Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2024, Vol. 11 Issue (3) : 499-513    https://doi.org/10.15302/J-FASE-2024559
Isolation, characterization and identification of plant growth-promoting rhizobacteria from the rhizosphere of Acacia mangium at sandy BRIS soil
Zakiah MUSTAPHA1(), Radziah OTHMAN2, Nik Nurnaeimah NIK MUHAMMAD NASIR1, Dhiya Dalila ZAWAWI1, Mohd Khairi CHE LAH3, Hafizan JUAHIR1()
1. School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
2. Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3. Faculty of Plantation and Agrotechnology, Universiti Technologi MARA Cawangan Pahang, 26400 Jengka, Pahang, Malaysia
 Download: PDF(3663 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Isolation of potential PGPR from rhizosphere sandy BRIS soil of Acacia mangium .

● The isolated rhizobacteria showed significantly varied growth in organic molasses medium supplemented with KNO3.

● The ability to fix atmospheric N2, solubilize P and K, produce IAA and siderophores varied differently for single and mixed strains of the isolated rhizobacteria.

● The single or mixed strains of rhizobacteria had a significant effect on corn phenology, growth and yield.

● Identification of the isolated rhizobacteria at the molecular level.

This study has isolated, characterized, and identified potential plant growth-promoting rhizobacteria (PGPR) with multiple PGP characteristics (N2-fixation, P- and K-solubilization, IAA, and siderophores production) from the rhizosphere BRIS soil of Acacia mangium. A total of 24 pure colonies were isolated and only 8 colonies were selected for further evaluation of the growth rate in 5% organic molasses medium supplemented with 2% KNO3. Based on the biochemical, potential PGP characteristics and growth performance, 3 superior PGPR strains were selected and identified as Paraburkholderia unamae (UA1), Bacillus amyloliquefaciens (UA6), and Enterobacter asburiae (UAA2) by partial sequencing of the 16S rRNA gene. The selected bacterial strains either in single or mixed (UA1 + UA6 + UAA2) cultures have shown a significant biochemical estimation of the PGP characteristics. Each strain has its own PGPR traits superiority with UA1 showing the best PGP characteristic followed by UA6 and UAA2. The use of mixed bacterial strains was beneficial as it showed the best performance in N2-fixation, siderophores production, and significant effect on corn phenology, growth and yield compared to using a single strain. These types of microbes showed potential to be used as biofertilizer and should be exploited more.

Keywords Biofertilizer      corn      organic molasses me- dium      PGP characteristic      phytohormone      potassium nitrate      siderophores     
Corresponding Author(s): Zakiah MUSTAPHA,Hafizan JUAHIR   
Just Accepted Date: 28 April 2024   Online First Date: 30 May 2024    Issue Date: 17 July 2024
 Cite this article:   
Zakiah MUSTAPHA,Radziah OTHMAN,Nik Nurnaeimah NIK MUHAMMAD NASIR, et al. Isolation, characterization and identification of plant growth-promoting rhizobacteria from the rhizosphere of Acacia mangium at sandy BRIS soil[J]. Front. Agr. Sci. Eng. , 2024, 11(3): 499-513.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2024559
https://academic.hep.com.cn/fase/EN/Y2024/V11/I3/499
Location Coordinate Colony count (CFU·g–1)
Aerobic Anaerobic
Point 1 5°45′26.4′′ N 102°37′21.3′′ E 1.06 × 106 ± 0.88c 1.16 × 106 ± 3.18c
Point 2 5°45′43.7′′ N 102°37′29.7′′ E 9.67 × 105 ± 0.58bc 1.01 × 106 ± 0.88bc
Point 3 5°45′32.1′′ N 102°8′18.4′′ E 8.00 × 105 ± 1.00ab 7.00 × 105 ± 0.58a
Tab.1  Bacterial count from three different rhizospheric soil of Acacia mangium at BRIS soil
Isolates Gram reaction Size Shape Color Catalase Nitrate reduction Indole Urease Ammonia Nitrogenfixation Phosphatesolubilization Potassiumsolubilization Siderophores production
UA1 Pinpoint Round Creamy white + + + + + + +++ +++ ++
UA2 Pinpoint Round Creamy white + + + + + + ++ ++ ++
UA3 + Moderate Rod Creamy white + + + + + + + ++
UA4 + Large Rod Creamy white + + + + + + + + ++
UA5 + Large Rod Creamy white + + + + + + ++ ++ +++
UA6 + Large Rod Creamy white + + + + + + ++ ++ +++
UAA1 Small Rod Red + + + + ++ +++
UAA2 Small Rod Creamy white + + + + ++ +++ +++
Tab.2  Morphological and biochemical characterization of selected eight isolates of BRIS soil rhizobacteria
Fig.1  Growth of bacterial isolates in 5% molasses medium supplemented with 2% KNO3 at 5 days after incubation. Mean with the same letters are not significantly different at p < 0.05 Tukey’s multiple comparisons, n = 3. Bar indicates the standard error of the treatment’s mean.
PGPR traits Unit Control UA1 UA6 UAA2 Mixed strain(UA1 + UA6 + UAA2)
BNF nmol·mL–1·h–1 0.0±0.00a 17.1±1.20b 18.6±0.48bc 17.0±0.65b 21.6±0.70c
P-solubilization pH (day 6) 5.9±0.00e 5.8±0.00c 5.9±0.02d 5.8±0.01c 5.9±0.00e
pH (day 12) 6.0±0.00e 5.4±0.01a 5.6±0.01b 5.0±0.01 5.5±0.00b
μg·mL–1 (day 6) 0.0±0.00a 45.8±2.08cd 29.1±2.65b 43.4±2.18abc 41.1±4.54abc
μg·mL–1 (day 12) 0.0±0.00a 54.4±4.23d 32.0±2.38bc 49.1±2.97d 43.9±3.72cd
K-solubilization mg·L–1 0.0±0.00a 17.5±0.49d 11.6±0.52b 12.3±0.66b 15.2±0.17c
IRCs (IAA) production μg·mL–1 0.0±0.00a 17.3±0.33e 13.5±0.24c 9.9±0.48b 15.8±0.25d
Siderophores production % 0.0±0.00a 14.7±2.32b 31.7±2.32b 20.3±1.34c 43.0±2.66d
Tab.3  Estimation of PGPR characteristics isolated from BRIS soil
Treatment Emergence(day) Tasseling(day) Maturity(day) Plant height(m) Leaf no. of plant Cob length(cm) Grain yield(t·ha–1) Total biomass(t·ha–1) Harvest index
T1 11.00b 57.10d 107.67a 2.21a 13.08a 20.34a 2.49a 4.36a 57.11a
T2 8.50a 53.00bc 115.08b 2.20a 14.33b 22.18b 2.97bc 4.74ab 62.64ab
T3 8.00a 51.75ab 121.50c 2.28a 14.83b 23.69c 3.09bc 4.88b 63.57b
T4 8.40a 53.67c 116.75b 2.19a 14.42b 21.79b 2.86b 4.83ab 59.25ab
T5 7.90a 50.91a 122.83c 2.21a 15.33b 24.49d 3.17c 5.02b 63.77b
Tab.4  Mean values of corn phenology, growth and yield parameters as affected by different treatments of BRIS soil PGPR
Fig.2  Phylogenetic tree of (a) UA1, (b) UA6, and (c) UAA2 based on the 16S rRNA sequences of the selected strains and related bacteria.
Isolates 16S rRNA fragment length (bp) Closest relatives in NCBI NCBI accession number Similarity (%)
UA 1 1337 Paraburkholderia unamae strain CATux-40 HQ023248.1 99
UA 6 1351 Bacillus amyloliquefaciens strain RD7-7 CP016913.1 100
UAA 2 1406 Enterobacter asburiae strain ENIPBJ-CG1 CP014993.1 99
Tab.5  Molecular bacterial identification using 16S rRNA gene sequences
1 T T H, Hoang T C, Phan M T, Hoang C, Wen B Richard . Sandy soils in South Central Coastal Vietnam: Their Origin, Constraints and Management. Australia: 19th World Congress of Soil Science, Soil Solutions for a Changing World, 2010
2 U M, Ishaq B, Umara Armanto H M, Edi M A Adzemi . Assessment and evaluation of BRIS soil and its implication on maize crop in Merang-Terengganu Region of Malaysia. Journal of Biology, Agriculture and Healthcare, 2014, 4(5): 69–76
3 R D, Barrett D Schluter . Adaptation from standing genetic variation. Trends in Ecology & Evolution, 2008, 23(1): 38–44
https://doi.org/10.1016/j.tree.2007.09.008
4 F, Schreiber S, Littmann G, Lavik S, Escrig A, Meibom M M M, Kuypers M Ackermann . Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nature Microbiology, 2016, 1(6): 16055
https://doi.org/10.1038/nmicrobiol.2016.55
5 M K, Michailides A G, Tekerlekopoulou C S, Akratos S, Coles S, Pavlou D V Vayenas . Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. Journal of Hazardous Materials, 2015, 281: 95–105
https://doi.org/10.1016/j.jhazmat.2014.08.004
6 Z X, Quan Y S, Jin C R, Yin J J, Lee S T Lee . Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresource Technology, 2005, 96(15): 1690–1695
https://doi.org/10.1016/j.biortech.2004.12.033
7 P J, Sarlin R Philip . A molasses based fermentation medium for marine yeast biomass production. International Journal of Material Science, 2013, 2(2): 39–44
8 T, Higa J F Parr . Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment. Vol. 1. Atami: International Nature Farming Research Center, 1994
9 John G H, Kreig N R, Smeath H A P, Staley J T, Williams S T. Bergey’s Manual of Determinative of Bacteriology, 9th ed. Baltimore: Williams and Wilkins, 1994
10 S, Hara Y, Hashidoko R V, Desyatkin R, Hatano S Tahara . High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with Gellan gum. Applied and Environmental Microbiology, 2009, 75(9): 2811–2819
https://doi.org/10.1128/AEM.02660-08
11 P C, Monokoane S B, Mekbib L Haiying . Isolation, molecular characterization and growth-promoting activity of free living diazotrophs screened from soils of Lesotho. Academia Journal of Agricultural Research, 2016, 4(2): 45–52
12 P, Tallapragada U Seshachala . Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turkish Journal of Biology, 2012, 36(1): 25–35
https://doi.org/10.3906/biy-1012-160
13 G P, Kumar S, Desai L D A, Emmanuel M H A, Shaik G Reddy . Plant growth-promoting Pseudomonas spp. from diverse agro-ecosystems of India for Sorghum bicolor. Journal of Agricultural Science and Food Research, 2012, (Special Issue): 1–8
14 P, Parmar S Sindhu . Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, 2013, 3(1): 25–31
15 S, Gang S, Sharma M, Saraf M, Buck J Schumacher . Analysis of indole-3-acetic Acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol, 2019, 9(9): e3230
https://doi.org/10.21769/BioProtoc.3230
16 B, Schwyn J B Neilands . Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47–56
https://doi.org/10.1016/0003-2697(87)90612-9
17 D, Rachid A Bensoltane . Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 2005, 4(7): 697−702
18 S, Gu W, Wan Z, Shao W Zhong . High-throughput method for detecting siderophore production by rhizosphere bacteria. Bio-Protocol, 2021, 11(9): e4001
https://doi.org/10.21769/BioProtoc.4001
19 B G Hall . Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5): 1229–1235
https://doi.org/10.1093/molbev/mst012
20 Y T, Lin K, Jangid W B, Whitman D C, Coleman C Y Chiu . Change in bacterial community structure in response to disturbance of natural hardwood and secondary coniferous forest soils in central Taiwan. Microbial Ecology, 2011, 61(2): 429–437
https://doi.org/10.1007/s00248-010-9748-9
21 V, Tardy O, Mathieu P A, Maron A Spor . Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology & Biochemistry, 2015, 90: 204–213
https://doi.org/10.1016/j.soilbio.2015.08.010
22 A, Ratnakar Shikha. Assessment of co-contamination in soil samples from agricultural areas in and around Lucknow City, Uttar Pradesh, India. Current Science, 2018, 115(12): 2267–2274
https://doi.org/10.18520/cs/v115/i12/2267-2274
23 P, Marschner C H, Yang R, Lieberei D E Crowley . Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology & Biochemistry, 2001, 33(11): 1437–1445
https://doi.org/10.1016/S0038-0717(01)00052-9
24 J S, Buyer D P, Roberts E Russek-Cohen . Soil and plant effects on microbial community structure. Canadian Journal of Microbiology, 2002, 48(11): 955–964
https://doi.org/10.1139/w02-095
25 J H, Lee T K, Wood J Lee . Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 2015, 23(11): 707–718
https://doi.org/10.1016/j.tim.2015.08.001
26 D, Ren R, Zuo T K Wood . Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 66(6): 689−695
27 R, Çakmakçi Y, Ertürk A, Varmazyari A, Atasever R, Kotan M, Erat lmaz K, Türky R, Sekban A Haznedar . The Effect of Mixed Cultures of Plant Growth Promoting Bacteria and Mineral Fertilizers on Tea (Camellia sinensis L.) Growth, Yield, Nutrient Uptake, and Enzyme Activities. In: Proceedings of the International Soil Science Congress “Soil Science in International Year of Soils 2015. Russia: Sochi, 2015, 67–71
28 H, Fujikawa M Z Sakha . Prediction of competitive microbial growth in mixed culture at dynamic temperature patterns. Biocontrol Science, 2014, 19(3): 121–127
https://doi.org/10.4265/bio.19.121
29 I, Watanabe W L, Barraquio Guzman M R, De D A Cabrera . Nitrogen-fixing (acetylene redution) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Applied and Environmental Microbiology, 1979, 37(5): 813–819
https://doi.org/10.1128/aem.37.5.813-819.1979
30 H, Różycki H, Dahm E, Strzelczyk C Y Li . Diazotrophic bacteria in root free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Applied Soil Ecology, 1999, 12(3): 239–250
https://doi.org/10.1016/S0929-1393(99)00008-6
31 F, Balouei H Z, Jaafar A M, Khalatbari F, Aslani R Othman . Rhizobacteria acts as bioenhancer for growth of soybean (Glycine Max (L.) Merr.) under growth chamber condition. Bangladesh Journal of Botany, 2017, 46(1): 311–316
32 U A, Naher O, Radziah Z H, Shamsuddin M S, Halimi Razi I Mohd . Isolation of diazotrophs from different soils of Tanjong Karang rice growing area in Malaysia. International Journal of Agriculture and Biology, 2009, 11(5): 547–552
33 E, Pérez M, Sulbaran M M, Ball L A Yarzabal . Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology & Biochemistry, 2007, 39(11): 2905–2914
https://doi.org/10.1016/j.soilbio.2007.06.017
34 K S, Yadav K R Dadarwal . Phosphate solubilization and mobilization through soil microorganisms. In: Dadarwal K R, ed. Biotechnological Approaches in Soil Microorganisms for Sustainable Crop Production. Jodhpur: Scientific Publishers, 1997, 293–308
35 I R, Sitepu Y, Hashidoko E, Santoso S Tahara . Potent Phosphate-Solubilizing Bacteria Isolated from Dipterocarps Grown in Peat Swamp Forest in Central Kalimantan and Their Possible Utilization for Biorehabilitation of Degraded Peatland. In: Proceedings of the International Symposium and Workshop on Tropical Peatland. Indonesia: Yogyakarta, 2007, 27–29
36 H S, Han K D Lee . Phosphate and potassium-solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 2005, 1(2): 176–180
37 B, Lian P Q, Fu D, Mo C Q Liu . A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sinica, 2002, 22: 179–183
38 Y, Liu L, Feng H, Hu G, Jiang Z, Cai Y Deng . Phosphorus release from low-grade rock phosphates by low molecular weight organic acids. Journal of Food Agriculture and Environment, 2012, 10(1): 1001–1007
39 S, Spaepen J Vanderleyden . Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 2011, 3(4): a001438
https://doi.org/10.1101/cshperspect.a001438
40 M V S, Rajawat S, Singh A K Saxena . A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures. Indian Journal of Experimental Biology, 2014, 52(3): 261–266
41 P, Sugumaran B Janarthanam . Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Sciences, 2007, 3(3): 350–355
42 S, Spaepen J, Vanderleyden R Remans . Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 2007, 31(4): 425–448
https://doi.org/10.1111/j.1574-6976.2007.00072.x
43 Júnior R F, Galdiano E A N, Pedrinho T C L, Castellane E G M Lemos . Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciência do Solo, 2011, 35(3): 729–737
44 J K Vessey . Plant growth-promoting rhizobacteria as biofertilizer. Plant and Soil, 2003, 255(2): 571–586
https://doi.org/10.1023/A:1026037216893
45 J, Morrissey M L Guerinot . Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews, 2009, 109(10): 4553–4567
https://doi.org/10.1021/cr900112r
46 S S, Shaikh S J, Wani R Z Sayyed . Statistical-based optimization and scale-up of siderophore production process on laboratory bioreactor. 3 Biotech, 2016, 6(69): 1–10
47 P, Singh P K, Chauhan S K, Upadhyay R K, Singh P, Dwivedi J, Wang D, Jain M Jiang . Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in Microbiology, 2022, 13: 898979
https://doi.org/10.3389/fmicb.2022.898979
48 J, Caballero-Mellado J, Onofre-Lemus Los Santos P, Estrada-de L Martínez-Aguilar . The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, 2007, 73(16): 5308–5319
https://doi.org/10.1128/AEM.00324-07
49 L, Chen Z, Hao K, Li Y, Sha E, Wang X, Sui G, Mi C, Tian W Chen . Effects of growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microbial Biotechnology, 2021, 14(2): 535–550
https://doi.org/10.1111/1751-7915.13693
50 R Z, Jia J, Gu C F, Tian C X, Man E T, Wang W X Chen . Screening of high effective Alfalfa rhizobial strains with a comprehensive protocol. Annals of Microbiology, 2008, 58(4): 731–739
https://doi.org/10.1007/BF03175583
51 C, Dorta R, Cruz Oliva-Neto P, de D J Moura . Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Journal of Industrial Microbiology & Biotechnology, 2006, 33(12): 1003–1009
https://doi.org/10.1007/s10295-006-0152-x
52 J, Wichern F, Wichern R G Joergensen . Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 2006, 137(1−2): 100–108
https://doi.org/10.1016/j.geoderma.2006.08.001
53 R, Ghosh S, Barman R, Mukherjee N C Mandal . Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research, 2016, 183: 80–91
https://doi.org/10.1016/j.micres.2015.11.011
54 S P, Chowdhury A, Hartmann X, Gao R Borriss . Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Frontiers in Microbiology, 2015, 6: 780
https://doi.org/10.3389/fmicb.2015.00780
55 J, Ahn V M Balasubramaniam . Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Journal of Microbiology and Biotechnology, 2007, 17(3): 524–529
56 I, Mahdi N, Fahsi M, Hafidi A, Allaoui L Biskri . Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa Willd. Microorganisms, 2020, 8(6): 948
https://doi.org/10.3390/microorganisms8060948
[1] Jinzhi HUANG, Xiaoting YAN, Zhen LIU, Mengyi WANG, Yangyang HU, Zhenyu LI, Minsong LIN, Yiqing YAO. METAGENOMICS COMBINED WITH HIGH-THROUGHPUT SEQUENCING REVEALS THE METHANOGENIC POTENTIAL OF FRESH CORN STRAW UNDER THERMOPHILIC AND HIGH OLR[J]. Front. Agr. Sci. Eng. , 2023, 10(3): 403-423.
[2] Hui LIU, Qian LIU, Xiuhua GAO, Xiangdong FU. ROLE OF NITROGEN SENSING AND ITS INTEGRATIVE SIGNALING PATHWAYS IN SHAPING ROOT SYSTEM ARCHITECTURE[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 316-332.
[3] Yinglin JI, Mingyang XU, Aide WANG. RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 314-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed