Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (3) : 206-221    https://doi.org/10.15302/J-FASE-2016111
REVIEW
Information fusion in aquaculture: a state-of the art review
Shahbaz Gul HASSAN1,2,3,4,5,Murtaza HASAN6,Daoliang LI1,2,3,4,5()
1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
2. China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
3. Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, Beijing 100083, China
4. Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
5. Beijing Engineering Center for Advanced Sensors in Agriculture, Beijing 100083, China
6. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
 Download: PDF(918 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Efficient fish feeding is currently one of biggest challenges in aquaculture to enhance the production of fish quality and quantity. In this review, an information fusion approach was used to integrate multi-sensor and computer vision techniques to make fish feeding more efficient and accurate. Information fusion is a well-known technology that has been used in different fields of artificial intelligence, robotics, image processing, computer vision, sensors and wireless sensor networks. Information fusion in aquaculture is a growing field of research that is used to enhance the performance of an “industrialized” ecosystem. This review study surveys different fish feeding systems using multi-sensor data fusion, computer vision technology, and different food intake models. In addition, different fish behavior monitoring techniques are discussed, and the parameters of water, pH, dissolved oxygen, turbidity, temperature etc., necessary for the fish feeding process, are examined. Moreover, the different waste management and fish disease diagnosis techniques using different technologies, expert systems and modeling are also reviewed.

Keywords aquaculture      computer vision      information fusion      modeling      sensor     
Corresponding Author(s): Daoliang LI   
Just Accepted Date: 01 September 2016   Online First Date: 13 September 2016    Issue Date: 21 September 2016
 Cite this article:   
Shahbaz Gul HASSAN,Murtaza HASAN,Daoliang LI. Information fusion in aquaculture: a state-of the art review[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 206-221.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016111
https://academic.hep.com.cn/fase/EN/Y2016/V3/I3/206
Fig.1  Information fusion approach for water quality monitoring in aquaculture
Fig.2  The information fusion approach for fish feeding in aquaculture
Fig.3  Information fusion approach for fish behavior monitoring in aquaculture
Fig.4  Information fusion approach for fish disease diagnosis in aquaculture
Fig.5  Information fusion approach for waste management in aquaculture
1 Boström H, Andler S F, Brohede M, Johansson R, Karlsson A, Laere J V, Niklasson L, Nilsson M, Persson A, Ziemke T. On the definition of information fusion as a field of research. Neoplasia, 2007, 13(2): 98–107
2 Konieczny S, Grégoire É. Logic-based information fusion in artificial intelligence. Information Fusion, 2007, 7(1): 4–18
3 Castellanos J A, Tardós J D. Mobile robot localization and map building: a multisensor fusion approach. Dordrecht: Kluwer Academic Publishers, 1998, 57–62
4 Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electronics Letters, 2002, 38(7): 313–315
https://doi.org/10.1049/el:20020212
5 Krishnapuram R, Lee J. Fuzzy-set-based hierarchical networks for information fusion in computer vision. Neural Networks, 1992, 5(2): 335–350
https://doi.org/10.1016/S0893-6080(05)80031-0
6 Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter. Automatica, 2004, 40(6): 1017–1023
https://doi.org/10.1016/j.automatica.2004.01.014
7 Liu Z, Li X, Fan L, Lu H, Liu L, Liu Y. Measuring feeding activity of fish in RAS using computer vision. Aquacultural Engineering, 2014, 60: 20–27
https://doi.org/10.1016/j.aquaeng.2014.03.005
8 Amer M, Bilgazyev E, Todorovic S, Shah S, Kakadiaris I, Ciannelli L. Fine-grained categorization of fish motion patterns in underwater videos. In: 13th international conference on computer vision, 2011, Barcelona. New York: IEEE, 2011, 1488–1495
9 Ferriss B E, Essington T E. Can fish consumption rate estimates be improved by linking bioenergetics and mercury mass balance models? Application to tunas. Ecological Modelling, 2014, 272: 232–241
https://doi.org/10.1016/j.ecolmodel.2013.10.010
10 Flood M J, Noble C, Kagaya R, Damsgård B, Purser G J, Tabata M. Examining the daily feeding rhythms of amago Oncorhynchus masou masou using self-feeding systems. Aquaculture, 2011, 318(1–2): 244–247
https://doi.org/10.1016/j.aquaculture.2011.05.007
11 Zhang Y, Zhang H, Nasrabadi N M, Huang T S. Multi-metric learning for multi-sensor fusion based classification. Information Fusion, 2013, 14(4): 431–440
https://doi.org/10.1016/j.inffus.2012.05.002
12 Lloret J, Garcia M, Tomás J, Boronat F. GBP-WAHSN: a group-based protocol for large wireless ad hoc and sensor networks. Journal of Computer Science and Technology, 2008, 23(3): 461–480
https://doi.org/10.1007/s11390-008-9147-6
13 Mauri G L, Mauri J L. Simulator software for marine fish farms sustainability. WSEAS Transactions on Environment and Development, 2007, 12(3): 214–222
14 Zhu X, Li D, He D, Wang J, Ma D, Li F. A remote wireless system for water quality online monitoring in intensive fish culture. Computers and Electronics in Agriculture, 2010, 71(1): S3–S9
https://doi.org/10.1016/j.compag.2009.10.004
15 Buentello J A, Gatlin D M III, Neill W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 2000, 182(3–4): 339–352
https://doi.org/10.1016/S0044-8486(99)00274-4
16 Bhatnagar A, Devi P. Water quality guidelines for the management of pond fish culture. International Journal of Environmental Sciences, 2013, 3(6): 1980
17 Sendra S, Parra L, Ortuño V, Lloret J. A low cost turbidity sensor development. In: Proceedings of the 7th International Conference on Sensor Technologies and Applications 2013, Barcelona. Wilmington: IARIA, 2013, 266–272
18 Bin Omar A F, Bin MatJafri M Z. Bin MatJafri M Z. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity. Sensors, 2009, 9(10): 8311–8335
https://doi.org/10.3390/s91008311
19 Alanärä A, Winberg S, Brännäs E, Kiessling A, Höglund E, Elofsson U. Feeding behaviour, brain serotonergic activity levels, and energy reserves of Arctic char (Salvelinus alpinus) within a dominance hierarchy. Canadian Journal of Zoology, 1998, 76(2): 212–220
https://doi.org/10.1139/cjz-76-2-212
20 Andrew J E, Holm J, Kadri S, Huntingford F A. The effect of competition on the feeding efficiency and feed handling behaviour in gilthead sea bream (Sparus aurata L.) held in tanks. Aquaculture, 2004, 232(1–4): 317–331
https://doi.org/10.1016/S0044-8486(03)00528-3
21 Lloret J, Garcia M, Sendra S, Lloret G. An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommunication Systems, 2015, 60(1): 67–84
https://doi.org/10.1007/s11235-014-9922-3
22 Miest J J, Roth O, Reusch T B. Linking fish diseases and animal welfare in aquaculture–a study of the turbot herpesvirus. Fish & Shellfish Immunology, 2013, 34(6): 1724–1725
https://doi.org/10.1016/j.fsi.2013.03.271
23 Zion B. The use of computer vision technologies in aquaculture—a review. Computers and Electronics in Agriculture, 2012, 88(88): 125–132
https://doi.org/10.1016/j.compag.2012.07.010
24 Li D, Fu Z, Duan Y. Fish-Expert: A web-based expert system for fish disease diagnosis. Expert Systems with Applications, 2002, 23(3): 311–320
https://doi.org/10.1016/S0957-4174(02)00050-7
25 Luo R C, Yih C C, Su K L. Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sensors Journal, 2002, 2(2): 107–119
https://doi.org/10.1109/JSEN.2002.1000251
26 Toran F, Ramirez D, Casans S, Navarro A E, Pelegri J. Distributed virtual instrument for water quality monitoring across the internet. In: Proceedings of the 17th Instrumentation and Measurement Technology Conference, 2000, Baltimore. New York: IEEE, 2000, 652–656
27 Serra-Toro C, Montoliu R, Traver V J, Hurtado-Melgar I M, Nuňez-Redó M, Cascales P. Assessing water quality by video monitoring fish swimming behavior. In: 20th International Conference on Pattern Recognition (ICPR) 2010, Istanbul. New York: IEEE, 2010, 428–431
28 Garcia M A, Sendra S, Lloret G, Lloret J. Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 2011, 5(12): 1682–1690
https://doi.org/10.1049/iet-com.2010.0654
29 Tai H, Liu S, Li D, Ding Q, Ma D. A multi-environmental factor monitoring system for aquiculture based on wireless sensor networks. Sensor Letters, 2012, 10(1–2): 265–270
https://doi.org/10.1166/sl.2012.1851
30 Lambrou T P, Panayiotou C G, Anastasiou C C. A low-cost system for real time monitoring and assessment of potable water quality at consumer sites. In: Sensors 2012, Taipei. New York: IEEE, 2012, 1–4
31 Sánchez E, Colmenarejo M F, Vicente J, Rubio A, García M G, Travieso L, Borja R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 2007, 7(2): 315–328
https://doi.org/10.1016/j.ecolind.2006.02.005
32 Simões F S, Moreira A B, Bisinoti M C, Gimenez S M N, Yabe M J S. Water quality index as a simple indicator of aquaculture effects on aquatic bodies. Ecological Indicators, 2008, 8(5): 476–484
https://doi.org/10.1016/j.ecolind.2007.05.002
33 Akkoyunlu A, Akiner M E. Pollution evaluation in streams using water quality indices: a case study from Turkey’s Sapanca Lake Basin. Ecological Indicators, 2012, 18(5): 501–511
https://doi.org/10.1016/j.ecolind.2011.12.018
34 Koçer M A, Sevgili H. Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms. Ecological Indicators, 2014, 36(1): 672–681
https://doi.org/10.1016/j.ecolind.2013.09.034
35 Lermontov A, Yokoyama L, Lermontov M, Machado M A. River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 2009, 9(6): 1188–1197
https://doi.org/10.1016/j.ecolind.2009.02.006
36 Navas J M, Telfer T C, Ross L G. Spatial modeling of environmental vulnerability of marine finfish aquaculture using GIS-based neuro-fuzzy techniques. Marine Pollution Bulletin, 2011, 62(8): 1786–1799
https://doi.org/10.1016/j.marpolbul.2011.05.019
37 Hernández J J, Fernández L P, Pogrebnyak O. Assessment and prediction of water quality in shrimp culture using signal processing techniques. Aquaculture International, 2011, 19(6): 1083–1104
https://doi.org/10.1007/s10499-011-9426-z
38 Carbajal-Hernández J J, Sánchez-Fernández L P, Carrasco-Ochoa J A, Martínez-Trinidad J F. Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmospheric Environment, 2012, 60(6): 37–50
https://doi.org/10.1016/j.atmosenv.2012.06.004
39 Ferreira N C, Bonetti C, Seiffert W Q. Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture, 2011, 318(3–4): 425–433
https://doi.org/10.1016/j.aquaculture.2011.05.045
40 Charef A, Ghauch A, Baussand P, Martin-Bouyer M. Water quality monitoring using a smart sensing system. Measurement, 2000, 28(3): 219–224
https://doi.org/10.1016/S0263-2241(00)00015-4
41 Wang G, Li D. A fish disease diagnosis expert system using short message service. In: WRI international conference on Communications and Mobile Computing, 2009, Yunnan. New York: IEEE, 2009, 299–303
42 Zion B, Shklyar A, Karplus I. In vivo fish sorting by computer vision. Aquacultural Engineering, 2000, 22(3): 165–179
https://doi.org/10.1016/S0144-8609(99)00037-0
43 Cubitt K F, Williams H T, Rowsell D, McFarlane W J, Gosine R G, Butterworth K G, McKinley R S. Development of an intelligent reasoning system to distinguish hunger states in Rainbow trout (Oncorhynchus mykiss). Computers and Electronics in Agriculture, 2008, 62(1): 29–34
https://doi.org/10.1016/j.compag.2007.08.010
44 Yao J, Raghavan V V, Wu Z. Web information fusion: a review of the state of the art. Information Fusion, 2008, 9(4): 446–449
https://doi.org/10.1016/j.inffus.2008.05.002
45 Gümüş B, Balaban M Ö, Ünlüsayın M. Machine vision applications to aquatic foods: a review. Turkish Journal of Fisheries and Aquatic Sciences, 2011, 11(1): 167–176
https://doi.org/10.4194/trjfas.2011.0124
46 Polonschii C, Bratu D, Gheorghiu E. Appraisal of fish behaviour based on time series of fish positions issued by a 3D array of ultrasound transducers. Aquacultural Engineering, 2013, 55(1): 37–45
https://doi.org/10.1016/j.aquaeng.2013.03.001
47 Lee J V, Loo J L, Chuah Y D, Tang P Y, Tan Y C, Goh W J. The use of vision in a sustainable aquaculture feeding system. Research Journal of Applied Sciences Engineering and Technology, 2013, 6(19): 3658–3669
48 Garcia M, Sendra S, Atenas M, Lloret J. Underwater wireless ad-hoc networks: a survey. In: Mobile ad hoc networks: Current status and future trends. Florida: CRC Press, 2011, 379–411
49 Azzaydi M, Madrid J A, Zamora S, Sánchez-Vázquez F J, Martınez F J. Effect of three feeding strategies (automatic, ad libitum demand-feeding and time-restricted demand-feeding) on feeding rhythms and growth in European sea bass (Dicentrarchuslabrax L.). Aquaculture, 1998, 163(3–4): 285–296
https://doi.org/10.1016/S0044-8486(98)00238-5
50 Mallekh R, Lagardere J P, Eneau J P, Cloutour C. An acoustic detector of turbot feeding activity. Aquaculture, 2003, 221(1–4): 481–489
https://doi.org/10.1016/S0044-8486(03)00074-7
51 Rubio V C, Vivas M, Sánchez-Mut A, Sánchez-Vázquez F J, Coves D, Dutto G, Madrid J A. Self-feeding of European sea bass (Dicentrarchus labrax L.) under laboratory and farming conditions using a string sensor. Aquaculture, 2004, 233(1–4): 393–403
https://doi.org/10.1016/j.aquaculture.2003.10.011
52 Covès D, Beauchaud M, Attia J, Dutto G, Bouchut C, Begout M L. Long-term monitoring of individual fish triggering activity on a self-feeding system: an example using European sea bass (Dicentrarchus labrax). Aquaculture, 2006, 253(1–4): 385–392
https://doi.org/10.1016/j.aquaculture.2005.08.015
53 Millot S, Bégout M L, Person-Le Ruyet J, Breuil G, Di-Poï C, Fievet J, Pineau P, Roué M, Severe A. Feed demand behavior in sea bass juveniles: effects on individual specific growth rate variation and health (inter-individual and inter-group variation). Aquaculture, 2008, 274(1): 87–95
https://doi.org/10.1016/j.aquaculture.2007.11.004
54 Noble C, Mizusawa K, Suzuki K, Tabata M. The effect of differing self-feeding regimes on the growth, behaviour and fin damage of rainbow trout held in groups. Aquaculture, 2007, 264(1–4): 214–222
https://doi.org/10.1016/j.aquaculture.2006.12.028
55 Nunes A J, Parsons G J. A computer-based statistical model of the food and feeding patterns of the Southern brown shrimp (Farfantepenaeus subtilis) under culture conditions. Aquaculture, 2006, 252(2–4): 534–544
https://doi.org/10.1016/j.aquaculture.2005.07.020
56 Pauly D. A simple method for estimating the food consumption of fish populations from growth data and food conversion experiments. Fish Bulletin, 1986, 84(4): 827–840
57 Pauly D, Christensen V, Sambilay V Jr. Some features of fish food consumption estimates used by ecosystem modelers. ICES Council Meeting, 1990
58 Tudor M. Inter-comparison of some equations for evaluating fish daily ration by numerical experiment with an impulse-input feeding model. Ecological Modelling, 2001, 136(2–3): 167–174
https://doi.org/10.1016/S0304-3800(00)00418-X
59 Richter H, Focken U, Becker K. A review of the fish feeding model MAXIMS. Ecological Modelling, 1999, 120(1): 47–64
https://doi.org/10.1016/S0304-3800(99)00071-X
60 Papandroulakis N, Markakis G, Divanach P, Kentouri M. Feeding requirements of sea bream (Sparus aurata) larvae under intensive rearing conditions: development of a fuzzy logic controller for feeding. Aquacultural Engineering, 2000, 21(4): 285–299
https://doi.org/10.1016/S0144-8609(99)00036-9
61 McDermot D, Rose K A. An individual-based model of lake fish communities: application to piscivore stocking in Lake Mendota. Ecological Modelling, 2000, 125(1): 67–102
https://doi.org/10.1016/S0304-3800(99)00172-6
62 Trudel M, Rasmussen J B. Predicting mercury concentration in fish using mass balance models. Ecological Applications, 2001, 11(2): 517–529
https://doi.org/10.1890/1051-0761(2001)011[0517:PMCIFU]2.0.CO;2
63 Cho C Y. Development of computer models for fish feeding standards and aquaculture waste estimations: a treatise. In:VII international symposium on advances in aquaculture nutrition 2004, Hermosillo. Sonora: Mexico, 2004, 375–394
64 Canale R P, Breck J E. Comments on proper (and improper) solutions of bioenergetic equations for modeling fish growth. Aquaculture, 2013, s 404–405(1): 41–46
65 Árnason T, Björnsson B, Steinarsson A, Oddgeirsson M. Effects of temperature and body weight on growth rate and feed conversion ratio in turbot (Scophthalmus maximus). Aquaculture, 2009, 295(3–4): 218–225
https://doi.org/10.1016/j.aquaculture.2009.07.004
66 Chowdhury M K, Siddiqui S, Hua K, Bureau D P. Bioenergetics-based factorial model to determine feed requirement and waste output of tilapia produced under commercial conditions. Aquaculture, 2013, 410–411(2): 138–147
https://doi.org/10.1016/j.aquaculture.2013.06.030
67 Johnston P, Bérubé F, Bergeron N E. Development of a flatbed passive integrated transponder antenna grid for continuous monito-ring of fishes in natural streams. Journal of Fish Biology, 2009, 74(7): 1651–1661
https://doi.org/10.1111/j.1095-8649.2009.02211.x
68 Spampinato C, Chen-Burger Y H, Nadarajan G, Fisher R B. Detecting, tracking and counting fish in low quality unconstrained underwater videos. In: Proceeding of 3rd International Conference on Computer Vision Theory and Application (VISAPP) 2008, Funchal. Madeira: Springer, 2008, 514–519
69 Spampinato C, Giordano D, Di Salvo R, Chen-Burger Y H, Fisher R B, Nadarajan G. Automatic fish classification for underwater species behavior understanding. In: Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams 2010, New York. New York: USA ACM Publisher, 2010, 45–50
70 Zhu L M, Zhang Y L, Zhang W, Tao Z C, Liu C F. Fish motion tracking based on RGB color space and interframe global nearest neighbour. In: International Conference on Automatic Control and Artificial Intelligence 2012, Xiamen. London: IET Publisher, 2012, 1061–1064
71 Pornpanomchai C, Leerasakultham B P L, Kitiyanan W. Shape and texture-based fish image recognition system. Kasetsart Journal-Natural Science, 2013, 47(4): 624–634
72 Armstrong J D, Huntingford F A, Herbert N A. Individual space use strategies of wild juvenile Atlantic salmon. Journal of Fish Biology, 1999, 55(6): 1201–1212
https://doi.org/10.1111/j.1095-8649.1999.tb02070.x
73 Greenberg L A, Giller P S. The potential of flat–bed passive integrated transponder antennae for studying habitat use by stream fishes. Ecology Freshwater Fish, 2000, 9(1–2): 74–80
https://doi.org/10.1034/j.1600-0633.2000.90108.x
74 David B O, Closs G P. Continuous remote monitoring of fish activity with restricted home ranges using radio telemetry. Journal of Fish Biology, 2001, 59(3): 705–715
https://doi.org/10.1111/j.1095-8649.2001.tb02374.x
75 Bégout Anras M L, Lagardère J P. Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks. Aquaculture, 2004, 240(1–4): 175–186
https://doi.org/10.1016/j.aquaculture.2004.02.019
76 Masaló I, Reig L, Oca J. Study of fish swimming activity using acoustical Doppler velocimetry (ADV) techniques. Aquacultural Engineering, 2008, 38(1): 43–51
https://doi.org/10.1016/j.aquaeng.2007.10.007
77 Thida M, Eng H L, Chew B F. Automatic analysis of fish behaviors and abnormality detection. In: MVA IAPR Conference on Machine Vision Applications 2009, Yokohama. New York: IEEE, 2009, 278–282
78 Yan H, Su Y M, Yang L. Experimentation of fish swimming based on tracking locomotion locus. Journal of Bionics Engineering, 2008, 5(3): 258–263
https://doi.org/10.1016/S1672-6529(08)60033-5
79 Pinkiewicz T H, Purser G J, Williams R N. A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon. Aquacultural Engineering, 2011, 45(1): 20–27
https://doi.org/10.1016/j.aquaeng.2011.05.002
80 Cha B J, Bae B S, Cho S K, Oh J K. A simple method to quantify fish behavior by forming time-lapse images. Aquacultural Engineering, 2012, 51(2): 15–20
https://doi.org/10.1016/j.aquaeng.2012.05.001
81 Georgiadis M P, Gardner I A, Hedrick R P. The role of epidemiology in the prevention, diagnosis, and control of infectious diseases of fish. Preventive Veterinary Medicine, 2001, 48(4): 287–302
https://doi.org/10.1016/S0167-5877(00)00202-6
82 Nan L, Zetian F, Ruimei W, Xiaoshuan Z. Developing a web-based early warning system for fish disease based on water quality management. In: first IEEE conference on Industrial Electronics and Applications 2006, Singapore. New York: IEEE, 2006, 1–6
83 Zhang X S, Fu Z T, Cai W G, Tian D, Zhang J. Applying evolutionary prototyping model in developing FIDSS: an intelligent decision support system for fish disease/health management. Expert Systems with Applications, 2009, 36(2): 3901–3913
https://doi.org/10.1016/j.eswa.2008.02.049
84 Hu J, Li D, Duan Q, Han Y, Chen G, Si X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Computers and Electronics in Agriculture, 2012, 88(4): 133–140
https://doi.org/10.1016/j.compag.2012.07.008
85 Hong S R, Jeong H D, Hong S. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV. Talanta, 2010, 82(3): 899–903
https://doi.org/10.1016/j.talanta.2010.04.065
86 Cho C Y, Bureau D P. Reduction of waste output from salmonid aquaculture through feeds and feeding. Progressive Fish-Culturist, 1997, 59(2): 155–160
https://doi.org/10.1577/1548-8640(1997)059<0155:ROWOFS>2.3.CO;2
87 Cho C Y, Bureau D P. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research, 2001, 32(S1): 349–360
88 Cripps S J, Bergheim A. Solids management and removal for intensive land-based aquaculture production systems. Aquacultural Engineering, 2000, 22(1–2): 33–56
https://doi.org/10.1016/S0144-8609(00)00031-5
89 Foster M, Petrell R, Ito M R, Ward R. Detection and counting of uneaten food pellets in a sea cage using image analysis. Aquacultural Engineering, 1995, 14(3–4): 251–269
https://doi.org/10.1016/0144-8609(94)00006-M
90 Dudley R W, Panchang V G, Newell C R. Application of a comprehensive modeling strategy for the management of net-pen aquaculture waste transport. Aquaculture, 2000, 187(3–4): 319– 349
https://doi.org/10.1016/S0044-8486(00)00313-6
91 Booij N. User Manual for the program duchess, Delft University computer program for 2D horizontal estuary and sea surges. Delft: Delft University of Technology, 1989
92 Ang K P, Petrell R J. Pellet wastage, and subsurface and surface feeding behaviours associated with different feeding systems in sea cage farming of salmonids. Aquacultural Engineering, 1998, 18(2): 95–115
https://doi.org/10.1016/S0144-8609(98)00026-0
93 Parsonage K D, Petrell R J. Accuracy of a machine-vision pellet detection system. Aquacultural Engineering, 2003, 29(3–4): 109–123
https://doi.org/10.1016/S0144-8609(03)00049-9
94 Acker T, Burczynski J, Hedgepeth J, Ebrahim A. Digital scanning sonar for fish feeding monitoring in aquaculture. , 2015–<Date>12–20</Date>
95 Chamberlain J, Stucchi D. Simulating the effects of parameter uncertainty on waste model predictions of marine finfish aquaculture. Aquaculture, 2007, 272(1–4): 296–311
https://doi.org/10.1016/j.aquaculture.2007.08.051
[1] Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD. Using a systems modeling approach to improve soil management and soil quality[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 289-295.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Maria CARIA, Giuseppe TODDE, Antonio PAZZONA. Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms in Italy[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 181-187.
[4] Muhammad WASEEM, Frauke KACHHOLZ, Jens TRÄNCKNER. Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 420-431.
[5] Chenghai YANG. High resolution satellite imaging sensors for precision agriculture[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 393-405.
[6] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed