Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (1) : 98-109    https://doi.org/10.15302/J-FASE-2021389
REVIEW
HEMIPTERAN-TRANSMITTED PLANT VIRUSES: RESEARCH PROGRESS AND CONTROL STRATEGIES
Haijian HUANG, Junmin LI, Chuanxi ZHANG(), Jianping CHEN()
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection (Ministry of Agriculture and Rural Affairs of China and Zhejiang Province), Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
 Download: PDF(821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Research findings on the insect-virus interaction

• Influences of immunity, feeding and microorganisms on virus transmission

• Latest applications for virus control strategies

About 80% of plant viruses are transmitted by specific insect vectors, especially hemipterans with piercing-sucking mouthparts. Many virus-transmitting insects are also important crop pests that cause considerable losses in crop production. This review summarizes the latest research findings on the interactions between plant viruses and insect vectors and analyzes the key factors affecting insect transmission of plant viruses from the perspectives of insect immunity, insect feeding, and insect symbiotic microorganisms. Additionally, by referring to the latest applications for blocking the transmission of animal viruses, potential control strategies to prevent the transmission of insect-vectored plant viruses using RNAi technology, gene editing technology, and CRISPR/Cas9+ gene-driven technology are discussed.

Keywords control strategies      feeding      immunity      insect vector      microorganism      plant virus     
Corresponding Author(s): Chuanxi ZHANG,Jianping CHEN   
Just Accepted Date: 16 March 2021   Online First Date: 13 April 2021    Issue Date: 17 January 2022
 Cite this article:   
Haijian HUANG,Junmin LI,Chuanxi ZHANG, et al. HEMIPTERAN-TRANSMITTED PLANT VIRUSES: RESEARCH PROGRESS AND CONTROL STRATEGIES[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 98-109.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021389
https://academic.hep.com.cn/fase/EN/Y2022/V9/I1/98
Virus Family/Genus Plant host Hemipteran vector Transmission mode
Barley yellow dwarf virus (BYDV) Luteoviridae, Luteovirus, (+)ssRNA Barley, oats, wheat, etc. > 25 aphid species Persistent-nonpropagative
Cauliflower mosaic virus (CaMV) Caulimoviridae, Caulimovirus, dsDNA Radish, cauliflower, cabbage, etc. Brevicoryne brassicae Nonpersistent
Cucumber mosaic virus (CMV) Bromoviridae, Cucumovirus, (+)ssRNA Cucumber, spinach, pepper, etc. > 60 aphid species Nonpersistent
Maize mosaic rhabdovirus (MMV) Rhabdoviridae, Nucleorhabdovirus, (−)ssRNA Maize, teosinte, itchgrass, etc. Peregrinus maidis Persistent-propagative
Potato leafroll virus (PLRV) Luteoviridae, Polerovirus, (+)ssRNA Potato Aphis fabae,
Aphis gossypii,
Aulacorthumsolani,
Macrosiphum euphorbiae,
Myzus persicae
Persistent-nonpropagative
Rice black-streaked dwarf virus (RBSDV) Reoviridae, Fijivirus, dsRNA Rice, wheat, maize, etc. Laodelphax striatellus,
Unkanodes sapporona,
Unkanodoes albifascia,
Persistent-propagative
Rice dwarf virus (RDV) Reoviridae, Phytoreovirus, dsRNA Rice Nephotettix cincticeps,
Recilia dorsalis,
Nephotettix virescens,
Nephotettix nigropictus
Persistent-propagative
Rice gall dwarf virus (RGDV) Reoviridae, Phytoreovirus, dsRNA Rice Nephotettix nigropictus,
Nephotettix cincticeps,
Recilia dorsalis
Persistent-propagative
Rice ragged stunt virus (RRSV) Reoviridae, Oryzavirus, dsRNA Rice Nilaparvata lugens, Persistent-propagative
Rice stripe virus (RSV) Phenuiviridae, Tenuivirus, (−)ssRNA Rice, wheat, maize Laodelphax striatellus,
Unkanodes sapporona,
Unkanodoes albifascia,
Terthron albovittatum
Persistent-propagative,
Southern rice black-streaked dwarf virus (SRBSDV) Reoviridae, Fijivirus, dsRNA Rice, maize, Chinese sorghum, etc. Sogatella furcifera Persistent-propagative,
Tomato yellow leaf curl China virus (TYLCCNV) Geminiviridae, Begomovirus, ssDNA Tomato, tobacco, petunias, etc. Bemisia tabaci Persistent-propagative
Tomato yellow leaf curl virus (TYLCV) Geminiviridae, Begomovirus, ssDNA Tomato, eggplants, potatoes, etc. Bemisia tabaci Persistent-propagative
Turnip mosaic virus (TuMV) Potyviridae, Potyvirus, (+)ssRNA Turnip, lettuce, watercress, etc. > 89 aphid species Nonpersistent
Tab.1  Plant viruses addressed in this review
Fig.1  Key factors affecting insect transmission of plant viruses. Influences of insect immunity, insect feeding behavior, insect salivary effectors and insect symbiotic microorganisms on viral transmission are discussed in this review.
Fig.2  Schematic representation of antiviral response pathway in vector insects. Five pathways, comprising siRNA, autophagy, JAK-STAT, Toll and IMD, are illustrated. (1) siRNA pathway: viral dsRNA is recognized by Dicer-2, and processed into siRNAs. The siRNAs are loaded onto the RNA interference silencing complex (RISC) that contains argonaute 2 (Ago2), then recognize and cleave target viral RNA. (2) Autophagy pathway: the transmembrane receptor Toll-7 recognizes the viral components and induces autophagy. It might be negatively regulated by the phosphatidylinositol 3-kinase (PI3K)-Akt kinase pathway. (3) JAK-STAT pathway: activation of the JAK-STAT pathway upon virus infection is likely mediated by binding of a cytokine of the unpaired (Upd) to their receptor, dome. Then, the JAK-tyrosine kinase hopscotch mediates the recruitment of Stat92E. After Jak-mediated phosphorylation, Stat92E proteins dimerize and translocate to the nucleus and regulate corresponding genes. (4) Toll pathway: recognition of Gram-positive bacteria, fungi and viruses by pattern recognition receptors resulted in proteolytic maturation of Spätzle (Spz). The cleaved Spz binds to Toll, which further recruits three death domain-containing adapter proteins MyD88, Tube and Pelle. Then, Cactus is phosphorylated, and induces the translocation of the Rel transcriptional factors, Dif and Dorsal, to the nucleus. (5) IMD pathway: recognition of Gram-negative bacteria and viruses by transmembrane receptors PGRP-LCs resulted in signal transduction to the IMD, which is localized in the cytoplasm. IMD activation recruits dFADD that recruits a caspase, DREDD. Activation of DREDD resulted in polyubiquitination of IMD. Then, TAK1 binds to the polyubiquitin chain and is responsible for the assembly and activation of the IKK complex (IKK-β and IKK-g). Phosphorylation of Relish is mediated by IKK complex, which is further cleaved by DREDD. The N-terminal DNA binding domain of Relish translocates to the nucleus and regulates transcription of corresponding genes.
1 K S Sastry, T A Zitter. Management of virus and viroid diseases of crops in the tropics. In: Plant Virus and Viroid Diseases in the Tropics. Dordrecht: Springer, 2014, 149–480
2 S A Hogenhout, D Ammar, A E Whitfield, M G Redinbaugh. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 2008, 46(1): 327–359
https://doi.org/10.1146/annurev.phyto.022508.092135 pmid: 18680428
3 C Bragard, P Caciagli, O Lemaire, J J Lopez-Moya, S MacFarlane, D Peters, P Susi, L Torrance. Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 2013, 51(1): 177–201
https://doi.org/10.1146/annurev-phyto-082712-102346 pmid: 23663003
4 S Singh, S A Pandey, K K Singh. Use abuse and environmental impacts of pesticides: a preliminary review. International Journal of Environmental Sciences, 2018, 7(2): 75–78
5 S M Gray, N Banerjee. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 1999, 63(1): 128–148
https://doi.org/10.1128/MMBR.63.1.128-148.1999 pmid: 10066833
6 T Wei, Y Li. Rice reoviruses in insect vectors. Annual Review of Phytopathology, 2016, 54(1): 99–120
https://doi.org/10.1146/annurev-phyto-080615-095900 pmid: 27296147
7 A Bak, D Gargani, J L Macia, E Malouvet, M S Vernerey, S Blanc, M Drucker. Virus factories of cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. Journal of Virology, 2013, 87(22): 12207–12215
https://doi.org/10.1128/JVI.01883-13 pmid: 24006440
8 F Hoh, M Uzest, M Drucker, C Plisson-Chastang, P Bron, S Blanc, C Dumas. Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. Journal of Virology, 2010, 84(9): 4706–4713
https://doi.org/10.1128/JVI.02662-09 pmid: 20181714
9 J P Carr, T Tungadi, R Donnelly, A Bravo-Cazar, S J Rhee, L G Watt, J M Mutuku, F O Wamonje, A M Murphy, W Arinaitwe, A E Pate, N J Cunniffe, C A Gilligan. Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Research, 2020, 277: 197845
https://doi.org/10.1016/j.virusres.2019.197845 pmid: 31874210
10 A Martinière, A Bak, J L Macia, N Lautredou, D Gargani, J Doumayrou, E Garzo, A Moreno, A Fereres, S Blanc, M Drucker. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife, 2013, 2: e00183
https://doi.org/10.7554/eLife.00183 pmid: 23358702
11 M Uzest, D Gargani, A Dombrovsky, C Cazevieille, D Cot, S Blanc. The “acrostyle”: a newly described anatomical structure in aphid stylets. Arthropod Structure & Development, 2010, 39(4): 221–229
https://doi.org/10.1016/j.asd.2010.02.005 pmid: 20170746
12 M Uzest, D Gargani, M Drucker, E Hébrard, E Garzo, T Candresse, A Fereres, S Blanc. A protein key to plant virus transmission at the tip of the insect vector stylet. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 17959–17964
https://doi.org/10.1073/pnas.0706608104 pmid: 17962414
13 C G Webster, M Thillier, E Pirolles, B Cayrol, S Blanc, M Uzest. Proteomic composition of the acrostyle: novel approaches to identify cuticular proteins involved in virus-insect interactions. Insect Science, 2017, 24(6): 990–1002
https://doi.org/10.1111/1744-7917.12469 pmid: 28421675
14 C G Webster, E Pichon, M van Munster, B Monsion, M Deshoux, D Gargani, F Calevro, J Jimenez, A Moreno, B Krenz, J R Thompson, K L Perry, A Fereres, S Blanc, M Uzest. Identification of plant virus receptor candidates in the stylets of their aphid vectors. Journal of Virology, 2018, 92(14): e00432–18
https://doi.org/10.1128/JVI.00432-18 pmid: 29769332
15 F Qin, W Liu, N Wu, L Zhang, Z Zhang, X Zhou, X Wang. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. PLoS Pathogens, 2018, 14(7): e1007201
https://doi.org/10.1371/journal.ppat.1007201 pmid: 30052679
16 G Lu, S Li, C Zhou, X Qian, Q Xiang, T Yang, J Wu, X Zhou, Y Zhou, X S Ding, X Tao. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathogens, 2019, 15(3): e1007655
https://doi.org/10.1371/journal.ppat.1007655 pmid: 30921434
17 Y Li, D Chen, J Hu, K Zhang, L Kang, Y Chen, L Huang, L Zhang, Y Xiang, Q Song, F Liu. The a-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. PLoS Pathogens, 2020, 16(8): e1008710
https://doi.org/10.1371/journal.ppat.1008710 pmid: 32817722
18 Q Chen, H Chen, Q Mao, Q Liu, T Shimizu, T Uehara-Ichiki, Z Wu, L Xie, T Omura, T Wei. Tubular structure induced by a plant virus facilitates viral spread in its vector insect. PLoS Pathogens, 2012, 8(11): e1003032
https://doi.org/10.1371/journal.ppat.1003032 pmid: 23166500
19 D Jia, Q Mao, H Chen, A Wang, Y Liu, H Wang, L Xie, T Wei. Virus-induced tubule: a vehicle for rapid spread of virions through basal lamina from midgut epithelium in the insect vector. Journal of Virology, 2014, 88(18): 10488–10500
https://doi.org/10.1128/JVI.01261-14 pmid: 24965461
20 Q Mao, Z Liao, J Li, Y Liu, W Wu, H Chen, Q Chen, D Jia, T Wei. Filamentous structures induced by a phytoreovirus mediate viral release from salivary glands in its insect vector. Journal of Virology, 2017, 91(12): e00265–17
https://doi.org/10.1128/JVI.00265-17 pmid: 28381575
21 Y Huo, W Liu, F Zhang, X Chen, L Li, Q Liu, Y Zhou, T Wei, R Fang, X Wang. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogens, 2014, 10(3): e1003949
https://doi.org/10.1371/journal.ppat.1003949 pmid: 24603905
22 Y Huo, Y Yu, Q Liu, D Liu, M Zhang, J Liang, X Chen, L Zhang, R. FangRice stripe virus hitchhikes the vecto insect vitellogenin ligand-receptor pathway for ovary entry. Philosophical transactions of the Royal Society of London. Series B: Biological Science, 2019, 374(1767): 20180312
23 Q Mao, W Wu, Z Liao, J Li, D Jia, X Zhang, Q Chen, H Chen, J Wei, T Wei. Viral pathogens hitchhike with insect sperm for paternal transmission. Nature Communications, 2019, 10(1): 955
https://doi.org/10.1038/s41467-019-08860-4 pmid: 30814506
24 H J Huang, C W Liu, X Zhou, C X Zhang, Y Y Bao. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector. Virus Research, 2017, 229: 48–56
https://doi.org/10.1016/j.virusres.2016.12.016 pmid: 28034779
25 W H Palmer, F S Varghese, R P van Rij. Natural variation in resistance to virus infection in dipteran insects. Viruses, 2018, 10(3): 118
https://doi.org/10.3390/v10030118 pmid: 29522475
26 A E Whitfield, D Rotenberg, V Aritua, S A Hogenhout. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. Insect Molecular Biology, 2011, 20(2): 225–242
https://doi.org/10.1111/j.1365-2583.2010.01060.x pmid: 21199018
27 H Lan, H Wang, Q Chen, H Chen, D Jia, Q Mao, T Wei. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Scientific Reports, 2016, 6(1): 20699
https://doi.org/10.1038/srep20699 pmid: 26864546
28 Y Xu, L Huang, S Fu, J Wu, X Zhou. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS One, 2012, 7(9): e46238
https://doi.org/10.1371/journal.pone.0046238 pmid: 23029445
29 H Lan, H Chen, Y Liu, C Jiang, Q Mao, D Jia, Q Chen, T Wei. Small interfering RNA pathway modulates initial viral infection in midgut epithelium of insect after ingestion of virus. Journal of Virology, 2015, 90(2): 917–929
https://doi.org/10.1128/JVI.01835-15 pmid: 26537672
30 Y Liu, Q Mao, H Lan, H Wang, T Wei, Q Chen. Investigation of alimentary canal ultrastructure following knockdown of the Dicer-2 gene in planthoppers reveals the potential pathogenicity of southern rice black streaked dwarf virus to its insect vector. Virus Research, 2018, 244: 117–127
https://doi.org/10.1016/j.virusres.2017.11.012 pmid: 29141205
31 Y J He, G Lu, Y H Qi, Y Zhang, X D Zhang, H J Huang, J C Zhuo, Z T Sun, F Yan, J P Chen, C X Zhang, J M Li. Activation of Toll immune pathway in an insect vector induced by a plant virus. Frontiers in Immunology, 2021, 11: 613957
https://doi.org/10.3389/fimmu.2020.613957 pmid: 33488623
32 X Chen, J Yu, W Wang, H Lu, L Kang, F Cui. A plant virus ensures viral stability in the hemolymph of vector insects through suppressing prophenoloxidase activation. mBio, 2020, 11(4): e01453–20
https://doi.org/10.1128/mBio.01453-20 pmid: 32817105
33 W Wang, W Zhao, J Li, L Luo, L Kang, F Cui. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication. eLife, 2017, 6: e26591
https://doi.org/10.7554/eLife.26591 pmid: 28716183
34 L L Wang, X R Wang, X M Wei, H Huang, J X Wu, X X Chen, S S Liu, X W Wang. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy, 2016, 12(9): 1560–1574
https://doi.org/10.1080/15548627.2016.1192749 pmid: 27310765
35 Y Chen, Q Chen, M Li, Q Mao, H Chen, W Wu, D Jia, T Wei. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLoS Pathogens, 2017, 13(11): e1006727
https://doi.org/10.1371/journal.ppat.1006727 pmid: 29125860
36 M H Orzalli, J C Kagan. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends in Cell Biology, 2017, 27(11): 800–809
https://doi.org/10.1016/j.tcb.2017.05.007 pmid: 28642032
37 H J Huang, Y Y Bao, S H Lao, X H Huang, Y Z Ye, J X Wu, H J Xu, X P Zhou, C X Zhang. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Scientific Reports, 2015, 5(1): 11413
https://doi.org/10.1038/srep11413 pmid: 26073458
38 Q Chen, L Zheng, Q Mao, J Liu, H Wang, D Jia, H Chen, W Wu, T Wei. Fibrillar structures induced by a plant reovirus target mitochondria to activate typical apoptotic response and promote viral infection in insect vectors. PLoS Pathogens, 2019, 15(1): e1007510
https://doi.org/10.1371/journal.ppat.1007510 pmid: 30653614
39 S Wang, H Guo, F Ge, Y Sun. Apoptotic neurodegeneration in whitefly promotes the spread of TYLCV. eLife, 2020, 9: e56168
https://doi.org/10.7554/eLife.56168 pmid: 32729829
40 X Wu, J Ye. Manipulation of jasmonate signaling by plant viruses and their insect vectors. Viruses, 2020, 12(2): 148
https://doi.org/10.3390/v12020148 pmid: 32012772
41 I P Calil, E P B Fontes. Plant immunity against viruses: antiviral immune receptors in focus. Annals of Botany, 2017, 119(5): 711–723
pmid: 27780814
42 R Li, B T Weldegergis, J Li, C Jung, J Qu, Y Sun, H Qian, C Tee, J J van Loon, M Dicke, N H Chua, S S Liu, J Ye. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell, 2014, 26(12): 4991–5008
https://doi.org/10.1105/tpc.114.133181 pmid: 25490915
43 T Zhang, J B Luan, J F Qi, C J Huang, M Li, X P Zhou, S S Liu. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 2012, 21(5): 1294–1304
https://doi.org/10.1111/j.1365-294X.2012.05457.x pmid: 22269032
44 P Zhao, X Yao, C Cai, R Li, J Du, Y Sun, M Wang, Z Zou, Q Wang, D J Kliebenstein, S S Liu, R X Fang, J Ye. Viruses mobilize plant immunity to deter nonvector insect herbivores. Science Advances, 2019, 5(8): eaav9801
https://doi.org/10.1126/sciadv.aav9801 pmid: 31457079
45 J Y Yang, M Iwasaki, C Machida, Y Machida, X Zhou, N H Chua. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes & Development, 2008, 22(18): 2564–2577
https://doi.org/10.1101/gad.1682208 pmid: 18794352
46 C L Casteel, M De Alwis, A Bak, H Dong, S A Whitham, G Jander. Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiology, 2015, 169(1): 209–218
https://doi.org/10.1104/pp.15.00332 pmid: 26091820
47 D Wu, T Qi, W X Li, H Tian, H Gao, J Wang, J Ge, R Yao, C Ren, X B Wang, Y Liu, L Kang, S W Ding, D Xie. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27(3): 402–415
https://doi.org/10.1038/cr.2017.2 pmid: 28059067
48 H Abe, Y Tomitaka, T Shimoda, S Seo, T Sakurai, S Kugimiya, S Tsuda, M Kobayashi. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant & Cell Physiology, 2012, 53(1): 204–212
https://doi.org/10.1093/pcp/pcr173 pmid: 22180600
49 E S Jiménez-Martínez, N A Bosque-Pérez, P H Berger, R S Zemetra, H Ding, S D Eigenbrode. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environmental Entomology, 2004, 33(5): 1207–1216
https://doi.org/10.1603/0046-225X-33.5.1207
50 S D Eigenbrode, H Ding, P Shiel, P H Berger. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society of London. Series B, Biological Sciences, 2002, 269(1490): 455–460
https://doi.org/10.1098/rspb.2001.1909 pmid: 11886636
51 K E Mauck, C M De Moraes, M C Mescher. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant, Cell & Environment, 2014, 37(6): 1427–1439
https://doi.org/10.1111/pce.12249 pmid: 24329574
52 K Mauck, N A Bosque-Pérez, S D Eigenbrode, C M De Moraes, M C Mescher. Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Functional Ecology, 2012, 26(5): 1162–1175
https://doi.org/10.1111/j.1365-2435.2012.02026.x
53 G Lu, T Zhang, Y He, G Zhou. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Scientific Reports, 2016, 6(1): 38581
https://doi.org/10.1038/srep38581 pmid: 27924841
54 C L Casteel, C Yang, A C Nanduri, H N De Jong, S A Whitham, G Jander. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant Journal, 2014, 77(4): 653–663
https://doi.org/10.1111/tpj.12417 pmid: 24372679
55 H J Huang, C X Zhang, X Y Hong. How does saliva function in planthopper-host interactions? Archives of Insect Biochemistry and Physiology, 2019, 100(4): e21537
https://doi.org/10.1002/arch.21537 pmid: 30666693
56 C Xu, C Lu, J Piao, Y Wang, T Zhou, Y Zhou, S Li. Rice virus release from the planthopper salivary gland is independent of plant tissue recognition by the stylet. Pest Management Science, 2020, 76(9): 3208–3216
https://doi.org/10.1002/ps.5876 pmid: 32358849
57 H J Huang, C W Liu, X H Huang, X Zhou, J C Zhuo, C X Zhang, Y Y Bao. Screening and functional analyses of Nilaparvata lugens salivary proteome. Journal of Proteome Research, 2016, 15(6): 1883–1896
https://doi.org/10.1021/acs.jproteome.6b00086 pmid: 27142481
58 H J Huang, C W Liu, H J Xu, Y Y Bao, C X Zhang. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation. Journal of Insect Physiology, 2017, 98: 223–230
https://doi.org/10.1016/j.jinsphys.2017.01.012 pmid: 28115117
59 X Shangguan, J Zhang, B Liu, Y Zhao, H Wang, Z Wang, J Guo, W Rao, S Jing, W Guan, Y Ma, Y Wu, L Hu, R Chen, B Du, L Zhu, D Yu, G He. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiology, 2018, 176(1): 552–565
https://doi.org/10.1104/pp.17.00755 pmid: 29133370
60 Q F Xu, W J Le, J F Zhang, R Y Xiong, Y J Zhou. The expression analysis of mucin gene from Laodelphax striatellus under Rice stripe virus invasion. Acta Phytophylacica Sinica, 2011, 38(4): 289–293 (in Chinese)
61 A Moreno-Delafuente, E Garzo, A Moreno, A Fereres. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS One, 2013, 8(4): e61543
https://doi.org/10.1371/journal.pone.0061543 pmid: 23613872
62 C Y Chen, Y Q Liu, W M Song, D Y Chen, F Y Chen, X Y Chen, Z W Chen, S X Ge, C Z Wang, S Zhan, X Y Chen, Y B Mao. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14331–14338
https://doi.org/10.1073/pnas.1905471116 pmid: 31221756
63 H X Xu, L X Qian, X W Wang, R X Shao, Y Hong, S S Liu, X W Wang. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2): 490–495
https://doi.org/10.1073/pnas.1714990116 pmid: 30584091
64 C A Villarroel, W Jonckheere, J M Alba, J J Glas, W Dermauw, M A Haring, T Van Leeuwen, R C Schuurink, M R Kant. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Plant Journal, 2016, 86(2): 119–131
https://doi.org/10.1111/tpj.13152 pmid: 26946468
65 L Jin, X Guo, C Shen, X Hao, P Sun, P Li, T Xu, C Hu, O Rose, H Zhou, M Yang, C F Qin, J Guo, H Peng, M Zhu, G Cheng, X Qi, R Lai. Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-b receptor. Nature Immunology, 2018, 19(4): 342–353
https://doi.org/10.1038/s41590-018-0063-9 pmid: 29507355
66 P Sun, K Nie, Y Zhu, Y Liu, P Wu, Z Liu, S Du, H Fan, C H Chen, R Zhang, P Wang, G Cheng. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nature Communications, 2020, 11(1): 260
https://doi.org/10.1038/s41467-019-14115-z pmid: 31937766
67 S W Fong, R M Kini, L F P Ng. Mosquito saliva reshapes alphavirus infection and immunopathogenesis. Journal of Virology, 2018, 92(12): e01004–17
https://doi.org/10.1128/JVI.01004-17 pmid: 29593049
68 J F van den Heuvel, M Verbeek, F van der Wilk. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology, 1994, 75(10): 2559–2565
https://doi.org/10.1099/0022-1317-75-10-2559 pmid: 7931143
69 S A Filichkin, S Brumfield, T P Filichkin, M J Young. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. Journal of Virology, 1997, 71(1): 569–577
https://doi.org/10.1128/JVI.71.1.569-577.1997 pmid: 8985385
70 S Morin, M Ghanim, M Zeidan, H Czosnek, M Verbeek, J F van den Heuvel. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology, 1999, 256(1): 75–84
https://doi.org/10.1006/viro.1999.9631 pmid: 10087228
71 Y Gottlieb, E Zchori-Fein, N Mozes-Daube, S Kontsedalov, M Skaljac, M Brumin, I Sobol, H Czosnek, F Vavre, F Fleury, M Ghanim. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology, 2010, 84(18): 9310–9317
https://doi.org/10.1128/JVI.00423-10 pmid: 20631135
72 A Kliot, M Cilia, H Czosnek, M Ghanim. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. Journal of Virology, 2014, 88(10): 5652–5660
https://doi.org/10.1128/JVI.00071-14 pmid: 24600010
73 D Jia, Q Mao, Y Chen, Y Liu, Q Chen, W Wu, X Zhang, H Chen, Y Li, T Wei. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nature Microbiology, 2017, 2(5): 17025
https://doi.org/10.1038/nmicrobiol.2017.25 pmid: 28263320
74 W Wu, L Z Huang, Q Z Mao, J Wei, J J Li, Y Zhao, Q Zhang, D S Jia, T Y Wei. Interaction of viral pathogen with porin channels on the outer membrane of insect bacterial symbionts mediates their joint transovarial transmission. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2019, 374(1767): 20180320
75 G Terradas, E A McGraw. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Current Opinion in Insect Science, 2017, 22: 37–44
https://doi.org/10.1016/j.cois.2017.05.005 pmid: 28805637
76 P Wu, P Sun, K X Nie, Y B Zhu, M Y Shi, C G Xiao, H Liu, Q Y Liu, T Y Zhao, X G Chen, H N Zhou, P H Wang, G. ChengA gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe, 2019, 25(1): 101–112. e5
77 J T Gong, Y Li, T P Li, Y Liang, L Hu, D Zhang, C Y Zhou, C Yang, X Zhang, S S Zha, X Z Duan, L A Baton, X Y Hong, A A Hoffmann, Z Xi. Stable introduction of plant-virus-inhibiting wolbachia into planthoppers for rice protection. Current Biology, 2020, 30(24): 4837–4845.e5
https://doi.org/10.1016/j.cub.2020.09.033 pmid: 33035486
78 S Nouri, E E Matsumura, Y W Kuo, B W Falk. Insect-specific viruses: from discovery to potential translational applications. Current Opinion in Virology, 2018, 33: 33–41
https://doi.org/10.1016/j.coviro.2018.07.006 pmid: 30048906
79 G Lu, Z X Ye, Y J He, Y Zhang, X Wang, H J Huang, J C Zhuo, Z T Sun, F Yan, J P Chen, C X Zhang, J M Li. Discovery of two novel negeviruses in a dungfly collected from the arctic. Viruses, 2020, 12(7): 692
https://doi.org/10.3390/v12070692 pmid: 32604989
80 H Romo, J L Kenney, B J Blitvich, A C Brault. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerging Microbes & Infections, 2018, 7(1): 181
https://doi.org/10.1038/s41426-018-0180-4 pmid: 30429457
81 A Baidaliuk, E F Miot, S Lequime, I Moltini-Conclois, F Delaigue, S Dabo, L B Dickson, F Aubry, S H Merkling, V M Cao-Lormeau, L Lambrechts. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. Journal of Virology, 2019, 93(18): e00705–19
https://doi.org/10.1128/JVI.00705-19 pmid: 31243123
82 E I Patterson, J Villinger, J N Muthoni, L Dobel-Ober, G L Hughes. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Current Opinion in Insect Science, 2020, 39: 50–56
https://doi.org/10.1016/j.cois.2020.02.005 pmid: 32278312
83 S Li, S Ge, X Wang, L Sun, Z Liu, Y Zhou. Facilitation of rice stripe virus accumulation in the insect vector by Himetobi P virus VP1. Viruses, 2015, 7(3): 1492–1504
https://doi.org/10.3390/v7031492 pmid: 25807055
84 A E Douglas. Symbiotic microorganisms: untapped resources for insect pest control. Trends in Biotechnology, 2007, 25(8): 338–342
https://doi.org/10.1016/j.tibtech.2007.06.003 pmid: 17576018
85 R G Dietzgen, K S Mann, K N Johnson. Plant virus-insect vector interactions: current and potential future research directions. Viruses, 2016, 8(11): 303
https://doi.org/10.3390/v8110303 pmid: 27834855
86 S A Ford, S L Allen, J R Ohm, L T Sigle, A Sebastian, I Albert, S F Chenoweth, E A McGraw. Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nature Microbiology, 2019, 4(11): 1832–1839
https://doi.org/10.1038/s41564-019-0533-3 pmid: 31451771
87 C H Tan, P J Wong, M I Li, H Yang, L C Ng, S L O’Neill. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg. PLoS Neglected Tropical Diseases, 2017, 11(5): e0005496
https://doi.org/10.1371/journal.pntd.0005496 pmid: 28542240
88 P S Yen, A B A Failloux. Review: Wolbachia-based population replacement for mosquito control shares common points with genetically modified control approaches. Pathogens, 2020, 9(5): 404
https://doi.org/10.3390/pathogens9050404 pmid: 32456036
89 E Chrostek, G D D Hurst, E A McGraw. Infectious diseases: antiviral Wolbachia limits dengue in malaysia. Current Biology, 2020, 30(1): R30–R32
https://doi.org/10.1016/j.cub.2019.11.046 pmid: 31910374
90 H Gao, C Cui, L Wang, M Jacobs-Lorena, S Wang. Mosquito microbiota and implications for disease control. Trends in Parasitology, 2020, 36(2): 98–111
https://doi.org/10.1016/j.pt.2019.12.001 pmid: 31866183
91 S Wang, A L A Dos-Santos, W Huang, K C Liu, M A Oshaghi, G Wei, P Agre, M Jacobs-Lorena. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, 2017, 357(6358): 1399–1402
https://doi.org/10.1126/science.aan5478 pmid: 28963255
92 J L Shane, C L Grogan, C Cwalina, D J Lampe. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nature Communications, 2018, 9(1): 4127
https://doi.org/10.1038/s41467-018-06580-9 pmid: 30297781
93 K M Esvelt, A L Smidler, F Catteruccia, G M Church. Concerning RNA-guided gene drives for the alteration of wild populations. eLife, 2014, 3: e03401
https://doi.org/10.7554/eLife.03401 pmid: 25035423
94 V M Gantz, N Jasinskiene, O Tatarenkova, A Fazekas, V M Macias, E Bier, A A James. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): E6736–E6743
https://doi.org/10.1073/pnas.1521077112 pmid: 26598698
95 G Le Trionnaire, S Tanguy, S Hudaverdian, F Gleonnec, G Richard, B Cayrol, B Monsion, E Pichon, M Deshoux, C Webster, M Uzest, A Herpin, D Tagu. An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. Insect Biochemistry and Molecular Biology, 2019, 110: 34–44
https://doi.org/10.1016/j.ibmb.2019.04.016 pmid: 31015023
96 W H Xue, N Xu, X B Yuan, H H Chen, J L Zhang, S J Fu, C X Zhang, H J Xu. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 2018, 93: 19–26
https://doi.org/10.1016/j.ibmb.2017.12.003 pmid: 29241845
97 C C Heu, F M McCullough, J Luan, J L Rasgon. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci). CRISPR Journal, 2020, 3(2): 89–96
https://doi.org/10.1089/crispr.2019.0067 pmid: 32315225
[1] Zhong WEI, Ville-Petri FRIMAN, Thomas POMMIER, Stefan GEISEN, Alexandre JOUSSET, Qirong SHEN. Rhizosphere immunity: targeting the underground for sustainable plant health management[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 317-328.
[2] Tao WANG, Jiaxin LI, Qian-Hua SHEN. Regulation of NLR stability in plant immunity[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 97-104.
[3] Ying HUANG, Clement Wesley GNANADURAI, Zhenf ang FU. Critical roles of chemokines and cytokines in antiviral innate immune responses during rabies virus infection[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 260-267.
[4] Hong LI,Ziding ZHANG. Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 102-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed