Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2024, Vol. 11 Issue (3) : 409-427    https://doi.org/10.15302/J-FASE-2024558
Greenhouse gas emissions during the COVID-19 pandemic from agriculture in China
Jianing TIAN1, Chuanhui GU1,2(), Yanchao BAI3
1. Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
2. Environmental Research Center, Duke Kunshan University, Kunshan 215311, China
3. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
 Download: PDF(2168 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Methane led China’s growth in net greenhouse gas emissions over the pandemic.

● N2O was linked to fertilizers and waste management.

● CO2 emissions varied by region, calling for tailored mitigation approaches.

● COVID-19 boosted methane from pig farming disruptions.

To study the impact of the COVID-19 pandemic on agricultural carbon emissions in China, the greenhouse gas emissions generated by crop and livestock production, and agricultural material and energy inputs in China from 2019 to 2021 were systematically calculated. It was found that from 2019 to 2021, Net greenhouse gas emissions (NGHGE) from agriculture in China had an increasing trend. Methane emissions ranked first in NGHGE, with an annual proportion exceeding 65% and an increasing annual trend. CH4 emissions were primarily influenced by enteric fermentation and rice production. Nitrous oxide emissions accounted for around 22% of annual NGHGE and decreased from 2019 to 2021. The main sources of N2O emissions were the use of nitrogen fertilizers and manure management. Carbon dioxide emissions accounted for about 18% annually, with diesel and agricultural electricity use contributing to over 60% of CO2 emissions. Soil carbon sequestration represented about a 6.1% lowering of NGHGE. The combined proportion of CH4 emissions from enteric fermentation and rice production accounted for over 50% of total GHG emissions. The changes in NGHGE were mainly caused by disturbance of the livestock industry during the pandemic.

Keywords Agricultural systems      emission factors      greenhouse gases      soil carbon sequestration     
Corresponding Author(s): Chuanhui GU   
Just Accepted Date: 28 April 2024   Online First Date: 17 May 2024    Issue Date: 17 July 2024
 Cite this article:   
Jianing TIAN,Chuanhui GU,Yanchao BAI. Greenhouse gas emissions during the COVID-19 pandemic from agriculture in China[J]. Front. Agr. Sci. Eng. , 2024, 11(3): 409-427.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2024558
https://academic.hep.com.cn/fase/EN/Y2024/V11/I3/409
GHG Carbon sources Emission factor reference Emission factor unit Formula Data composition of the formula
CH4 Rice production Recommended CH4 emission factors in rice field in China regions in 2005[14] kg·ha?1 ECH4,Rpro=EFi×ADi×10?4 ECH4,Rpro: CH4 emission of rice production per 10 kt;EF: emission factor;AD: sowing area per kha;i: rice field types
Enteric fermentation Animal enteric fermentationCH4 emission factors[14] kg per unit per year ECH4,Ent=EFCH4,Ent,j×APj×10?3 ECH4,Ent: CH4 emission of animal enteric fermentation per 10 kt;ECH4,Manu: CH4 emission of manure management per 10 kt;AP: number of standing stocks of livestock production at the end of the year/ten thousand;j: types of livestock, pigs, dairy cattle, non-dairy cattle, goats, sheep, horses, donkeys, mules, camels
Manure management (CH4 emission) Manure managementCH4 emission factors[14] kg per unit per year ECH4,Manu=EFCH4,Manu,j×APj×10?3
CO2 Pesticides 4.9341[14] kg·kg?1 C eqv. ECO2,Pest=MPest×4.9341×44/12 ECO2,Pest: CO2 emission of pesticide usage per 10 kt;MPest: pesticide usage per 10 kt
Plastic mulching 5.18[14] kg·kg?1 C eqv. ECO2,Plastm=MPlastm×5.18×44/12 ECO2,Plastm: CO2 emission of plastic mulching per 10 kt;MPlastm: plastic mulching usage per 10 kt
Agricultural Electricity 2019 annual emission reduction project China regional power grid baseline CO2 emission factors[15] t CO2 per MWh ECO2,Agrielect=MAgrielect×4.77%×EFCO2×10 ECO2,Agrielect: CO2 emission of agricultural electricity per 10 kt;MAgrielect: electricity use in rural area per TWh[16]
Diesel 0.5927[1] kg·kg?1 C eqv. ECO2,Dies=MDies×0.5927×44/12 ECO2,Dies: CO2 emission of diesel usage per 10 kt;MDies: diesel usage per 10 kt
Irrigation 25[17] kg·ha?1 C eqv. ECO2,Irrig=SIrrig×25×44/12×10?4 ECO2,Irrig: CO2 emission of irrigation per 10 kt;SIrrig: irrigation area per kha
N2O Fertilizer Parameters for estimating nitrogen input of crop straw turnover to field[14], the default values of N2O direct emission factor for different regions[14] and nitrogen, phosphorus, potassium ratio of complex fertilizer in different regions[18] kg N2O-N per kg N input EN2O,N-fert=NN-fert×EF EN2O,N-fert: N2O emission of nitrogen fertilizer usage per 10 ktNN-fert: total equivalent nitrogen in nitrogen fertilizer usage per 10 kt
EN2O,C-fert=NC-fert×EF EN2O,C-fert: N2O emission of complex fertilizer usage per 10 ktNC-fert: total nitrogen from complex fertilizer usage per 10 kt
Straw turnover EN2O,Stwto=NStwtok×EFNStwto = NGround field + NUnderground root= (Crop grain yield/Economic coefficient – Crop grain yield) × Straw turnover rate × Nitrogen content in straw+ Crop yield/Economic coefficient × Root shoot ratio × Nitrogen content in straw or rootNSugarcane = (Crop yield – Crop yield × Economic coefficient) × Straw turnover rate × Nitrogen content in straw+ Crop yield × Root shoot ratio × Nitrogen content in straw turnover rateNVegetable = Crop yield × 0.1 × Nitrogen content in straw × Straw turnover rate EN2O,Stwto: N2O emission of straw turnover per 10 ktNStwto: nitrogen content of straw turnover per 10 kt;k: rice, wheat, corn, sorghum, millet, soybean, rapeseed, peanut, sesame, seed cotton, sugar beet, sugarcane, hemp, potato, vegetables, tobacco
Manure return R>1,AAP=(Qnapa365)×TR<1,AAP=(Qpre+Qcur)/2Pfaeces(urine)=AAP×T×qfaeces(urine)/1000EN2O,Manurt=30%(Pfaecesj×rfaeces,Nj%+Purinej×rurine,Nj%)×EF R: off-take rate of livestock including poultry;AAP: average livestock production per year per ten thousand;Qnapa: annual livestock production per ten thousand;Qpre: standing stock of previous year;Qcur: standing stock of current year per ten thousand;T: feeding cycle of livestock per day;P: annual excretion per 10 kt;q: daily excretion per kg;r: nitrogen content of faeces and urine[18]EN2O,Manurt: N2O emission of manure return per 10 kt
Atmospheric deposition 0.01[14] kg N2O-N per kg N input EN2Q,Sed=[NManu×20%+(NN-fert+NC-fert+NStwto)×10%]×0.01 EN2O,Sed: N2O emission of atmospheric deposition per 10 ktNManu: total nitrogen excretion from livestock;NStwto: total nitrogen input of straw turnover;
Nitrogen leaching and runoff 0.0075[14] kg N2O-N per kg N input EN2O,Lea=(NN-fert+NC-fert+NStwto+NManurt)×20%×0.0075 EN2O,Lea: N2O emission of nitrogen leaching and runoff per 10 ktNStwto: total nitrogen input of straw turnover;NManurt: total nitrogen input of manure return
Manure management (N2O emission) Manure management N2O emission factor [14] kg per unit per year EN2O,Manu=EFN2O,Manu,i×APj×10?3 EN2O,Manu: N2O emission of manure management per 10 kt
Tab.1  Accounting ranges and data sources of GHG emissions from agriculture in China
Fig.1  Proportion of GHG emissions and NGHGE from agriculture in China from 2019 to 2021.
Fig.2  Proportion of carbon sources from agriculture in China in 2019 to 2021.
Fig.3  Proportion and total amount of each GHG from different sources from agriculture in China in 2019 to 2021.
Fig.4  Total CH4 emissions and proportion of CH4 emissions from manure management of livestock in China in 2019 to 2021
Region NGHGE(× 106 t C eqv.) Gross agricultural production(× 1011 yuan) Carbon footprint intensity(× 104 t C eqv. per 108 yuan)
2019 2020 2021 2019 2020 2021 2019 2020 2021
Qinghai 8.05 4.13 4.15 0.181 0.189 0.205 4.44 2.19↓ 2.03↓
Xizang 3.81 4.26 4.40 0.0949 0.104 0.115 4.01 4.10↑ 3.82↓
Shanghai 1.54 1.52 1.50 0.146 0.138 0.145 1.06 1.10↑ 1.03↓
Jilin 7.12 7.02 7.24 1.01 1.23 1.30 0.70 0.57↓ 0.56↓
Inner Mongolia 10.2 9.52 10.0 1.61 1.70 1.88 0.64 0.56↓ 0.53↓
Ningxia 1.67 1.68 2.10 0.331 0.398 0.413 0.50 0.42↓ 0.51↑
Jiangxi 7.43 8.23 7.95 1.62 1.69 1.80 0.46 0.49 0.44↓
Heilongjiang 16.8 16.4 17.2 3.77 4.04 4.10 0.44 0.41↓ 0.42↑
Gansu 5.59 6.10 6.31 1.31 1.43 1.62 0.43 0.43 0.39↓
Hunan 12.3 13.0 13.3 3.05 3.36 3.53 0.40 0.34↓ 0.38↑
Guangdong 12.0 11.8 11.8 3.53 3.77 3.95 0.34 0.31↓ 0.30↓
Anhui 7.85 8.07 8.11 2.37 2.53 2.80 0.33 0.32↓ 0.29↓
Zhejiang 5.15 5.35 4.53 1.60 1.59 1.70 0.32 0.34↑ 0.27↓
Yunnan 8.65 8.77 8.94 2.68 2.90 3.44 0.32 0.30↓ 0.26↑
Xinjiang 8.11 7.17 9.17 2.62 2.94 3.49 0.31 0.24↓ 0.26↓
Liaoning 5.42 5.90 5.60 1.91 2.06 2.22 0.28 0.29↑ 0.25↓
Guangxi 8.17 8.48 8.06 3.10 3.27 3.69 0.26 0.26 0.22↓
Sichuan 11.2 11.8 11.7 4.40 4.70 5.09 0.26 0.25↓ 0.23↓
Shanxi 2.33 3.07 2.64 0.937 1.08 1.22 0.25 0.29 0.22↓
Tianjin 0.497 0.489 0.589 0.203 0.229 0.258 0.25 0.21↓ 0.23↑
Hainan 1.95 2.14 1.58 0.82 0.875 1.05 0.24 0.25↑ 0.15↓
Hubei 7.73 7.66 8.15 3.26 3.49 3.91 0.24 0.22↓ 0.21↓
Jiangsu 9.04 9.53 9.69 3.83 4.10 4.43 0.24 0.23↓ 0.22
Fujian 3.81 3.87 3.90 1.77 1.82 1.91 0.21 0.21 0.20↓
Chongqing 2.94 3.18 3.17 1.40 1.60 1.76 0.21 0.20↓ 0.18↓
Hebei 6.37 6.59 6.91 3.11 3.41 3.65 0.20 0.19↓ 0.19
Beijing 0.197 0.224 0.230 0.102 0.108 0.123 0.19 0.21↑ 0.19↓
Guizhou 4.33 4.53 4.45 2.54 2.78 3.12 0.17 0.16↓ 0.14↓
Henan 8.58 8.55 8.91 5.41 6.24 6.56 0.16 0.14↓ 0.14
Shandong 7.15 6.80 6.61 4.91 5.17 5.81 0.15 0.13↓ 0.11↓
Shaanxi 2.86 3.37 2.91 2.45 2.81 3.04 0.12 0.12 0.10↓
Total 199 199 202 66.1 71.8 78.3 0.30 0.28↓ 0.26↓
Tab.2  NGHGE and carbon footprint intensity in agriculture in China
Fig.5  Proportion of different GHG emission sources from agriculture for the top four NGHGE provinces in China in 2020. (a) Heilongjiang, (b) Guangdong, (c) Hunan, and (d) Sichuan.
Region CH4 emission(× 107 t CO2 eqv.) CO2 emission(× 106 t CO2 eqv.) N2O emission(× 106 t CO2 eqv.) GHG emission(× 107t CO2 eqv.)
2019 2020 2021 2019 2020 2021 2019 2020 2021 2019 2020 2021
Henan 2.26 2.41 2.54 8.43 6.67 6.70 12.4 12.5 12.5 4.34 4.32 4.46
Hubei 2.30 2.23 2.47 4.28 4.22 4.17 8.11 8.78 8.32 3.54 3.53 3.71
Hunan 4.10 4.40 4.49 4.48 4.41 4.18 8.17 7.81 8.60 5.37 5.63 5.77
Guangdong 2.62 2.56 2.60 9.46 9.45 9.05 8.80 8.79 8.64 4.45 4.39 4.37
Guangxi 2.06 2.17 2.09 3.53 3.58 3.75 9.97 10.1 9.23 3.41 3.54 3.38
Hunan 0.296 0.519 0.316 1.12 1.22 1.23 3.02 1.41 1.36 0.709 0.782 0.574
Shandong 1.53 1.45 1.45 9.06 8.71 8.64 9.98 9.77 9.23 3.43 3.30 3.23
Jiangsu 1.76 1.89 1.95 11.8 12.0 12.1 7.64 7.90 7.83 3.70 3.88 3.94
Shanghai 0.0832 0.0816 0.0883 4.56 4.49 4.37 0.244 0.245 0.216 0.563 0.555 0.547
Zhejiang 0.760 0.836 0.832 9.24 9.23 6.62 2.50 2.46 2.10 1.93 2.01 1.70
Anhui 1.99 2.08 2.11 4.79 4.73 5.14 7.72 7.74 7.17 3.24 3.32 3.34
Fujian 0.563 0.603 0.624 4.76 4.65 4.64 3.96 3.90 3.80 1.43 1.46 1.47
Jiangxi 2.64 2.95 2.83 2.88 2.74 2.88 4.04 4.23 4.27 3.34 3.64 3.54
Guizhou 1.34 1.41 1.36 1.26 1.29 1.46 3.61 3.62 3.56 1.83 1.90 1.86
Yunnan 2.43 2.47 2.56 3.73 3.65 3.69 8.61 8.73 8.48 3.66 3.71 3.77
Xizang 1.19 1.24 1.29 1.63 1.63 1.63 0.440 1.66 1.67 1.40 1.57 1.62
Chongqing 0.657 0.719 0.713 1.53 1.52 1.52 2.71 2.94 2.98 1.08 1.16 1.16
Sichuan 3.03 3.22 3.19 4.25 4.25 4.28 9.97 10.0 9.93 4.45 4.64 4.61
Beijing 0.0177 0.0209 0.0245 0.418 0.425 0.414 0.111 0.140 0.161 0.0706 0.0773 0.0820
Tianjin 0.106 0.0945 0.127 0.319 0.401 0.421 0.440 0.446 0.464 0.182 0.179 0.216
Hebei 1.026 0.959 1.16 8.59 8.63 8.48 5.33 6.14 6.11 2.42 2.44 2.62
Shanxi 0.493 0.766 0.565 2.09 2.11 2.33 2.38 2.37 2.58 0.94 1.21 1.06
Inner Mongolia 2.91 2.74 2.84 4.12 4.12 4.38 7.25 6.48 6.98 4.05 3.80 3.98
Liaoning 0.904 1.08 0.967 3.86 3.77 3.81 5.02 5.06 5.05 1.79 1.97 1.85
Jilin 1.06 1.04 1.13 3.12 3.13 3.21 6.62 6.43 6.23 2.03 1.99 2.07
Heilongjiang 2.87 2.71 2.99 5.07 5.03 4.91 8.09 8.27 8.51 4.19 4.04 4.33
Xinjiang 1.87 1.94 2.18 7.60 3.49 8.22 5.29 5.27 5.49 3.16 2.82 3.56
Ningxia 0.450 0.461 0.596 0.807 0.810 0.821 1.04 0.995 1.17 0.635 0.642 0.795
Gansu 1.24 1.47 1.44 3.99 4.26 4.28 2.62 2.95 2.86 1.90 2.19 2.15
Shaanxi 0.590 0.610 0.611 3.26 3.20 3.27 3.69 3.70 3.69 1.29 1.30 1.31
Qinghai 2.78 1.33 1.32 0.315 0.308 0.323 1.31 1.55 1.55 2.94 1.51 1.51
Total 47.9 48.5 49.5 134 128 131 161 162 161 77.5 77.5 78.6
Tab.3  GHG emissions from agriculture in China in 2019 to 2021
Fig.6  The original characteristics of CH4 emission in Hunan (a), Inner Mongolia, Heilongjiang, and Sichuan (b) from 2019 to 2021.
Fig.7  Proportion of different N2O emission sources of top four N2O regions in China agriculture in 2020. (a) Henan, (b) Guangxi, (c) Sichuan, and (d) Shandong.
Fig.8  Proportion of different CO2 emission sources from agriculture in 10 regions of China with the greatest CO2 emissions in 2020.
Region CF from pigs(t per head) CF from cattle(t per head) Region CF from pigs(t per head) CF from cows(t per head)
Henan 0.1054 0.5835 Chongqing 0.0713 0.5290
Hubei 0.0964 0.4915 Sichuan 0.0653 0.4923
Hunan 0.0941 0.5247 Beijing 0.1605 0.4903
Guangdong 0.0824 0.5226 Tianjin 0.0739 0.4914
Guangxi 0.0946 0.5180 Hebei 0.0534 0.4416
Hainan 0.1116 0.8909 Shanxi 0.0632 0.7951
Shandong 0.0952 0.4951 Inner Mongolia 0.0637 0.5040
Jiangsu 0.0823 0.5482 Liaoning 0.0394 0.5747
Shanghai 0.0925 0.4644 Jilin 0.0452 0.4805
Zhejiang 0.1027 0.6925 Heilongjiang 0.0508 0.4709
Anhui 0.0722 0.5268 Xinjiang 0.0446 0.4835
Fujian 0.0771 0.5114 Ningxia 0.0543 0.5147
Jiangxi 0.0774 0.5829 Gansu 0.0557 0.5372
Guizhou 0.0774 0.4960 Shaanxi 0.0514 0.5298
Yunnan 0.0851 0.4904 Qinghai 0.0948 0.5243
Xizang 0.0631 0.4834
Tab.4  Carbon footprint from pigs and cattle in agriculture in China
1 Panel on Climate Change (IPCC) Intergovernmental . Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. In: Land–Climate Interactions. IPCC, 2019
2 Y, Tian B, Li J B Zhang . Research on stage characteristics and factor decomposition of agricultural land carbon emission in China. Journal of China University of Geosciences (Social Sciences Edition), 2011, 11(1): 59–63 (in Chinese)
3 J, Fargione J, Hill D, Tilman S, Polasky P Hawthorne . Land clearing and the biofuel carbon debt. Science, 2008, 319(5867): 1235–1238
https://doi.org/10.1126/science.1152747
4 C B M, Arevalo J S, Bhatti S X, Chang D Sidders . Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agriculture, Ecosystems & Environment, 2011, 141(3−4): 342–349
https://doi.org/10.1016/j.agee.2011.03.013
5 G Z, Li Z Z Li . Carbon emissions decomposition analysis on agricultural energy consumption—Based LMDI model. Journal of Agrotechnical Economics, 2010, 10: 66−72 (in Chinese)
6 M H, Zhuang X, Lu D, Caro J, Gao J, Zhang B, Cullen Q W Li . Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: magnitude, trends and spatiotemporal patterns. Journal of Environmental Management, 2019, 242: 40–45
https://doi.org/10.1016/j.jenvman.2019.04.079
7 J B, Zhou M M, Jiang G Q Chen . Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy, 2007, 35(7): 3759–3767
https://doi.org/10.1016/j.enpol.2007.01.013
8 G F, Wang P, Liu J M, Hu F Zhang . Agriculture-induced N2O emissions and reduction strategies in China. International Journal of Environmental Research and Public Health, 2022, 19(19): 12193
https://doi.org/10.3390/ijerph191912193
9 H P, Duan Y, Zhang J B, Zhao X M Bian . Carbon footprint analysis of farmland ecosystem in China. Journal of Soil and Water Conservation, 2011, 25(5): 203−208 (in Chinese)
10 S M M, Islam Y K, Gaihre M R, Islam M N, Ahmed M, Akter U, Singh B O Sander . Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Journal of Environmental Management, 2022, 307: 114520
https://doi.org/10.1016/j.jenvman.2022.114520
11 X Q, Huang X C, Xu Q Q, Wang L, Zhang X, Gao L H Chen . Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. International Journal of Environmental Research and Public Health, 2019, 16(17): 3105
https://doi.org/10.3390/ijerph16173105
12 S M M, Islam Y K, Gaihre M R, Islam M, Akter A A, Mahmud U, Singh B O Sander . Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Science of the Total Environment, 2020, 734: 139382
https://doi.org/10.1016/j.scitotenv.2020.139382
13 World Meteorological Organization (WMO). United in Science 2020. Switzerland: WMO, 2020. Available at WMO website on September 9, 2020
14 Centre for Climate Change Strategy and International Cooperation (NCSC) National . Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (Trial). China: NCSC, 2021. Available at NCSC website on March 26, 2021
15 of Ecology and Environment of the People’s Republic of China (MEE) Ministry . Emission Factors of China’s Regional Power Grid Baseline for 2019 Emission Reduction Project. China: MEE, 2020. Available at MEE website on December 29, 2020
16 of China (EOC) Encyclopedia . Rural Electricity Consumption. China: EOC, 2021. Available at EOC website on November 23, 2023
17 A, Dubey R Lal . Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. Journal of Crop Improvement, 2009, 23(4): 332–350
https://doi.org/10.1080/15427520902969906
18 S T, Li J Y Jin . Characteristics of nutrients input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011, 44(20): 4207−4229 (in Chinese)
19 National Agricultural Technology Extension and Service Center. Soil Basic Nutrient Data Set for Soil Testing and Formulated Fertilization (2005–2014). Beijing: China Agriculture Press, 2015 (in Chinese)
20 H Y, Zuo B, Zhang Z H, Huang K X, Wei H, Zhu J Q Tan . Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. Energy, 2021, 238(Part B): 121854
21 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: the Physical Science Basis. In: Supplementary Material. IPCC, 2021
22 Y H, Gao A C Serrenho . Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nature Food, 2023, 4(2): 170–178
https://doi.org/10.1038/s43016-023-00698-w
23 J Q, Hou C Z, Yu Y, Xu H, Li A D, Cai M Y, Ye Z F, Ma G N, Cui J Zhu . Reimagining carbon emission mitigation in sustainable agriculture: uncovering farmers’ propensity for straw recycling. Frontiers in Sustainable Food Systems, 2023, 7: 1288763
https://doi.org/10.3389/fsufs.2023.1288763
24 D, Zhang J B, Shen F S, Zhang Y E, Li W F Zhang . Carbon footprint of grain production in China. Scientific Reports, 2017, 7(1): 4126
https://doi.org/10.1038/s41598-017-04182-x
25 Z Y, Fan X B, Qi L L, Zeng F Wu . Accounting of greenhouse gas emissions in Chinese agricultural system from 1980 to 2020. Acta Ecologica Sinica, 2022, 42(23): 9470−9482 (in Chinese)
26 Y, Tian J B Zhang . Regional differentiation research on net carbon effect of agricultural production in China. Journal of Natural Resources, 2013, 28(8): 1298−1309 (in Chinese)
[1] Zhiping ZHU, Yue WANG, Ting YAN, Zherui ZHANG, Shunli WANG, Hongmin DONG. GREENHOUSE GAS EMISSIONS FROM LIVESTOCK IN CHINA AND MITIGATION OPTIONS WITHIN THE CONTEXT OF CARBON NEUTRALITY[J]. Front. Agr. Sci. Eng. , 2023, 10(2): 226-233.
[2] Ranran ZHOU, Jing TIAN, Zhengling CUI, Fusuo ZHANG. MICROBIAL NECROMASS WITHIN AGGREGATES STABILIZES PHYSICALLY-PROTECTED C RESPONSE TO CROPLAND MANAGEMENT[J]. Front. Agr. Sci. Eng. , 2023, 10(2): 198-209.
[3] Jianlin SHEN, Yong LI, Yi WANG, Yanyan LI, Xiao ZHU, Wenqian JIANG, Yuyuan LI, Jinshui WU. SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 407-424.
[4] Rattan LAL. Managing soil quality for humanity and the planet[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 251-253.
[5] Ming LANG, Rui YU, Yongqing MA, Wei ZHANG, Christopher S. P. McErlean. Extracts from cotton over the whole growing season induce Orobanche cumana (sunflower broomrape) germination with significant cultivar interactions[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 228-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed