|
|
Synthesis of tungsten carbide nanocrystals and their electrochemical properties |
Jianghua ZENG, Dingsheng YUAN( ), Yingliang LIU, Jingxing CHEN, Sanxiang TAN |
Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632, China |
|
|
Abstract Tungsten carbide (WC) nanocrystals have been prepared by a solvothermal method with Mg as the reductant and WO3 and anhydrous ethanol as the precursors. The effects of time and temperature on the synthesis of WC were investigated and a probable formation mechanism was discussed. The obtained WC nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and electrochemical methods. Hexagonal close-packed WC was successfully synthesized when the temperature was as low as 500°C. The content of carbon was more than that of W, indicating that the composition of the treated sample was C and WC only. The diameters of WC nanocrystals were ranged from 40 nm to 70 nm and the nanocrystals were dispersed on carbon films. The electrochemical measurements reveal that WC nanocrystals obviously promote Pt/C electrocatalytic ability for the oxygen reduction reaction.
|
Keywords
solvothermal method
nanocrystal
tungsten carbide
electrocatalysis
oxygen reduction reaction
|
Corresponding Author(s):
YUAN Dingsheng,Email:tydsh@jnu.edu.cn
|
Issue Date: 05 June 2009
|
|
1 |
Zhao X S, Sun G Q, Chen W M , Tang S H, Xin Q, Yang S H, Yi B L. Durability of Pt-Ru/C catalyst in direct methanol fuel cells. Chin J Cata , 2005, 26(5): 383–388
|
2 |
Shukla A K, Arico A S, El-khatib K M, Kim H, Antonucci P L, Antonucci V. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Appl Surf Sci , 1999, 137(1-4): 20–29 doi: 10.1016/S0169-4332(98)00483-8
|
3 |
Xu C W, Tian Z Q, Shen P K. Oxidation of glycerol and ethanol on Pt-CeO2/C electrodes. Battery Bimonthly , 2004, 34(3): 212–214
|
4 |
Léger J M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J Appl Electrochem , 2001, 31(7): 767–771 doi: 10.1023/A:1017531225171
|
5 |
Raghuveer V, Viswanathan B. Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells. Fuel , 2002, 81(17): 2191–2197 doi: 10.1016/S0016-2361(02)00167-9
|
6 |
Raghuveer V, Ravindranathan Thampi K, Xanthopoulos N, Mathieu H J, Viswanathan B. Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics , 2001, 140(3-4): 263–274 doi: 10.1016/S0167-2738(01)00816-5
|
7 |
Ross P N, Stonehart P. Surface characterization of catalytically active tungsten carbide. J Catal , 1975, 39(2): 298 doi: 10.1016/0021-9517(75)90335-8
|
8 |
Sinfelt J H, Yates D J C. Effect of carbiding on hydrogenolysis acticvity of molybdenum. Nat Phys Sci , 1971, 229(1): 27
|
9 |
Ganesan R, Ham D J, Lee J S. Platinized mesoporous tungsten carbide for electro- chemical methanol oxidation. Electrochem Commun , 2007, 9(10): 2576–2579 doi: 10.1016/j.elecom.2007.08.002
|
10 |
Ma C N, Sheng J F, Brandonba N, Zhang C, Li G H. Preparation of tungsten carbide-supported nano Platinum catalyst and its electrocatalytic activity for hydrogen evolution. Int J Hydrogen Energy , 2007, 32(14): 2824-2829 doi: 10.1016/j.ijhydene.2006.12.022
|
11 |
Santos J B O,Valenca G P, Rodrigues J A J. Catalytic decomposition of hydrazine: carbide: the influence of adsorbed oxygen. J Catal , 2002, 210(1): 1–6 doi: 10.1006/jcat.2002.3634
|
12 |
Wu M, Shen P K, Wei Z D, Song S Q, Nie M. High activity PtPd-WC/C electro- catalyst for hydrogen evolution reaction. J Power Sources , 2007, 166(2): 310–316 doi: 10.1016/j.jpowsour.2006.12.108
|
13 |
Houston J E, Laramore G E, Park R L. Surface electronic properties of tungsten, tungsten carbide, and platinum. Science , 1974, 185(4147): 258–260 doi: 10.1126/science.185.4147.258
|
14 |
Mclntyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J Power Sources , 2002, 107(1): 67–73 doi: 10.1016/S0378-7753(01)00987-9
|
15 |
Papazov G, Nikolov I, Pavlov D, Vitanov T, Andreev P, Bojmov M. Sealed lead/acid battery with auxiliary tungsten carbide electrodes. J Power Source , 1990, 31(1-4):79–88 doi: 10.1016/0378-7753(90)80055-I
|
16 |
Acres G J K,Frost J C, Hards G A, Potter R J, Ralph T R, Thompsett D, Bierstem G T, Hutchings G J.Electrocatalysts for fuel cells. Catal Today , 1997, 38(4): 393 doi: 10.1016/S0920-5861(97)00050-3
|
17 |
Costa D P, Lemberton J L, Potvin C, Manoli J M, Perot G, Breysse M, Djega-Mariadassou G. Catal Today , 2001, 65(2-4): 195 doi: 10.1016/S0920-5861(00)00593-9
|
18 |
Li S Z, Lee J S. Molybdenum nitride and carbide prepared from heteropolyacids: 1. preparation and characterization. J Catal , 1996, 162(1): 76–87 doi: 10.1006/jcat.1996.0261
|
19 |
Koc R, Kodambaka S. Tungsten carbide (WC) synthesis from novel precursors. J Euro Ceram Soc , 2000, 20(11): 1859–1869 doi: 10.1016/S0955-2219(00)00038-8
|
20 |
Krishna B V, Gaganpreet K V, Bhunia H. Synthesis of WC-Co nanocomposites by using polymers as in situ carbon source. Int J Nanosci , 2002, 1(2): 139–148 doi: 10.1142/S0219581X02000139
|
21 |
Guo Ch L, Liu Y, Ma X J, Qian Y T, Xu L Q. Synthesis of tungsten carbide nanocrystals via a simple reductive reaction. Chem Lett , 2006, 35(11): 1210–1211 doi: 10.1246/cl.2006.1210
|
22 |
Liu S, Liu G, Yang G B, Huang Z L. A new technology for WC powder preparation. Rare Met Cem Carb , 2005, 33(1): 29–32
|
23 |
Pallone E M J A, Martin D R, Tomasi R, Botta Filho W J. Mater Sci Eng A , 2007, 464(1-2): 47–51 doi: 10.1016/j.msea.2007.02.101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|