Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (3) : 223-235    https://doi.org/10.15302/J-FASE-2014025
RESEARCH ARTICLE
Modeling of the overwintering distribution of Puccinia striiformis f. sp. tritici based on meteorological data from 2001 to 2012 in China
Xiaojing WANG1,Zhanhong MA1,Yuying JIANG2,Shouding SHI3,Wancai LIU2,Juan ZENG2,Zhiwei ZHAO1,Haiguang WANG1,*()
1. College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
2. National Agro-Tech Extension and Service Center, Ministry of Agriculture, Beijing 100125, China
3. China Animal Agriculture Association, Beijing 100028, China
 Download: PDF(2375 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici occurs widely in China and seriously affects wheat production. Global warming could profoundly impact the incidence and prevalence of low-temperature diseases such as stripe rust. Studies on the effects of temperature on the distribution of overwintering stripe rust could help us understand the incidence and prevalence of the disease and could also provide support for monitoring, forecasting and developing control strategies. An exponential model and a spherical model of the ordinary Kriging method in the ArcGIS platform were used to predict the overwintering regions of stripe rust based on the probability that the average temperature of the coldest month from December to February was higher than -6 or -7°C from 2001 to 2012. The results showed that the areas with a probability between 70% and 90% were transition regions for the overwintering of stripe rust. Based on annual mean temperature of the coldest month from December to February for 2001 to 2012, overwintering distribution of stripe rust was likewise evaluated. The boundary for overwintering of stripe rust was consistent with the areas where the probability was predicted to be 70% to 90% for the overwintering distribution of stripe rust, but the boundary was shifted northward toward Beijing in North China. Some areas in Xinjiang, including Akto, Pishan, Hotan and Yutian, were also predicted to be suitable for the overwintering of stripe rust.

Keywords stripe rust      wheat      overwintering      geospatial distribution      geographic information system      climate change     
Corresponding Author(s): Haiguang WANG   
Online First Date: 12 December 2014    Issue Date: 27 January 2015
 Cite this article:   
Xiaojing WANG,Zhanhong MA,Yuying JIANG, et al. Modeling of the overwintering distribution of Puccinia striiformis f. sp. tritici based on meteorological data from 2001 to 2012 in China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 223-235.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014025
https://academic.hep.com.cn/fase/EN/Y2014/V1/I3/223
Fig.1  Meteorological stations used for the modeling of overwintering distribution of Puccinia striiformis f. sp. tritici in China
Fig.2  Growing areas of winter wheat and selected historical overwintering locations of stripe rust in China
Power P>-6°C P>-7°C
R Mean RMS R Mean RMS
1 0.9291 0.0059 0.1568 0.9164 0.0071 0.1612
2 0.9395 0.0066 0.1564 0.9276 0.0082 0.1616
3 0.9471 0.0061 0.1604 0.9350 0.0082 0.1661
4 0.9525 0.0053 0.1654 0.9400 0.0078 0.1713
Tab.1  Comparison of evaluation parameters after interpolation with different powers of IDW
OP P>-6°C P>-7°C
R Mean RMS R Mean RMS
1 0.6042 ???0.00002 0.2798 0.6177 ???0.00003 0.2802
2 0.6141 -0.0001 0.2716 0.6247 -0.0001 0.2697
3 0.8357 -0.0001 0.2323 0.8271 -0.0001 0.2347
4 0.8226 ??0.0002 0.2196 0.8224 ??0.0002 0.2196
Tab.2  Comparison of evaluation parameters after interpolation with different orders of GPI
OP Kernel function P>-6°C P>-7°C
R Mean RMS R Mean RMS
1 Ex 0.9470 ??0.0009 0.1496 0.9387 ??0.0019 0.1531
PO5 0.8978 -0.0015 0.1639 0.8854 -0.0029 0.1668
G 0.9210 ??0.0001 0.1552 0.9069 -0.0004 0.1588
Ep 0.8701 -0.0041 0.1770 0.8584 -0.0038 0.1828
Q 0.8791 ??0.0019 0.1727 0.8696 -0.0035 0.1755
Constant 0.9394 -0.0004 0.1487 0.9302 -0.0007 0.1528
2 Ex 0.9383 ??0.0002 0.1563 0.9472 ??0.0009 0.1577
PO5 0.9288 ??0.0004 0.1601 0.9239 ??0.0023 0.1647
G 0.9502 -0.0007 0.1549 0.9561 -0.0004 0.1562
Ep 0.9193 ??0.0004 0.1665 0.9079 ??0.0013 0.1702
Q 0.9374 ??0.0173 0.4776 0.9161 ??0.0014 0.1644
Constant 0.9498 ??0.0001 0.1668 0.9454 ??0.0011 0.1624
3 Ex 0.9127 ??0.0001 0.1683 0.8818 -0.0024 0.1784
PO5 0.8951 -0.0010 0.1788 0.8965 ??0.0005 0.1791
G 0.9074 ??0.0001 0.1715 0.9033 ??0.0004 0.1719
Ep 0.8853 -0.0010 0.1841 0.8856 -0.0007 0.1842
Q 0.8966 -0.0002 0.1803 0.8926 ??0.0001 0.1801
Constant 0.8655 -0.0025 0.1919 0.8615 -0.0025 0.1932
Tab.3  Comparison of evaluation parameters after interpolation with different orders and functions of LPI
Function P>-6°C P>-7°C
R Mean RMS R Mean RMS
CRS 0.9705 0.0012 0.1727 0.9562 0.0031 0.1780
SWT 0.9769 0.0011 0.1593 0.9614 0.0026 0.1675
MF 0.9663 0.0015 0.1515 0.9521 0.0024 0.1578
IM 0.9745 0.0007 0.1775 0.9595 0.0030 01852
TPS 0.9825 0.0003 0.1627 0.9695 0.0022 0.1720
Tab.4  Comparison of evaluation parameters after interpolation with different functions of RBF
Model P>-6°C P>-7°C
R MS RMS ASE RMSS C/(%) R MS RMS ASE RMSS C/(%)
C 0.9639 ??0.0049 0.1492 0.1252 0.1987 0.70 0.9534 ??0.0056 0.1538 0.1320 1.1604 1.29
Sp 0.9646 ??0.0049 0.1496 0.1220 1.2398 0.45 0.9541 ??0.0059 0.1542 0.1294 1.1888 1.05
TSp 0.9650 ??0.0050 0.1498 0.1212 1.2500 0.39 0.9545 ??0.0060 0.1544 0.1285 1.1998 0.94
PSp 0.9670 ??0.0049 0.1509 0.1150 1.3412 0 0.9545 ??0.0064 0.1549 0.1250 1.2419 6.94
E 0.9666 ??0.0047 0.1509 0.1407 1.0954 0 0.9579 ??0.0071 0.1572 0.1368 1.1679 0
G 0.9099 -0.0045 0.1571 0.1891 0.8279 9.72 0.9014 -0.0062 0.1607 0.1912 0.8372 10.24
RQ 0.9378 -0.0104 0.1478 0.1388 1.0609 5.14 0.9266 -0.0142 0.1526 0.1451 1.0469 5.80
HF 0.9071 -0.0025 0.1594 0.2065 0.7692 13.70 0.8986 -0.0040 0.1627 0.2064 0.7855 14.14
K-B 0.9232 -0.0062 0.1520 0.1715 0.8832 6.92 0.9071 -0.0077 0.1587 0.1825 0.8665 8.70
J-B 0.9082 -0.0040 0.1576 0.1933 0.8124 10.36 0.9005 -0.0054 0.1613 0.1970 0.8160 11.03
St 0.9289 -0.0042 0.1502 0.1707 0.8752 6.84 0.9195 -0.0062 0.1550 0.1760 0.8755 7.64
Tab.5  Comparison of evaluation parameters after interpolation with different Kriging models
Method P>-6°C P>-7°C
R Mean RMS R Mean RMS
IDW 0.9291 ??0.0059 0.1568 0.9164 ??0.0071 0.1612
GPI 0.8357 -0.0001 0.2323 0.8271 -0.0001 0.2347
LPI 0.9394 -0.0004 0.1487 0.9302 -0.0007 0.1528
RBF 0.9663 ??0.0015 0.1515 0.9521 ??0.0024 0.1578
OK 0.9666 -0.0017 0.1509 0.9579 ??0.0026 0.1572
Tab.6  Comparison of evaluation parameters after five interpolation methods
Fig.3  Overwintering areas of stripe rust based on the annual probability of the critical temperature (exponential model). (a) The critical temperature was -6°C; (b) the critical temperature was -7°C.
Fig.4  Overwintering areas of stripe rust based on the annual probability of the critical temperature (spherical model). (a) The critical temperature was -6°C; (b) the critical temperature was -7°C.
Annual probability/% Exponential model Spherical model
P>-6°C P>-7°C P>-6°C P>-7°C
0–5 1 0 2 0
5–10 2 1 1 1
10–15 2 2 2 2
15–20 1 0 1 0
20–30 1 3 1 3
30–40 2 1 1 2
40–50 2 3 3 1
50–60 0 1 0 1
60–70 2 0 2 1
70–80 6 6 5 6
80–90 7 6 8 7
90–100 26 29 26 27
Total 52 52 52 52
Tab.7  Statistics of selected historical oversummering locations in the predicted overwintering regions based on the annual probability using an exponential model and a spherical model
Fig.5  Elevation interpolation using ordinary Kriging based on the standard regression equation. (a) Exponential model; (b) spherical model.
Fig.6  Elevation interpolation using ordinary Kriging based on the self-built regression equation. (a) Exponential model; (b) spherical model.
Fig.7  Local amplification (a) of Fig. 6(a). The counties circled by pink line were on the boundary for Pst overwintering.
Fig.8  Local amplification (b) of Fig. 6(a). The counties circled by pink line were on the boundary for Pst overwintering.
Fig.9  Local amplification (c) in Fig. 6(a). The counties circled by pink line were on the boundary for Pst overwintering.
Fig.10  Local amplification of Xinjiang in Fig. 6(a)
1 Li Z Q, Zeng S M. Wheat rusts in China. Beijing: China Agriculture Press, 2002, 1–254 (in Chinese)
2 Wan A M, Chen X M, He Z H. Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58(6): 605–619
https://doi.org/10.1071/AR06142
3 Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254–4262 (in Chinese)
4 Wang H G, Yang X B, Ma Z H. Investigation of the long-distance transports of Puccinia striiformis f. sp. tritici in China using HYSPLIT-4 model. Journal of China Agricultural University, 2010, 15(5): 55–64 (in Chinese)
5 Qin D H, Ding Y H, Su J L, Ren J W, Wang S W, Wu R S, Yang X Q, Wang S M, Liu S Y, Dong G R, Lu Q, Huang Z G, Du B L, Luo Y. Assessment of climate and environment changes in China (I): climate and environment changes in China and their projection. Advances in Climate Change Research, 2005, 1(1): 4–9 (in Chinese)
6 Chakraborty S, Tiedemann A V, Teng P S. Climate change: potential impact on plant diseases. Environmental Pollution, 2000, 108(3): 317–326
https://doi.org/10.1016/S0269-7491(99)00210-9 pmid: 15092926
7 Runion G B. Climate change and plant pathosystems – future disease prevention starts here. New Phytologist, 2003, 159(3): 531–533
https://doi.org/10.1046/j.1469-8137.2003.00868.x
8 Mcelrone A J, Reid C D, Hoye K A, Hart E, Jackson R B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology, 2005, 11(10): 1828–1836
https://doi.org/10.1111/j.1365-2486.2005.001015.x
9 Madgwick J W, West J S, White R P, Semenov M A, Townsend J A, Turner J A, Fitt B D L. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 2011, 130(1): 117–131
https://doi.org/10.1007/s10658-010-9739-1
10 Li Y J, Wang C Y, Zhao B, Liu W J. Effects of climate change on agricultural meteorological disaster and crop insects diseases. Transactions of the CSAE, 2010, 26(Supp.1): 263–271 (in Chinese)
11 Huo Z G, Li M S, Wang L, Wen Q P, Xiao J J, Huang D P, Wang C Y. Impacts of climate warming on crop diseases and pests in China. Scientia Agricultura Sinica, 2012, 45(10): 1926–1934 (in Chinese)
12 Huo Z G, Li M S, Li N, Wang L, Huang D P, Wang C Y. Impacts of seasonal climate warming on crop diseases and pests in China. Scientia Agricultura Sinica, 2012, 45(11): 2168–2179 (in Chinese)
13 Chakraborty S, Luck J, Hollaway G, Fitzgerald G, White N. Rust-proofing wheat for a changing climate. Euphytica, 2011, 179(1): 19–32
https://doi.org/10.1007/s10681-010-0324-7
14 Juroszek P, von Tiedemann A. Climate change and potential future risks through wheat diseases: a review. European Journal of Plant Pathology, 2013, 136(1): 21–33
https://doi.org/10.1007/s10658-012-0144-9
15 Nelson M R, Orum T V, Jaime-Garcia R, Nadeem A. Applications of geographic information systems and geostatistics in plant disease epidemiology and management. Plant Disease, 1999, 83(4): 308–319
https://doi.org/10.1094/PDIS.1999.83.4.308
16 Jaime-Garcia R, Orum T V, Felix-Gastelum R, Trinidad-Correa R, Vanetten H D, Nelson M R. Spatial analysis of Phytophthora infestans genotypes and late blight severity on tomato and potato in the Del Fuerte Valley using geostatistics and geographic information systems. Phytopathology, 2001, 91(12): 1156–1165
https://doi.org/10.1094/PHYTO.2001.91.12.1156 pmid: 18943330
17 Chen C, Chen J, Hu B S, Bai Y Z, Jiang Y H, Liu F Q. Potential distribution of Erwinia amylovora in China and invasion risk assessment. Scientia Agricultura Sinica, 2007, 40(5): 940–947 (in Chinese)
18 Li B, Cao X, Chen L, Zhou Y, Duan X, Luo Y, Fitt B D L, Xu X, Song Y, Wang B, Cao S. Application of geographic information systems to identify the oversummering regions of Blumeria graminis f. sp. tritici in China. Plant Disease, 2013, 97(9): 1168–1174
https://doi.org/10.1094/PDIS-10-12-0957-RE
19 Shi S D. Climate-based regional classification for oversummering and overwintering of Puccinia striiformis and spatio-temporal dynamic analysis in China with GIS. Dissertation for the Master Degree. Beijing: China Agricultural University, 2004 (in Chinese)
20 China’s national Atlas compilation committee. National agricultural Atlas of the People’s Republic of China. Beijing: SinoMaps Press, 1989, 1–161 (in Chinese)
21 Cui D C, Cao G C, Zhang W, Zhang C Q. Climat-ecological regionalization of wheat in China. Guizhou: Guizhou Science and Technology Press, 1991, 1–97 (in Chinese)
[1] Shenggen FAN. Sustainable intensification of agriculture is key to feeding Africa in the 21st century[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 366-370.
[2] C. Wayne HONEYCUTT, Cristine L.S. MORGAN, Pipa ELIAS, Michael DOANE, John MESKO, Rob MYERS, LaKisha ODOM, Bianca MOEBIUS-CLUNE, Ron NICHOLS. Soil health: model programs in the USA[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 356-361.
[3] Rattan LAL. Managing soil quality for humanity and the planet[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 251-253.
[4] Minxia LU, Liang CHEN, Jinxiu WANG, Ruiliang LIU, Yang YANG, Meng WEI, Guanghui DONG. A brief history of wheat utilization in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 288-295.
[5] Caiyun LIU, Francisco PINTO, C. Mariano COSSANI, Sivakumar SUKUMARAN, Matthew P. REYNOLDS. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 296-308.
[6] Wujun MA, Zitong YU, Maoyun SHE, Yun ZHAO, Shahidul ISLAM. Wheat gluten protein and its impacts on wheat processing quality[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 279-287.
[7] Craig F. MORRIS. Development of soft kernel durum wheat[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 273-278.
[8] Carlos GUZMÁN, Karim AMMAR, Velu GOVINDAN, Ravi SINGH. Genetic improvement of wheat grain quality at CIMMYT[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 265-272.
[9] Hongxiang MA, Xu ZHANG, Jinbao YAO, Shunhe CHENG. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 251-264.
[10] Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
[11] Zhonghu HE, Xianchun XIA, Yong ZHANG, Yan ZHANG, Yonggui XIAO, Xinmin CHEN, Simin LI, Yuanfeng HAO, Awais RASHEED, Zhiyong XIN, Qiaosheng ZHUANG, Ennian YANG, Zheru FAN, Jun YAN, Ravi SINGH, Hans-Joachim BRAUN. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
[12] Rudi APPELS. Wheat research and breeding in the new era of a high-quality reference genome[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 225-232.
[13] Muhammad ZEESHAN, Waheed ARSHAD, Muhammad Imran KHAN, Shiraz ALI, Ali NAWAZ, Amina BATOOL, Muhammad TARIQ, Muhammad Imran AKRAM, Muhammad Amjad ALI. Breeding for pre-harvest sprouting resistance in bread wheat under rainfed conditions[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 253-261.
[14] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
[15] Jiakun YAN, Suiqi ZHANG. Effects of dwarfing genes on water use efficiency of bread wheat[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 126-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed