Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2016, Vol. 3 Issue (4) : 330-334    https://doi.org/10.15302/J-FASE-2016118
RESEARCH ARTICLE
Efficient regeneration system applicable to five Musa cultivars
Juhua LIU1,Peiguang SUN2,Jing ZHANG1,Jiashui WANG2,Jianbin ZHANG1,Jingyi WANG1,Caihong JIA1,Pengzhao GAO1,Biyu XU1(),Zhiqiang JIN1,2()
1. Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
 Download: PDF(1219 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Banana (Musa spp.) is an important staple food, economic crop, and nutritional fruit worldwide. Hybridization is seriously hampered by the long generation time, polyploidy, and sterility of most cultivars. Establishment of an efficient regeneration and transformation system for banana is critical for their genetic improvement. An efficient and reproducible transformation system for banana using direct organogenesis was developed. Media containing benzylaminopurine (BA) combined with one of four other growth regulators was evaluated for the regeneration efficiency of five Musa cultivars and the ability to induce/support development of new banana shoots. The result indicated that the greatest number of shoots per explant for all five Musa cultivars was obtained using MS medium supplemented with 8.9 mmol·L1 BA and 9.1 mmol·L1 thidiazuron (TDZ). In 240–270 d, one immature male flower could regenerate between 380 and 456, 310–372, 200–240, 130–156, and 100–130 well-developed shoots for Gongjiao, Red banana, Rose banana, Baxi, and Xinglongnaijiao, respectively. Such a system will facilitate molecular breeding and functional genomics of banana.

Keywords banana (Musa spp)      system      regeneration     
Corresponding Author(s): Biyu XU,Zhiqiang JIN   
Just Accepted Date: 07 December 2016   Online First Date: 27 December 2016    Issue Date: 22 January 2017
 Cite this article:   
Juhua LIU,Peiguang SUN,Jing ZHANG, et al. Efficient regeneration system applicable to five Musa cultivars[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 330-334.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2016118
https://academic.hep.com.cn/fase/EN/Y2016/V3/I4/330
M Baxi Gongjiao Red banana Rose banana Xinglongnaijiao
A B/g A B/g A B/g A B/g A B/g
I 4.00±1.30c 0.50±0.03a* 16.00±0.80c* 0.82±0.03a* 12.00±1.20c* 0.70±0.03ab* 12.00±1.20b* 0.22±0.03b 6.00±1.20b 0.59±0.05bc*
II 9.00±0.80b 0.53±0.10a* 22.00±2.40b* 0.79±0.06a* 23.00±0.80b* 0.70±0.01ab* 15.00±2.10b* 0.27±0.01a 7.00±0.80ab 0.67±0.03ab*
III 13.00±0.80a 0.43±0.08a 38.00±2.10a* 0.74±0.07ab* 31.00±2.60a* 0.73±0.10a* 20.00±2.40a* 0.28±0.01a 10.00±1.20a 0.74±0.09a*
IV 2.00±0.80d 0.35±0.03a* 4.00±0.80d 0.63±0.03b* 7.00±1.70d* 0.54±0.02b* 4.00±1.20c 0.14±0.01c 2.00±0.80c 0.46±0.05c*
Tab.1  Regeneration analysis of five Musa cultivars using four types of media
Fig.1  Regeneration of five Musa genotypes. (a) and (b) Male banana flower; (c) male banana flower (30 mm); (d) tissue slices (1–2 mm); (e) and (f), shoots regenerated from slices; (g) regenerated banana roots; (h) transplantation; (i) plantlets; M, slices cut from (e–f); B1–B3, different stages of Baxi regeneration; G1–G3, different stages of Gongjiao regeneration; H1–H3, different stages of Red banana regeneration; R1–R3, different stages of Rose banana regeneration; X1–X3, different stages of Xinglongnaijiao regeneration.
Fig.2  Cross sections of regenerated banana shoots. (a) Initiation of cell division; (b) vigorous cell division; (c–d) outward formation of bud primordia; (e–f) adventitious shoot regeneration. Arrow, cortical parenchymal cells.
Fig.3  Plant regeneration by five cultivars after three months growth in coconut coir medium. (a) Baxi; (b) Gongjiao; (c) Xinglongnaijiao; (d) Red banana; (e) Rose banana.
1 Sági L, Remy S, Pérez Hernández J B, Swennen R. Production of transgenic banana (Musa species). In: Khachatourians G G, McHughen A, Scorza R, Nip W K, Hui Y H eds. Transgenic Plants and Crops. New York: Marcel Dekker Inc, 2002, 359–369
2 Pillay M, Tripathi L. Banana breeding. In: M S Kang and P M Priyadarshan, eds. Breeding major food staples. New York: Blackwell Science, 2007
3 Santos E, Remy S, Thiry E, Windelinckx S, Swennen R, Sági L. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biology, 2009, 9(1): 77
https://doi.org/10.1186/1471-2229-9-77
4 Dhed A D, Dumortier F, Panis B, Vuylsteke D, Langhe E D. Plant regeneration in cell suspension cultures of the cooking banana cv. Bluggoe (Musa sp. ABB group). Fruits, 2001, 46(2): 125–135
5 Novak F J, Afza R, Van Duren M, Perea-Dallos M, Conger B V, Xiaolang T. Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (AAB) bananas (Musa spp.). Nature Biotechnology, 1989, 7(2): 154–159
https://doi.org/10.1038/nbt0289-154
6 Wei Y R, Huang X L, Li J, Huang X, Li Z, Li X J. Establishment of embryogenic cell suspension culture and plant regeneration of edible banana Musa acuminata cv. Mas (AA). Chinese Journal of Biotechnology, 2005, 21(1): 58–65
7 Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, Swennen R. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp). Plant Science, 2006, 170(1): 104–112
https://doi.org/10.1016/j.plantsci.2005.08.007
8 Huang X, Huang X L, Xiao W, Zhao J T, Dai X M, Chen Y F, Li X J. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminate cv. Mas (AA) via a liquid co-cultivation system. Plant Cell Reports, 2007, 26(10): 1755–1762
https://doi.org/10.1007/s00299-007-0376-x
9 Ghosh A, Ganapathi T R, Nath P, Bapat V A. Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell, Tissue and Organ Culture, 2009, 97(2): 131–139
https://doi.org/10.1007/s11240-009-9507-0
10 Khanna H K, Paul J Y, Harding R M, Dickman M B, Dale J L. Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of Banana.Molecular Plant-Microbe Interactions , 2007, 20(9): 1048–1054
https://doi.org/10.1094/MPMI-20-9-1048
11 Xu C, Takáč T, Burbach C, Menzel D, Šamaj J. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA). BMC Plant Biology, 2011, 11(1): 38
https://doi.org/10.1186/1471-2229-11-38
12 Sreedharan S, Shekhawat U K, Ganapathi T R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1; 2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal, 2013, 11(8): 942–952
https://doi.org/10.1111/pbi.12086
13 Tripathi J N, Muwonge A, Tripathi L. Efficient regeneration and transformation of plantain cv. Gonja manjaya (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cellular & Developmental Biology. Plant, 2012, 48(2): 216–224
https://doi.org/10.1007/s11627-011-9422-z
14 Hu C, Dou T, Wei Y, Sheng O, Kuang R, Yang Q, Li C, Yi G. Establishment of Agrobacterium-mediated transformation of multiple buds slices of Banana. Molecular Plant Breeding, 2014, 12(6): 1195–1200 (in Chinese)
15 Huang X, Huang X L, Wang H H, Li X J. Studies on the plant regeneration from the micro cross sections of banana. Acta Horticulturae Sinica, 2001, 28(1): 19–24 (in Chinese)
16 Okole B N, Schulz F A. Micro-cross sections of banana and plantains (Musa spp.): Morphogenesis and regeneration of callus and shoot buds. Plant Science, 1996, 116(2): 185–195
https://doi.org/10.1016/0168-9452(96)04381-6
17 Huang Y, Yi G, Zhou B, Zeng J, Wu Y. Research advances about genetic engineering of banana. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10): 2179–2185 (in Chinese)
18 Paul J Y, Becker D K, Dickman M B, Harding R M, Khanna H K, Dale J L. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnology Journal, 2011, 9(9): 1141–1148
https://doi.org/10.1111/j.1467-7652.2011.00639.x
19 Tripathi J N, Oduor R O, Tripathi L. A High-throughput regeneration and transformation platform for production of genetically modified banana. Frontiers in Plant Science, 2015, 6: 1025
https://doi.org/10.3389/fpls.2015.01025
20 Hrahsel L, Basu A, Sahoo L, Thangjam R. In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers. Applied Biochemistry and Biotechnology, 2014, 172(3): 1530–1539
https://doi.org/10.1007/s12010-013-0637-9
[1] Huihui WEI, Wenjuan ZHANG, Feng ZHANG, Guojun SUN. Ecological security evaluation of Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 467-477.
[2] Jizheng HE, Zhenzhen YAN, Qinglin CHEN. Transmission of antibiotic resistance genes in agroecosystems: an overview[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 329-332.
[3] Yakov KUZYAKOV, Anna GUNINA, Kazem ZAMANIAN, Jing TIAN, Yu LUO, Xingliang XU, Anna YUDINA, Humberto APONTE, Hattan ALHARBI, Lilit OVSEPYAN, Irina KURGANOVA, Tida GE, Thomas GUILLAUME. New approaches for evaluation of soil health, sensitivity and resistance to degradation[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 282-288.
[4] Leslie G. FIRBANK. Towards the sustainable intensification of agriculture—a systems approach to policy formulation[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 81-89.
[5] Robert M. REES, Juliette MAIRE, Anna FLORENCE, Nicholas COWAN, Ute SKIBA, Tony van der WEERDEN, Xiaotang JU. Mitigating nitrous oxide emissions from agricultural soils by precision management[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 75-80.
[6] Rui WANG, Weiming SHI, Yilin LI. Phosphorus supply and management in vegetable production systems in China[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 348-356.
[7] Marco ROELCKE, Lisa HEIMANN, Yong HOU, Jianbin GUO, Qiaoyun XUE, Wei JIA, Anne OSTERMANN, Roxana Mendoza HUAITALLA, Moritz ENGBERS, Clemens OLBRICH, Roland W. SCHOLZ, Joachim CLEMENS, Frank SCHUCHARDT, Rolf NIEDER, Xuejun LIU, Fusuo ZHANG. Phosphorus status, use and recycling in a Chinese peri-urban region with intensive animal husbandry and cropping systems Results from case study in a Sino-German applied research collaboration project[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 388-402.
[8] Du-Han KIM, Kyeong-Hwan LEE, Chang-Hyun CHOI, Tae-Hyun CHOI, Yong-Joo KIM. Development of real-time onion disease monitoring system using image acquisition[J]. Front. Agr. Sci. Eng. , 2018, 5(4): 469-474.
[9] David KEMP, Guodong HAN, Fujiang HOU, Xiangyang HOU, Zhiguo LI, Yi SUN, Zhongwu WANG, Jianping WU, Xiaoqing ZHANG, Yingjun ZHANG, Xuyin GONG. Sustainable management of Chinese grasslands—issues and knowledge[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 9-23.
[10] Cécile DURANTON, Cory MATTHEW. Impact of introducing a herb pasture area into a New Zealand sheep and beef hill country farm system: a modeling analysis[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 87-97.
[11] Xinquan ZHAO, Liang ZHAO, Qi LI, Huai CHEN, Huakun ZHOU, Shixiao XU, Quanmin DONG, Gaolin WU, Yixin HE. Using balance of seasonal herbage supply and demand to inform sustainable grassland management on the Qinghai–Tibetan Plateau[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 1-8.
[12] Ming LANG, Rui YU, Yongqing MA, Wei ZHANG, Christopher S. P. McErlean. Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 228-236.
[13] Heshui XU,Dengyun LI,Bo ZHU,Kai ZHANG,Yadong YANG,Chen WANG,Ying JIANG,Zhaohai ZENG. CH4 and N2O emissions from double-rice cropping system as affected by Chinese milk vetch and straw incorporation in southern China[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 59-68.
[14] Hongzhe JIANG,Wei WANG,Chunyang LI,Wei WANG. Innovation, practical benefits and prospects for the future development of automatic milking systems[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 37-47.
[15] Kaye BASFORD,Richard BENNETT,Joanne DALY,Mary Ann AUGUSTIN,Snow BARLOW,Tony GREGSON,Alice LEE,Deli CHEN,Matt WENHAM. Delivering food safety[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed