Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (2) : 127-131    https://doi.org/10.1007/s11458-009-0030-y
RESEARCH ARTICLE
Synthesis of tungsten carbide nanocrystals and their electrochemical properties
Jianghua ZENG, Dingsheng YUAN(), Yingliang LIU, Jingxing CHEN, Sanxiang TAN
Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632, China
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tungsten carbide (WC) nanocrystals have been prepared by a solvothermal method with Mg as the reductant and WO3 and anhydrous ethanol as the precursors. The effects of time and temperature on the synthesis of WC were investigated and a probable formation mechanism was discussed. The obtained WC nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and electrochemical methods. Hexagonal close-packed WC was successfully synthesized when the temperature was as low as 500°C. The content of carbon was more than that of W, indicating that the composition of the treated sample was C and WC only. The diameters of WC nanocrystals were ranged from 40 nm to 70 nm and the nanocrystals were dispersed on carbon films. The electrochemical measurements reveal that WC nanocrystals obviously promote Pt/C electrocatalytic ability for the oxygen reduction reaction.

Keywords solvothermal method      nanocrystal      tungsten carbide      electrocatalysis      oxygen reduction reaction     
Corresponding Author(s): YUAN Dingsheng,Email:tydsh@jnu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Jianghua ZENG,Dingsheng YUAN,Yingliang LIU, et al. Synthesis of tungsten carbide nanocrystals and their electrochemical properties[J]. Front Chem Chin, 2009, 4(2): 127-131.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0030-y
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I2/127
Fig.1  XRD patterns of WC nanocrystals prepared by heating at different temperatures for 15 h.
(1) 500°C, (2) 550°C, (3) 600°C, (4) 650°C
Fig.2  XRD patterns of the WC nanocrystals prepared by heating at 600°C for different time
(1) 8 h, (2) 12 h, (3) 15 h
Fig.3  XRD patterns of the WC nanocrystals prepared by heating at 600°C for 15 h before (1) and after (2) the acid and alkali treatment
Fig.4  TEM image (a) and EDS spectrum (b) of WC synthesized by heating at 600°C for 15 h
Fig.5  Cyclic voltammogram of WC in 0.5 mol/L HSO at 298 K
Scan rate: 50 mV/s; WC loading: 40 μg
Fig.6  Oxygen reduction reactions (ORR) of the different electrodes in 0.5 mol/L HSO at 298 K
Scan rate: 50 mV/s; (1) WC loading: 40 μg, (2) Pt loading: 40 μg, (3) Pt-WC: 40 μg, 20 μg Pt+20 μg WC
1 Zhao X S, Sun G Q, Chen W M , Tang S H, Xin Q, Yang S H, Yi B L. Durability of Pt-Ru/C catalyst in direct methanol fuel cells. Chin J Cata , 2005, 26(5): 383–388
2 Shukla A K, Arico A S, El-khatib K M, Kim H, Antonucci P L, Antonucci V. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Appl Surf Sci , 1999, 137(1-4): 20–29
doi: 10.1016/S0169-4332(98)00483-8
3 Xu C W, Tian Z Q, Shen P K. Oxidation of glycerol and ethanol on Pt-CeO2/C electrodes. Battery Bimonthly , 2004, 34(3): 212–214
4 Léger J M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J Appl Electrochem , 2001, 31(7): 767–771
doi: 10.1023/A:1017531225171
5 Raghuveer V, Viswanathan B. Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells. Fuel , 2002, 81(17): 2191–2197
doi: 10.1016/S0016-2361(02)00167-9
6 Raghuveer V, Ravindranathan Thampi K, Xanthopoulos N, Mathieu H J, Viswanathan B. Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics , 2001, 140(3-4): 263–274
doi: 10.1016/S0167-2738(01)00816-5
7 Ross P N, Stonehart P. Surface characterization of catalytically active tungsten carbide. J Catal , 1975, 39(2): 298
doi: 10.1016/0021-9517(75)90335-8
8 Sinfelt J H, Yates D J C. Effect of carbiding on hydrogenolysis acticvity of molybdenum. Nat Phys Sci , 1971, 229(1): 27
9 Ganesan R, Ham D J, Lee J S. Platinized mesoporous tungsten carbide for electro- chemical methanol oxidation. Electrochem Commun , 2007, 9(10): 2576–2579
doi: 10.1016/j.elecom.2007.08.002
10 Ma C N, Sheng J F, Brandonba N, Zhang C, Li G H. Preparation of tungsten carbide-supported nano Platinum catalyst and its electrocatalytic activity for hydrogen evolution. Int J Hydrogen Energy , 2007, 32(14): 2824-2829
doi: 10.1016/j.ijhydene.2006.12.022
11 Santos J B O,Valenca G P, Rodrigues J A J. Catalytic decomposition of hydrazine: carbide: the influence of adsorbed oxygen. J Catal , 2002, 210(1): 1–6
doi: 10.1006/jcat.2002.3634
12 Wu M, Shen P K, Wei Z D, Song S Q, Nie M. High activity PtPd-WC/C electro- catalyst for hydrogen evolution reaction. J Power Sources , 2007, 166(2): 310–316
doi: 10.1016/j.jpowsour.2006.12.108
13 Houston J E, Laramore G E, Park R L. Surface electronic properties of tungsten, tungsten carbide, and platinum. Science , 1974, 185(4147): 258–260
doi: 10.1126/science.185.4147.258
14 Mclntyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J Power Sources , 2002, 107(1): 67–73
doi: 10.1016/S0378-7753(01)00987-9
15 Papazov G, Nikolov I, Pavlov D, Vitanov T, Andreev P, Bojmov M. Sealed lead/acid battery with auxiliary tungsten carbide electrodes. J Power Source , 1990, 31(1-4):79–88
doi: 10.1016/0378-7753(90)80055-I
16 Acres G J K,Frost J C, Hards G A, Potter R J, Ralph T R, Thompsett D, Bierstem G T, Hutchings G J.Electrocatalysts for fuel cells. Catal Today , 1997, 38(4): 393
doi: 10.1016/S0920-5861(97)00050-3
17 Costa D P, Lemberton J L, Potvin C, Manoli J M, Perot G, Breysse M, Djega-Mariadassou G. Catal Today , 2001, 65(2-4): 195
doi: 10.1016/S0920-5861(00)00593-9
18 Li S Z, Lee J S. Molybdenum nitride and carbide prepared from heteropolyacids: 1. preparation and characterization. J Catal , 1996, 162(1): 76–87
doi: 10.1006/jcat.1996.0261
19 Koc R, Kodambaka S. Tungsten carbide (WC) synthesis from novel precursors. J Euro Ceram Soc , 2000, 20(11): 1859–1869
doi: 10.1016/S0955-2219(00)00038-8
20 Krishna B V, Gaganpreet K V, Bhunia H. Synthesis of WC-Co nanocomposites by using polymers as in situ carbon source. Int J Nanosci , 2002, 1(2): 139–148
doi: 10.1142/S0219581X02000139
21 Guo Ch L, Liu Y, Ma X J, Qian Y T, Xu L Q. Synthesis of tungsten carbide nanocrystals via a simple reductive reaction. Chem Lett , 2006, 35(11): 1210–1211
doi: 10.1246/cl.2006.1210
22 Liu S, Liu G, Yang G B, Huang Z L. A new technology for WC powder preparation. Rare Met Cem Carb , 2005, 33(1): 29–32
23 Pallone E M J A, Martin D R, Tomasi R, Botta Filho W J. Mater Sci Eng A , 2007, 464(1-2): 47–51
doi: 10.1016/j.msea.2007.02.101
[1] Guanjiao CHEN, Wenjin ZHANG, Xinhua ZHONG, . Single-source precursor route for overcoating CdS and ZnS shells around CdSe core nanocrystals[J]. Front. Chem. China, 2010, 5(2): 214-220.
[2] Lei ZHAO, Jun WANG, Zhiqun LIN. Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells[J]. Front. Chem. China, 2010, 5(1): 33-44.
[3] SONG Xiaolan, HE Xi, YANG Haiping, XU Dayu, JIANG Nan, QIU Guanzhou. Kinetics of thermal decomposition of CeO nanocrystalline precursor prepared by precipitation method[J]. Front. Chem. China, 2008, 3(2): 182-185.
[4] DU Pan, SHI Yanmao, WU Ping, ZHOU Yaoming, CAI Chenxin. Rapid functionalization of carbon nanotube and its electrocatalysis[J]. Front. Chem. China, 2007, 2(4): 369-377.
[5] LIU Yanshan, WANG Li, CAO Yong. Photovoltaic devices from CdSe nanocrystals and conjugated polymer composites[J]. Front. Chem. China, 2007, 2(4): 383-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed