Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (3) : 346-363    https://doi.org/10.1007/s11704-014-3496-9
RESEARCH ARTICLE
A novel strategy for automatic test data generation using soft computing technique
Priyanka CHAWLA1,*(),Inderveer CHANA1,Ajay RANA2
1. Computer Science and Engineering Department, Thapar University, Patiala 147004, India
2. Amity School of Engineering, Amity University, Noida 201301, India
 Download: PDF(822 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Software testing is one of the most crucial and analytical aspect to assure that developed software meets prescribed quality standards. Software development process invests at least 50% of the total cost in software testing process. Optimum and efficacious test data design of software is an important and challenging activity due to the nonlinear structure of software. Moreover, test case type and scope determines the quality of test data. To address this issue, software testing tools should employ intelligence based soft computing techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to generate smart and efficient test data automatically. This paper presents a hybrid PSO and GA based heuristic for automatic generation of test suites. In this paper, we described the design and implementation of the proposed strategy and evaluated our model by performing experiments with ten container classes from the Java standard library. We analyzed our algorithm statistically with test adequacy criterion as branch coverage. The performance adequacy criterion is taken as percentage coverage per unit time and percentage of faults detected by the generated test data. We have compared our work with the heuristic based upon GA, PSO, existing hybrid strategies based on GA and PSO and memetic algorithm. The results showed that the test case generation is efficient in our work.

Keywords software testing      particle swarm optimization      genetic algorithm      soft computing      test data generation     
Corresponding Author(s): Priyanka CHAWLA   
Issue Date: 18 May 2015
 Cite this article:   
Priyanka CHAWLA,Ajay RANA,Inderveer CHANA. A novel strategy for automatic test data generation using soft computing technique[J]. Front. Comput. Sci., 2015, 9(3): 346-363.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-3496-9
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I3/346
1 Ramler R, Wolfmaier K. Economic perspectives in test automation: balancing automated and manual testing with opportunity cost. In: Proceedings of the International Workshop on Automation of Software Test. 2006, 85-91
https://doi.org/10.1145/1138929.1138946
2 Grottke M, Trivedi K S. 2007. Fighting bugs: remove, retry, replicate, and rejuvenate. IEEE Computer, 2007, 40(2): 107-109
https://doi.org/10.1109/mc.2007.55
3 Pargas R P, Harrold M J, Peck R R. Test-data generation using genetic algorithms. Software Testing Verification Reliability, 1999, 9(4): 263-282
https://doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
4 Chen X, Gu Q, Qi J X, Chen D X. Applying particle swarm optimization to pairwise testing. In: Proceedings of 34th Annual IEEE Computer Software and Applications Conference, COMPSAC’10. 2010, 107-116
https://doi.org/10.1109/compsac.2010.17
5 Windisch A, Wappler S, Wegener J. Applying particle swarm optimization to software testing. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07. 2007, 1121-1128
https://doi.org/10.1145/1276958.1277178
6 Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Information and Software Technology, 2001, 43(14): 841-854
https://doi.org/10.1016/S0950-5849(01)00190-2
7 Fraser G, Arcuri A. Evolutionary generation of whole test suites. In: Proceedings of the Quality Software International Conference, QSIC’11. 2011, 31-40
https://doi.org/10.1109/qsic.2011.19
8 Wappler S, Wegener J. Evolutionary unit testing of object-oriented software using a hybrid evolutionary algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC’06. 2006, 851-858
https://doi.org/10.1109/cec.2006.1688400
9 Alba E, Chicano F. Observations in using parallel and sequential evolutionary algorithms for automatic software testing. Computers and Operation Research, 2008, 35(10): 3161-3183
https://doi.org/10.1016/j.cor.2007.01.016
10 Li K, Zhang Z, Kou J. Breeding software test data with genetic-particle swarm mixed algorithms. Journal of Computers, 2010, 5(2): 258-265
https://doi.org/10.4304/jcp.5.2.258-265
11 Singla S, Kumar D, Rai H M, Singla P. A hybrid PSO approach to automate test data generation for data flow coverage with dominance concepts. International Journal of Advanced Science and Technology, 2011, 37: 15-26
12 Wu X, Wang Y, Zhang T. An improved GAPSO hybrid programming algorithm. In: Proceedings of International Conference on Information Engineering and Computer Science, ICIECS’09. 2009, 1-4
https://doi.org/10.1109/iciecs.2009.5365983
13 Zhang S, Ying Z, Hong Z, Qingquan H. Automatic path test data generation based on GA-PSO. In: Proceedings of IEEE International Conference onIntelligent Computing and Intelligent Systems, ICIS’10. 2010, 142-146
https://doi.org/10.1109/icicisys.2010.5658735
14 Chen S. Particle swarm optimization with pbest crossover. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC’12. 2012, 1-6
https://doi.org/10.1109/cec.2012.6256497
15 Kaur A, Bhatt D. Hybrid particle swarm optimization for regression testing. International Journal on Computer Science and Engineering, 2011, 3 (5): 1815-1824
16 Goldberg D E, Holland J H. Genetic algorithms and machine learning. Machine Learning, 1988, 3(2): 95-99
https://doi.org/10.1023/A:1022602019183
17 Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micromachine Human Science, 1995, 39-43
https://doi.org/10.1109/mhs.1995.494215
18 Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. 1995, 4, 1942-1948
https://doi.org/10.1109/ICNN.1995.488968
19 Rabanal P, Rodriguez I, Rubio F. A functional approach to parallelize particle swarm optimization. In: Proceedings of Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, MAEB’12. 2012
https://doi.org/10.1049/sej.1996.0040
20 Jones B F, Sthamer H, Eyres D E. Automatic test data generation using genetic algorithms. Software Engineering Journal, 1996, 11(5): 299-306
21 Xanthakis S E, Skourlas C C, LeGall A K. Application of genetic algorithms to software testing. In: Proceedings of the 5th International Conference on Software Engineering and its Applications. 1992, 625-636
https://doi.org/10.1016/S0950-5849(01)00189-6
22 Harman M, Jones B. Search-based software engineering. Information and Software Technology, 2001, 43(14): 833-839
https://doi.org/10.1049/ip-sen:20030559
23 Clark J, Dolado J J, Harman M, Hierons R, Jones B, Lumkin M, Mitchell B, Mancoridis S, Rees K, Roper M, Shepperd M. Reformulating software engineering as a search problem. IEE Proceedings- Software, 2003, 150(3): 161-175
24 Hansen N, Finck S, Ros R, Auger A. Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. INRIA Technical Report RR-6829, 2009
25 Younes M, Benhamida F. Genetic algorithm-particle swarm optimization (GA-PSO) for economic load dispatch. PRZEGLAD ELEKTROTECHNICZNY (Electrical Review), 2011, 87(10): 369-372
https://doi.org/10.1109/TSMCB.2003.818557
26 Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 997-1006
27 Saini D K, Sharma Y. Soft computing particle swarm optimization based approach for class responsibility assignment problem. International Journal of Computer Applications, 2012, 40(12): 19-24
https://doi.org/10.1145/1321631.1321689
28 Wappler S, Schieferdecker I. Improving evolutionary class testing in the presence of non-public methods. In: Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering, ASE’07. 2007, 381-384
https://doi.org/10.1023/B:GENP.0000017053.10351.dc
29 Wilson G C, McIntyre A, Heywood M I. Resource review: three open source systems for evolving programs: Lilgp, ecj and grammatical evolution. Genetic Programming and Evolvable Machines, 2004, 5(1): 103-105
https://doi.org/10.1145/1007512.1007528
30 Tonella P. Evolutionary testing of classes. In: Proceedings of the International Symposium on Software Testing and Analysis, ISSTA’04. 2004, 119-128
31 Wang H C, Jeng B. Structural testing using memetic algorithm. In: Proceedings of the 2nd Taiwan Conference on Software Engineering. 2006
https://doi.org/10.1016/j.ins.2007.11.024
32 Arcuri A, Yao X. Search based software testing of object-oriented containers. Information Sciences, 2008, 178(15): 3075-3095
https://doi.org/10.1007/978-3-642-14825-5_1
33 Nayak N, Mohapatra D P. Automatic test data generation for data flow testing using particle swarm optimization. Communications in Computer and Information Science, 2010, 95(1): 1-12
34 Ahmed B S, Zamli K Z, Lim C P. Constructing a T-way interaction test suite using particle swarm optimization approach. International Journal of Innovative Computing Information Control, 2011, 7(11): 1741-1758
https://doi.org/10.1109/wcse.2009.98
35 Li A, Zhang Y. Automatic generating all-path test data of a program based on PSO. In: Proceedings of World Congress on Software Engineering, 2009, 4: 189-193
https://doi.org/10.1109/TSE.2012.14
36 Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering, 2013, 39(2): 276-291
https://doi.org/10.1007/s11704-013-3024-3
37 Gong D W, Zhang Y. Generating test data for both path coverage and fault detection using genetic algorithms. Frontiers of Computer Science, 2013, 7(6): 822-837
https://doi.org/10.1002/stvr.294
38 McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability, 2004, 14(2): 105-156
39 McMinn P, Holcombe M. Evolutionary testing of statebased programs. In: Proceedings Conference on Genetic and Evolutionary Computation, GECCO’05. 2005, 1013-1020
https://doi.org/10.1109/32.962562
40 Rothermel G, Untch R, Chengyun C, Harrold M J. Prioritizing test cases for regression testing. IEEE Transaction of Software Engineering, 2001, 27(10): 929-948
https://doi.org/10.1145/1985793.1985795
41 Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of 33rd International Conference on Software Engineering ICSE’11. 2011, 1-10
https://doi.org/10.1109/TSE.2009.52
42 Ali S, Briand L C, Hemmati H, Panesar-Walawege R K. A systematic review of the application and empirical investigation of searchbased test case generation. IEEE Transactions of Software Engineering, 2010, 36(6): 742-762
43 Vargha A, Delaney H D. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 2000, 25(2): 101-132
44 Grissom R, Kim J. Effect sizes for research: a broad practical approach. Lawrence Erlbaum, 2005
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Yihui LIANG, Han HUANG, Zhaoquan CAI. PSO-ACSC: a large-scale evolutionary algorithm for image matting[J]. Front. Comput. Sci., 2020, 14(6): 146321-.
[2] Wei-Neng CHEN, Da-Zhao TAN. Set-based discrete particle swarm optimization and its applications: a survey[J]. Front. Comput. Sci., 2018, 12(2): 203-216.
[3] Zhenxue HE, Limin XIAO, Fei GU, Tongsheng XIA, Shubin SU, Zhisheng HUO, Rong ZHANG, Longbing ZHANG, Li RUAN, Xiang WANG. An efficient and fast polarity optimization approach for mixed polarity Reed-Muller logic circuits[J]. Front. Comput. Sci., 2017, 11(4): 728-742.
[4] Cui HUANG, Dakun ZHANG, Guozhi SONG. A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization[J]. Front. Comput. Sci., 2017, 11(4): 622-631.
[5] Sedigheh KHOSHNEVIS, Fereidoon SHAMS. Automating identification of services and their variability for product lines using NSGA-II[J]. Front. Comput. Sci., 2017, 11(3): 444-464.
[6] Chenchen SUN,Derong SHEN,Yue KOU,Tiezheng NIE,Ge YU. A genetic algorithm based entity resolution approach with active learning[J]. Front. Comput. Sci., 2017, 11(1): 147-159.
[7] Lamia SADEG-BELKACEM,Zineb HABBAS,Wassila AGGOUNE-MTALAA. Adaptive genetic algorithms guided by decomposition for PCSPs: application to frequency assignment problems[J]. Front. Comput. Sci., 2016, 10(6): 1012-1025.
[8] Xiaofang QI,Jun HE,Peng WANG,Huayang ZHOU. Variable strength combinatorial testing of concurrent programs[J]. Front. Comput. Sci., 2016, 10(4): 631-643.
[9] Genggeng LIU,Wenzhong GUO,Rongrong LI,Yuzhen NIU,Guolong CHEN. XGRouter: high-quality global router in X-architecture with particle swarm optimization[J]. Front. Comput. Sci., 2015, 9(4): 576-594.
[10] Xiangxiang ZENG,Sisi YUAN,Xianxian HUANG,Quan ZOU. Identification of cytokine via an improved genetic algorithm[J]. Front. Comput. Sci., 2015, 9(4): 643-651.
[11] Yan ZHANG,Dunwei GONG. Generating test data for both paths coverage and faults detection using genetic algorithms: multi-path case[J]. Front. Comput. Sci., 2014, 8(5): 726-740.
[12] Chang-ai SUN,Zuoyi WANG,Guan WANG. A property-based testing framework for encryption programs[J]. Front. Comput. Sci., 2014, 8(3): 478-489.
[13] Wenzhong GUO,Genggeng LIU,Guolong CHEN,Shaojun PENG. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning[J]. Front. Comput. Sci., 2014, 8(2): 203-216.
[14] Dunwei GONG, Yan ZHANG. Generating test data for both path coverage and fault detection using genetic algorithms[J]. Front Comput Sci, 2013, 7(6): 822-837.
[15] Dion DETTERER, Paul KWAN, Cedric GONDRO. A co-evolving memetic wrapper for prediction of patient outcomes in TCM informatics[J]. Front Comput Sci, 2012, 6(5): 621-629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed