Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (2) : 165-171    https://doi.org/10.15302/J-FASE-2017145
RESEARCH ARTICLE
Influence of sprinkler irrigation droplet diameter, application intensity and specific power on flower damage
Yisheng ZHANG1, Delan ZHU1,2()
1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
2. Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China
 Download: PDF(715 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To determine the main parameters of droplet strike damage and avoid flower injury due to the unsuitable practices during sprinkler irrigation, an indoor experiment of irrigation droplet impact on cyclamen was conducted. The influences of different parameters such as droplet diameter, application intensity, specific power on flower strike damage was analyzed using Image Pro-Plus software to compute strike damage area and define damage level by sense-analysis. The results showed that a damage area of <1% represents a safe irrigation level, 1%–3% slight damage level, 3%–6% moderate damage level, and>6% heavy damage level. Equations of application intensity, specific power with sprinkler irrigation time and flower injury ratio were regressed against parameters which cause impact damages. The results indicated that specific power has a significant correlation with injury, and flower damage area increased as the increasing of the value of specific power for the same irrigation time. Application intensity was also correlated with injury when the droplet diameter was larger than 1 mm. When the duration of sprinkler irrigation was 1, 5 and 10 min, the threshold of impinging damage of application intensity was 25.30, 5.01 and 1.64 mm·h1 and the specific power was 0.467×103, 9.340×103 and 3.110×103 W·m2. These results provide a reference for determining the suitable values of sprinkler properties in operation design.

Keywords application intensity      damage      floriculture      flowers      specific power      sprinkler irrigation     
Corresponding Author(s): Delan ZHU   
Just Accepted Date: 19 April 2017   Online First Date: 11 May 2017    Issue Date: 07 June 2017
 Cite this article:   
Yisheng ZHANG,Delan ZHU. Influence of sprinkler irrigation droplet diameter, application intensity and specific power on flower damage[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 165-171.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017145
https://academic.hep.com.cn/fase/EN/Y2017/V4/I2/165
Hydraulic characteristicDistance from the center point/m
123455.566.577.588.58.7
Dv/mm0.7220.4780.5890.8111.1141.2521.4281.5421.7712.0952.7013.1973.367
R/(mm·h1)1.20.20.41.26.810.812.423.24467.226.89.20.4
Sp/(W·m2)0.00120.00010.00030.00170.01540.02870.03840.08120.18170.33710.16940.06580.0030
Tab.1  Hydraulic characteristics of Nelson D3000 type sprinkler head
Fig.1  Changes in flower morphology before (a) and after (b) sprinkler irrigation
Fig.2  Different proportions of strike damage to petals. (a) 0.55%; (b) 1.02%; (c) 1.93%; (d) 2.87%; (e) 4.13%; (f) 5.96%; (g) 9.66%.
Fig.3  Relationship between petal damage proportion and droplet diameter
Fig.4  Relationship between proportions of petal damage and application intensity
Fig.5  Relationship between proportion of petal damage and specific power
Analysis indicatorSprinkler irrigation time/s
15304560120
Application rate0.827**0.901**0.915**0.963**0.968**
Sp0.853**0.922**0.905**0.961**0.987**
Tab.2  Coefficients of application intensity and specific power
Fig.6  Relationship between calculated and measured proportion of petal damage
Damage level/%Irrigation intensity/(mm·h1)
1 min2 min3 min5 min10 min15 min
125.7712.738.435.012.481.64
373.8836.5024.1614.377.104.70
6143.6070.9546.9727.9313.809.14
Tab.3  Threshold value of irrigation intensity with various damage levels at different irrigation time
Damage level/%Specific power/(×103 W·m2)
1 min2 min3 min5 min10 min15 min
146.7123.3615.579.344.673.11
3266.01133.0088.6753.2026.6017.73
6594.96297.48198.32118.9959.5039.66
Tab.4  Threshold value of specific power at various damage levels at different irrigation time
1 Li Z L, Zhao W J, Sun W, Fan Y. Application prospect of sprinkler irrigation technology in water-short areas of northern China. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 1–6 (in Chinese)
2 Jin Z S, Zhou M Y, Cheng J L, Gong F H. Study on appropriate atomized indicater and allowable application rate in sprinkler irrigation. Journal of Yangzhou University: Agriculture and Life Sciences Edition, 1992, 13(3): 49–55 (in Chinese)
3 Yan H J, Xiao J W, Li W Y, Li Y C, Hou Y S. Droplet size distributions of low-pressure damping sprinklers used in center-pivot irrigation systems. Journal of Hydraulic Engineering, 2014, 45(4): 467–473 (in Chinese)
4 Ortíz J N, De Juan J A, Tarjuelo J M. Analysis of water application uniformity from a centre pivot irrigator and its effect on sugar beet (Beta vulgaris L.) yield. Biosystems Engineering, 2010, 105(3): 367–379
https://doi.org/10.1016/j.biosystemseng.2009.12.007
5 Ortiz J N, Tarjuelo J M, De Juan J A. Effects of two types of sprinklers and height in the irrigation of sugar beet with a centre pivot. Spanish Journal of Agricultural Research, 2012, 10(1): 251–264
https://doi.org/10.5424/sjar/2012101-327-11
6 Sezen S M, Yazar A. Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey. Agricultural Water Management, 2006, 81(1–2): 59–76
https://doi.org/10.1016/j.agwat.2005.04.011
7 Montazar A, Sadeghi M. Effects of applied water and sprinkler irrigation uniformity on alfalfa growth and hay yield. Agricultural Water Management, 2008, 95(11): 1279–1287
https://doi.org/10.1016/j.agwat.2008.05.005
8 Kang Y, Liu H J, Liu S P, Lou J. Effect of sprinkler irrigation on field microclimate. In: Proceedings of the 2002 ASAE Annual International Meeting/XV, CIGR World Congress 2002, Chicago. St Joseph: American Society of Agricultural and Biological Engineers. 2002, 022285
9 Berkowitz G A, Gibbs M. Reduced osmotic potential effects on photosynthesis : identification of stromal acidification as a mediating factor. Plant Physiology, 1983, 71(4): 905–911
https://doi.org/10.1104/pp.71.4.905 pmid: 16662927
10 Kruger A, Witold F K. Tow-dimensional video disdrometer: a description. Journal of Atmospheric and Oceanic Technology, 2002, 19(5): 602–617
https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
11 Hong X U, Gong S H, Jia R Q, Liu X A. Study on droplet size distribution of ZY sprinkler head. Journal of Hydraulic Engineering, 2010, 41(12): 1416–1422 (in Chinese)
12 King B A, Bjorneberg D L. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers. Transactions of the ASABE, 2012, 55(2): 505–512
https://doi.org/10.13031/2013.41386
13 Liu H J, Kang Y H. Effects of droplets kinetic energy on soil infiltration rate and surface runoff under sprinkler irrigation. Irrigation and Drainage, 2002, 21(2): 71–74
14 Zhang Y S, Zhu D L, Zhang L, Gong X H. Study on translocating speed and water distribution uniformity of lightweight lateral move irrigation system. Journal of Drainage & Irrigation Machinery Engineering, 2014, 32(7): 625–630 (in Chinese)
15 Montero J, Martínez A, Valiente M, Tarjuelo J M. Analysis of water application costs with a centre pivot system for irrigation of crops in Spain. Irrigation Science, 2013, 31(3): 507–521
https://doi.org/10.1007/s00271-012-0326-4
16 Yan H J, Jin H Z, Qian Y C. Characterizing center pivot irrigation with fixed spray plate sprinklers. Science China Technological Sciences, 2010, 53(5): 1398–1405
https://doi.org/10.1007/s11431-010-0090-8
17 Sayyadi H, Nazemi A H, Sadraddini A A, Delirhasannia R. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosystems Engineering, 2014, 119(1): 13–24
https://doi.org/10.1016/j.biosystemseng.2013.12.011
18 Chen D, Wallender W W. Droplet size distribution and water application with low-pressure sprinklers. Transactions of the ASAE, 1985, 28(2): 0511–0516
https://doi.org/10.13031/2013.32288
19 Liu J, Yuan S, Li H, Zhu X. Combination uniformity improvement of impact sprinkler. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 107–111 (in Chinese)
[1] Zhaozhong FENG,Xuejun LIU,Fusuo ZHANG. Air pollution affects food security in China: taking ozone as an example[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 152-158.
[2] Xingye ZHU,Shouqi YUAN,Junping LIU,Xingfa LIU. Comparison of droplet distributions from fluidic and impact sprinklers[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 53-59.
[3] Shen YIN,Junyu MA,Wei SHEN. Effects of DNA damage on oocyte meiotic maturation and early embryonic development[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 185-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed