy nanoclusters in silica formed by ion implantation and annealing in reducing or oxidizing atmosphere.Applied Physics Letters, 1999, 75(1): 55–57
https://doi.org/10.1063/1.124275
302 T, Cesca P, Calvelli G, Battaglin , et al.. Local-field enhancement effect on the nonlinear optical response of gold‒silver nanoplanets.Optics Express, 2012, 20(4): 4537–4547
https://doi.org/10.1364/OE.20.004537 pmid: 22418213
303 G, Mattei G D, Marchi C, Maurizio , et al.. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters.Physical Review Letters, 2003, 90(8): 085502
https://doi.org/10.1103/PhysRevLett.90.085502 pmid: 12633436
304 Z L, Liau B Y, Tsaur J W Mauer . Influence of atomic mixing and preferential sputtering on depth profiles and interfaces.Journal of Vacuum Science and Technology, 1979, 16(2): 121–127
https://doi.org/10.1116/1.569883
305 T, Yamada A, Takano K, Sugita , et al.. Effect of dual implantation with Ag and Ni ions on the optical absorption of silica glass.Transactions of the Materials Research Society of Japan, 2020, 45(4): 127–130
https://doi.org/10.14723/tmrsj.45.127
306 G X, Cai F, Ren X H, Xiao , et al.. Morphology control and optical absorption properties of Ag nanoparticles by ion implantation.Journal of Materials Science and Technology, 2009, 25: 669–672
307 J C, Bourgoin J W Corbett . Enhanced diffusion mechanisms.Radiation Effects, 1978, 36(3‒4): 157–188
https://doi.org/10.1080/00337577808240846
308 G, Jia R, Xu X, Mu , et al.. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution.ACS Applied Materials & Interfaces, 2013, 5(24): 13055–13062
https://doi.org/10.1021/am403941n pmid: 24283510
309 J, Wang L, Zhang X, Zhang , et al.. Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions.Journal of Alloys and Compounds, 2013, 549: 231–237
https://doi.org/10.1016/j.jallcom.2012.09.099
310 P W Voorhees . The theory of Ostwald ripening.Journal of Statistical Physics, 1985, 38(1‒2): 231–252
https://doi.org/10.1007/BF01017860
311 H J, Fan U, Gösele M Zacharias . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.Small, 2007, 3(10): 1660–1671
https://doi.org/10.1002/smll.200700382 pmid: 17890644
312 Y H, Xu J P Wang . Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation.Advanced Materials, 2008, 20(5): 994–999
https://doi.org/10.1002/adma.200602895
313 M, Heggen M, Oezaslan L, Houben , et al.. Formation and analysis of core‒shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts.The Journal of Physical Chemistry C, 2012, 116(36): 19073–19083
https://doi.org/10.1021/jp306426a
314 H, Amekura M, Yoshitake O A, Plaksin , et al.. Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO2 target.Applied Physics Letters, 2007, 91(6): 063113
https://doi.org/10.1063/1.2768004
315 J, Wang G Y, Jia B, Zhang , et al.. Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation.Journal of Applied Physics, 2013, 113: 1–8
316 O, Peña U, Pal L, Rodríguez-Fernández , et al.. Formation of Au‒Ag core‒shell nanostructures in silica matrix by sequential ion implantation.The Journal of Physical Chemistry C, 2009, 113(6): 2296–2300
https://doi.org/10.1021/jp809178y
317 C, Torres-Torres A, López-Suárez B, Can-Uc , et al.. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica.Nanotechnology, 2015, 26(29): 295701
https://doi.org/10.1088/0957-4484/26/29/295701 pmid: 26135968
318 X C, Yang L L, Li M, Huang , et al.. In situ synthesis of Ag‒Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2306–2308
https://doi.org/10.1016/j.jnoncrysol.2010.11.061
319 P A, Obraztsov A V, Nashchekin N V, Nikonorov , et al.. Formation of silver nanoparticles on the silicate glass surface after ion exchange.Physics of the Solid State, 2013, 55(6): 1272–1278
https://doi.org/10.1134/S1063783413060267
320 H M Garfinkel . Ion-exchange equilibria between glass and molten salts.The Journal of Physical Chemistry, 1968, 72(12): 4175–4181
https://doi.org/10.1021/j100858a040
321 R V, Ramaswamy R Srivastava . Ion-exchanged glass waveguides: a review.Journal of Lightwave Technology, 1988, 6(6): 984–1000
https://doi.org/10.1109/50.4090
322 J Crank . The Mathematics of Diffusion. Oxford, UK: Clarendon, 1956
323 J G, Kirkwood J Oppenheim . Chemical Thermodynamics. New York, USA: McGraw Hill, 1961
324 J, Zhao J, Zhu Z, Yang , et al.. Selective preparation of Ag species on photoluminescence of Sm3+ in borosilicate glass via Ag+‒Na+ ion exchange.Journal of the American Ceramic Society, 2020, 103(2): 955–964
https://doi.org/10.1111/jace.16758
325 J, Zhao Z, Yang C, Yu , et al.. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions.Chemical Engineering Journal, 2018, 341: 175–186
https://doi.org/10.1016/j.cej.2018.02.028
326 L, Karvonen J, Rönn S, Kujala , et al.. High non-resonant third-order optical nonlinearity of Ag‒glass nanocomposite fabricated by two-step ion exchange.Optical Materials, 2013, 36(2): 328–332
https://doi.org/10.1016/j.optmat.2013.09.016
327 M C, Mathpal P, Kumar S, Kumar , et al.. Opacity and plasmonic properties of Ag embedded glass based metamaterials.RSC Advances, 2015, 5(17): 12555–12562
https://doi.org/10.1039/C4RA14061C
328 P, Kumar M C, Mathpal A K, Tripathi , et al.. Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses.Physical Chemistry Chemical Physics, 2015, 17(14): 8596–8603
https://doi.org/10.1039/C4CP05679E pmid: 25738191
329 A, Simo J, Polte N, Pfänder , et al.. Formation mechanism of silver nanoparticles stabilized in glassy matrices.Journal of the American Chemical Society, 2012, 134(45): 18824–18833
https://doi.org/10.1021/ja309034n pmid: 23098252
330 J Sheng . Growth of silver nanoclusters embedded in soda-lime silicate glasses.International Journal of Hydrogen Energy, 2009, 34(5): 2471–2474
https://doi.org/10.1016/j.ijhydene.2009.01.034
331 P, Kumar M C, Mathpal S, Hamad , et al.. Cu nanoclusters in ion exchanged soda-lime glass: study of SPR and nonlinear optical behavior for photonics.Applied Materials Today, 2019, 15: 323–334
https://doi.org/10.1016/j.apmt.2019.02.016
332 G, Marchi F, Caccavale F, Gonella , et al.. Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere.Applied Physics A: Materials Science & Processing, 1996, 63(4): 403–407
https://doi.org/10.1007/BF01567335
333 A, Rahman G, Mariotto E, Cattaruzza , et al.. Thermal annealing and laser-induced mechanisms in controlling the size and size-distribution of silver nanoparticles in Ag+‒Na+ ion-exchanged silicate glasses.Journal of Non-Crystalline Solids, 2021, 563: 120815
https://doi.org/10.1016/j.jnoncrysol.2021.120815
334 J, Zhang W, Dong J, Sheng , et al.. Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation.Journal of Crystal Growth, 2008, 310(1): 234–239
https://doi.org/10.1016/j.jcrysgro.2007.10.007
335 A Sharma . Energetic argon beam stimulated growth of plasmonic silver nanoparticles in Ag+-exchanged soda glass: a study on the structural, optical, photoluminescence and electrical behavior.Materials Science and Engineering B, 2021, 263: 1–10
336 H, Hofmeister S, Thiel M, Dubiel , et al.. Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation.Applied Physics Letters, 1997, 70(13): 1694–1696
https://doi.org/10.1063/1.118672
337 A, Rahman M, Giarola E, Cattaruzza , et al.. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.Journal of Nanoscience and Nanotechnology, 2012, 12(11): 8573–8579
https://doi.org/10.1166/jnn.2012.6808 pmid: 23421246
338 A, Quaranta A, Rahman G, Mariotto , et al.. Spectroscopic investigation of structural rearrangements in silver ion-exchanged silicate glasses.The Journal of Physical Chemistry C, 2012, 116(5): 3757–3764
https://doi.org/10.1021/jp2095399
339 M, Lenoir A, Grandjean S, Poissonnet , et al.. Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy.Journal of Non-Crystalline Solids, 2009, 355(28‒30): 1468–1473
https://doi.org/10.1016/j.jnoncrysol.2009.05.015
340 B O, Mysen J D Frantz . Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units.Contributions to Mineralogy and Petrology, 1994, 117(1): 1–14
https://doi.org/10.1007/BF00307725
341 M Jansen . Homoatomic d10–d10 interactions: their effects on structure and chemical and physical properties.Angewandte Chemie International Edition, 1987, 26(11): 1098–1110
https://doi.org/10.1002/anie.198710981
342 F, Gonella A Quaranta . Stress-induced birefringence in silver-diffused glass waveguides.Journal of Modern Optics, 1992, 39(7): 1401–1405
https://doi.org/10.1080/09500349214551451
343 R Araujo . Colorless glasses containing ion-exchanged silver.Applied Optics, 1992, 31(25): 5221–5224
https://doi.org/10.1364/AO.31.005221 pmid: 20733697
344 I, Belharouak F, Weill C, Parent , et al.. Silver particles in glasses of the ‘Ag2O–ZnO–P2O5’ system.Journal of Non-Crystalline Solids, 2001, 293-295: 649–656
https://doi.org/10.1016/S0022-3093(01)00843-2
345 K, Bromann C, Félix H, Brune , et al.. Controlled deposition of size-selected silver nanoclusters.Science, 1996, 274(5289): 956–958
https://doi.org/10.1126/science.274.5289.956 pmid: 8875931
346 N G, Bastús J, Comenge V Puntes . Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.Langmuir, 2011, 27(17): 11098–11105
https://doi.org/10.1021/la201938u pmid: 21728302
347 M, Takesue T, Tomura M, Yamada , et al.. Size of elementary clusters and process period in silver nanoparticle formation.Journal of the American Chemical Society, 2011, 133(36): 14164–14167
https://doi.org/10.1021/ja202815y pmid: 21848291
348 S, Ye Z, Guo H, Wang , et al.. Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting.Journal of Alloys and Compounds, 2016, 685: 891–895
https://doi.org/10.1016/j.jallcom.2016.06.226
349 Y, Chen L, Karvonen A, Säynätjoki , et al.. Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application.Optical Materials Express, 2011, 1(2): 164–172
https://doi.org/10.1364/OME.1.000164
350 S, Berneschi G C, Righini S Pelli . Towards a glass new world: the role of ion-exchange in modern technology.Applied Sciences, 2021, 11(10): 4610
https://doi.org/10.3390/app11104610
351 P G, Debenedetti F H Stillinger . Supercooled liquids and the glass transition.Nature, 2001, 410(6825): 259–267
https://doi.org/10.1038/35065704 pmid: 11258381
352 S, Wackerow G, Seifert A Abdolvand . Homogenous silver-doped nanocomposite glass.Optical Materials Express, 2011, 1(7): 1224–1231
https://doi.org/10.1364/OME.1.001224
353 Y, Sgibnev B, Asamoah N, Nikonorov , et al.. Tunable photoluminescence of silver molecular clusters formed in Na+‒Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix.Journal of Luminescence, 2020, 226: 117411
https://doi.org/10.1016/j.jlumin.2020.117411
354 J, Lumeau E D Zanotto . A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass.International Materials Reviews, 2017, 62(6): 348–366
https://doi.org/10.1080/09506608.2016.1264132
355 N V, Nikonorov E I, Panysheva I V, Tunimanova , et al.. Influence of glass composition on the refractive index change upon photothermoinduced crystallization.Glass Physics and Chemistry, 2001, 27(3): 241–249
https://doi.org/10.1023/A:1011392301107
356 Q, Jiao X, Yu X, Xu , et al.. Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere.Journal of Solid State Chemistry, 2013, 202: 65–69
https://doi.org/10.1016/j.jssc.2013.03.005
357 Q, Zhang X, Liu Y, Qiao , et al.. Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere.Optical Materials, 2010, 32(3): 427–431
https://doi.org/10.1016/j.optmat.2009.10.002
358 D, Manikandan S, Mohan P, Magudapathy , et al.. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study.Physica B: Condensed Matter, 2003, 325: 86–91
https://doi.org/10.1016/S0921-4526(02)01453-9
359 S, Chervinskii V, Sevriuk I, Reduto , et al.. Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass.Journal of Applied Physics, 2013, 114(22): 224301
https://doi.org/10.1063/1.4840996
360 T, Tite N, Ollier M C, Sow , et al.. Ag nanoparticles in soda-lime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection.Sensors and Actuators B: Chemical, 2017, 242: 127–131
https://doi.org/10.1016/j.snb.2016.11.006
361 F, Goutaland M, Sow N, Ollier , et al.. Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure.Optical Materials Express, 2012, 2(4): 350–357
https://doi.org/10.1364/OME.2.000350
362 F, Goutaland J P, Colombier M C, Sow , et al.. Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass.Optics Express, 2013, 21(26): 31789–31799
https://doi.org/10.1364/OE.21.031789 pmid: 24514774
363 M D, Niry J, Mostafavi-Amjad H R, Khalesifard , et al.. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam.Journal of Applied Physics, 2012, 111(3): 033111
https://doi.org/10.1063/1.3684552
364 E, Babich V, Kaasik A, Redkov , et al.. SERS-active pattern in silver-ion-exchanged glass drawn by infrared nanosecond laser.Nanomaterials, 2020, 10(9): 1849
https://doi.org/10.3390/nano10091849 pmid: 32947813
365 S, Wackerow A Abdolvand . Laser-assisted one-step fabrication of homogeneous glass–silver composite.Applied Physics A: Materials Science & Processing, 2012, 109(1): 45–49
https://doi.org/10.1007/s00339-012-7088-y
366 S, Wackerow A Abdolvand . Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass.Optics Express, 2014, 22(5): 5076–5085
https://doi.org/10.1364/OE.22.005076 pmid: 24663847
367 J, Zhang W, Dong L, Qiao , et al.. Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing.Journal of Crystal Growth, 2007, 305(1): 278–284
https://doi.org/10.1016/j.jcrysgro.2007.04.026
368 , Sonal A, Sharma S Aggarwal . Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation.Journal of Non-Crystalline Solids, 2018, 485: 57–65
https://doi.org/10.1016/j.jnoncrysol.2018.01.038
369 P, Gangopadhyay P, Magudapathy R, Kesavamoorthy , et al.. Growth of silver nanoclusters embedded in soda glass matrix.Chemical Physics Letters, 2004, 388(4‒6): 416–421
https://doi.org/10.1016/j.cplett.2004.03.055
370 P, Gangopadhyay P, Magudapathy S K, Srivastava , et al.. Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix.AIP Advances, 2011, 1(3): 032112
https://doi.org/10.1063/1.3623737
371 O, Véron J P, Blondeau D D S, Meneses , et al.. Characterization of silver or copper nanoparticles embedded in soda-lime glass after a staining process.Surface and Coatings Technology, 2013, 227: 48–57
https://doi.org/10.1016/j.surfcoat.2012.10.014
372 X, Zhang W, Luo L J, Wang , et al.. Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(34): 6966–6970
https://doi.org/10.1039/C4TC00856A
373 M, Hirasawa H, Shirakawa H, Hamamura , et al.. Growth mechanism of nanoparticles prepared by radio frequency sputtering.Journal of Applied Physics, 1997, 82(3): 1404–1407
https://doi.org/10.1063/1.365917
374 E, Cattaruzza G, Battaglin P, Canton , et al.. Structural and physical properties of cobalt nanocluster composite glasses.Journal of Non-Crystalline Solids, 2004, 336(2): 148–152
https://doi.org/10.1016/j.jnoncrysol.2004.01.003
375 Y J, Chou S H, Lin C J, Shih , et al.. The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses.Journal of Nanoscience and Nanotechnology, 2016, 16(9): 10001–10007
https://doi.org/10.1166/jnn.2016.12330
376 R G, Palgrave I P Parkin . Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.Journal of the American Chemical Society, 2006, 128(5): 1587–1597
https://doi.org/10.1021/ja055563v pmid: 16448130
377 J, Delgado M, Vilarigues A, Ruivo , et al.. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(20): 2383–2388
https://doi.org/10.1016/j.nimb.2011.02.059
378 J A, Jiménez S, Lysenko G, Zhang , et al.. Optical characterization of Ag nanoparticles embedded in aluminophosphate glass.Journal of Electronic Materials, 2007, 36(7): 812–820
https://doi.org/10.1007/s11664-007-0142-4
379 Y F, Liu D H Liebenberg . Electromagnetic radio frequency heating in the pulsed electric current sintering (PECS) process.MRS Communications, 2017, 7(2): 266–271
https://doi.org/10.1557/mrc.2017.35
380 C L, Cramer J W, McMurray M J, Lance , et al.. Reaction-bond composite synthesis of SiC‒TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST).Journal of the European Ceramic Society, 2020, 40(4): 988–995
https://doi.org/10.1016/j.jeurceramsoc.2019.11.061
381 N S, Weston B, Thomas M Jackson . Processing metal powders via field assisted sintering technology (FAST): a critical review.Materials Science and Technology, 2019, 35(11): 1306–1328
https://doi.org/10.1080/02670836.2019.1620538
382 H, Gan C B, Wang Q, Shen , et al.. Preparation of La2NiMnO6 double-perovskite ceramics by plasma activated sintering.Journal of Inorganic Materials, 2019, 34(5): 541–545
https://doi.org/10.15541/jim20180291
383 J E, Alaniz A D, Dupuy Y, Kodera , et al.. Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials.Scripta Materialia, 2014, 92: 7–10
https://doi.org/10.1016/j.scriptamat.2014.07.015
384 Y, Kodera C L, Hardin J E Garay . Transmitting, emitting and controlling light: processing of transparent ceramics using current-activated pressure-assisted densification.Scripta Materialia, 2013, 69(2): 149–154
https://doi.org/10.1016/j.scriptamat.2013.02.013
385 Z, Shen M, Johnsson Z, Zhao , et al.. Spark plasma sintering of alumina.Journal of the American Ceramic Society, 2002, 85(8): 1921–1927
https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
386 S, Deng R, Li T, Yuan , et al.. Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering.Materials Letters, 2018, 229: 126–129
https://doi.org/10.1016/j.matlet.2018.07.001
387 V Mamedov . Spark plasma sintering as advanced PM sintering method.Powder Metallurgy, 2002, 45(4): 322–328
https://doi.org/10.1179/003258902225007041
388 R, Marder C, Estournès G, Chevallier , et al.. Plasma in spark plasma sintering of ceramic particle compacts.Scripta Materialia, 2014, 82: 57–60
https://doi.org/10.1016/j.scriptamat.2014.03.023
389 D M, Hulbert A, Anders J, Andersson , et al.. A discussion on the absence of plasma in spark plasma sintering.Scripta Materialia, 2009, 60(10): 835–838
https://doi.org/10.1016/j.scriptamat.2008.12.059
390 M Tokita . Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering.Materials Science Forum, 1999, 308‒311: 83–88
https://doi.org/10.4028/www.scientific.net/MSF.308-311.83
391 Z Y, Hu Z H, Zhang X W, Cheng , et al.. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications.Materials & Design, 2020, 191: 108862
https://doi.org/10.1016/j.matdes.2020.108662
392 D, Zhao J, Feng Q, Huo , et al.. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548 pmid: 9438845
393 X, Zhang S, Gu B, Zhou , et al.. Solid-state sintering of glasses with optical nonlinearity from mesoporous powders.Journal of the American Ceramic Society, 2016, 99(5): 1579–1586
https://doi.org/10.1111/jace.14172
394 M S Raven . Radio frequency sputtering and the deposition of high-temperature superconductors.Journal of Materials Science Materials in Electronics, 1994, 5(3): 129–146
https://doi.org/10.1007/BF01198944
395 C M Horwitz . Radio frequency sputtering — the significance of power input.Journal of Vacuum Science & Technology A, 1983, 1(4): 1795–1800
https://doi.org/10.1116/1.572218
396 G, Mattei G, Battaglin E, Cattaruzza , et al.. Synthesis by co-sputtering of Au–Cu alloy nanoclusters in silica.Journal of Non-Crystalline Solids, 2007, 353(5‒7): 697–702
https://doi.org/10.1016/j.jnoncrysol.2006.10.037
397 E, Cattaruzza G, Battaglin F, Gonella , et al.. Au‒Cu nanoparticles in silica glass as composite material for photonic applications.Applied Surface Science, 2007, 254(4): 1017–1021
https://doi.org/10.1016/j.apsusc.2007.07.158
398 K Okuyama . Preparation of micro-controlled particles using aerosol process.Journal of Aerosol Science, 1991, 22: S7–S10
https://doi.org/10.1016/S0021-8502(05)80021-7
399 G L, Messing S C, Zhang G V Jayanthi . Ceramic powder synthesis by spray pyrolysis.Journal of the American Ceramic Society, 1993, 76(11): 2707–2726
https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
400 A M, El-Kady A F, Ali R A, Rizk , et al.. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles.Ceramics International, 2012, 38(1): 177–188
https://doi.org/10.1016/j.ceramint.2011.05.158
401 Y L, Hong Z, Liu L, Wang , et al.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials.Science, 2020, 369(6504): 670–674
https://doi.org/10.1126/science.abb7023 pmid: 32764066
402 Z, Cai B, Liu X, Zou , et al.. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructure.Chemical Reviews, 2018, 118(13): 6091–6133
https://doi.org/10.1021/acs.chemrev.7b00536 pmid: 29384374
403 J, Pu L, Tang C, Li , et al.. Chemical vapor deposition growth of few-layer graphene for transparent conductive films.RSC Advances, 2015, 5(55): 44142–44148
https://doi.org/10.1039/C5RA03919C
404 K A, Lozovoy A G, Korotaev A P, Kokhanenko , et al.. Kinetics of epitaxial formation of nanostructures by Frank‒van der Merwe, Volmer‒Weber and Stranski‒Krastanow growth modes.Surface and Coatings Technology, 2020, 384: 125289
https://doi.org/10.1016/j.surfcoat.2019.125289
405 M Zinke-Allmang . Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics.Thin Solid Films, 1999, 346(1‒2): 1–68
https://doi.org/10.1016/S0040-6090(98)01479-5
406 E, Ertorer J C, Avery L C, Pavelka , et al.. Surface-immobilized gold nanoparticles by organometallic CVD on amine-terminated glass surfaces.Chemical Vapor Deposition, 2013, 19(10‒12): 338–346
https://doi.org/10.1002/cvde.201307055
407 J A, Hamilton T, Pugh A L, Johnson , et al.. Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films.Inorganic Chemistry, 2016, 55(14): 7141–7151
https://doi.org/10.1021/acs.inorgchem.6b01146 pmid: 27348614
408 R G, Palgrave I P Parkin . Aerosol assisted chemical vapor deposition of gold and nanocomposite thin films from hydrogen tetrachloroaurate(III).Chemistry of Materials, 2007, 19(19): 4639–4647
https://doi.org/10.1021/cm0629006
409 S, Ashraf C S, Blackman G, Hyett , et al.. Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation.Journal of Materials Chemistry, 2006, 16(35): 3575–3582
https://doi.org/10.1039/b607335b
410 L, Talbot R K, Cheng R W, Schefer , et al.. Thermophoresis of particles in a heated boundary layer.Journal of Fluid Mechanics, 1980, 101(4): 737–758
https://doi.org/10.1017/S0022112080001905
411 S D, Ponja B A D, Williamson S, Sathasivam , et al.. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(27): 7257–7266
https://doi.org/10.1039/C8TC01929K
412 A J, Gardecka G K L, Goh G, Sankar , et al.. On the nature of niobium substitution in niobium doped titania thin films by AACVD and its impact on electrical and optical properties.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(34): 17755–17762
https://doi.org/10.1039/C5TA03772G
413 G, Walters I P Parkin . Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation.Applied Surface Science, 2009, 255(13‒14): 6555–6560
https://doi.org/10.1016/j.apsusc.2009.02.039
414 M, Ono M, Hata M, Tsunekawa , et al.. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides.Nature Photonics, 2020, 14(1): 37–43
https://doi.org/10.1038/s41566-019-0547-7
415 Y, Yang K, Kelley E, Sachet , et al.. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber.Nature Photonics, 2017, 11(6): 390–395
https://doi.org/10.1038/nphoton.2017.64
416 M, Ren B, Jia J Y, Ou , et al.. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching.Advanced Materials, 2011, 23(46): 5540–5544
https://doi.org/10.1002/adma.201103162 pmid: 22021040
417 R, Pilot R, Signorini C, Durante , et al.. A review on surface-enhanced Raman scattering.Biosensors, 2019, 9(2): 57
https://doi.org/10.3390/bios9020057 pmid: 30999661
418 E, Kolobkova M S, Kuznetsova N Nikonorov . Ag/Na ion exchange in fluorophosphate glasses and formation of Ag nanoparticles in the bulk and on the surface of the glass.ACS Applied Nano Materials, 2019, 2(11): 6928–6938
https://doi.org/10.1021/acsanm.9b01419
419 K Takada . Progress and prospective of solid-state lithium batteries.Acta Materialia, 2013, 61(3): 759–770
https://doi.org/10.1016/j.actamat.2012.10.034
420 V, Thangadurai W Weppner . Recent progress in solid oxide and lithium ion conducting electrolytes research.Ionics, 2006, 12(1): 81–92
https://doi.org/10.1007/s11581-006-0013-7
421 J G, Kim B, Son S, Mukherjee , et al.. A review of lithium and non-lithium based solid state batteries.Journal of Power Sources, 2015, 282: 299–322
https://doi.org/10.1016/j.jpowsour.2015.02.054
422 K, Takada N, Aotani K, Iwamoto , et al.. Solid state lithium battery with oxysulfide glass.Solid State Ionics, 1996, 86‒88: 877–882
https://doi.org/10.1016/0167-2738(96)00199-3
423 L, Liu F, Zhao X, Chen , et al.. Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis.Journal of Materials Chemistry B, 2020, 8(28): 6148–6158
https://doi.org/10.1039/D0TB00982B pmid: 32568342
424 M, Shoaib A, Saeed M S U, Rahman , et al.. Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells.Materials Science and Engineering C, 2017, 77: 725–730
https://doi.org/10.1016/j.msec.2017.03.288 pmid: 28532085
425 Z, Tabia Mabrouk K, El M, Bricha , et al.. Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity.RSC Advances, 2019, 9(22): 12232–12246
https://doi.org/10.1039/C9RA01133A pmid: 35515868
426 C, Shuai Y, Xu P, Feng , et al.. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver.Chemical Engineering Journal, 2019, 374: 304–315
https://doi.org/10.1016/j.cej.2019.03.273
427 J, Fonseca S Choi . Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets.Inorganic Chemistry, 2020, 59(6): 3983–3992
https://doi.org/10.1021/acs.inorgchem.9b03667 pmid: 32133851
[1] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[2] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor[J]. Front. Mater. Sci., 2016, 10(4): 405-412.
[3] Rong-Chang ZENG,Xiao-Ting LI,Zhen-Guo LIU,Fen ZHANG,Shuo-Qi LI,Hong-Zhi CUI. Corrosion resistance of Zn–Al layered double hydroxide/ poly(lactic acid) composite coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2015, 9(4): 355-365.
[4] Andrea KUTTOR,Melinda SZALÓKI,Tünde RENTE,Farkas KERÉNYI,József BAKÓ,István FÁBIÁN,István LÁZÁR,Attila JENEI,Csaba HEGEDÜS. Preparation and application of highly porous aerogel-based bioactive materials in dentistry[J]. Front. Mater. Sci., 2014, 8(1): 46-52.
[5] G. NIXON SAMUEL VIJAYAKUMAR, M. RATHNAKUMARI, P. SURESHKUMAR. Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers[J]. Front Mater Sci, 2012, 6(1): 69-78.
[6] Li-Juan YANG, Shi-Zhen ZHU, Qiang XU, Zhen-Yu YAN, Ling LIU, . Synthesis of ultrafine ZrB 2 powders by sol-gel process[J]. Front. Mater. Sci., 2010, 4(3): 285-290.
[7] Heng DU, Zheng-cao LI, Tian MA, Wei MIAO, Zheng-jun ZHANG. Surface-hardening effect of B implantation in 6H-SiC ceramics[J]. Front Mater Sci Chin, 2009, 3(3): 281-284.
[8] WANG Hui, LEI Ming-kai. Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method[J]. Front. Mater. Sci., 2008, 2(3): 286-290.
[9] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
[10] ZHAO Yonglin, DU Piyi, WENG Wenjian, HAN Gaorong. Effect of lead on formation and dielectric tunability of (Pbx,Sr1–x)0.85Bi0.1TiO3 thin films[J]. Front. Mater. Sci., 2007, 1(1): 59-64.
[11] LAN Wei, PENG Xingping, LIU Xueqin, HE Zhiwei, WANG Yinyue. Preparation and properties of ZnO thin films deposited by sol-gel technique[J]. Front. Mater. Sci., 2007, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed