Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 266-275    https://doi.org/10.1007/s11704-016-5204-4
RESEARCH ARTICLE
Facial expression recognition via weighted group sparsity
Hao ZHENG1,2(),Xin GENG2
1. Key Laboratory of Trusted Cloud Computing and Big Data Analysis, School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
2. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
 Download: PDF(468 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considering the distinctiveness of different group features in the sparse representation, a novel joint multitask and weighted group sparsity (JMT-WGS) method is proposed. By weighting popular group sparsity, not only the representation coefficients from the same class over their associate dictionaries may share some similarity, but also the representation coefficients from different classes have enough diversity. The proposed method is cast into a multi-task framework with two-stage iteration. In the first stage, representation coefficient can be optimized by accelerated proximal gradient method when the weights are fixed. In the second stage, the weights are computed via the prior information about their entropy. The experimental results on three facial expression databases show that the proposed algorithm outperforms other state-of-the-art algorithms and demonstrate the promising performance of the proposed algorithm.

Keywords facial expression recognition      multi-task learning      group sparsity     
Corresponding Author(s): Hao ZHENG   
Just Accepted Date: 30 September 2016   Online First Date: 23 March 2017    Issue Date: 06 April 2017
 Cite this article:   
Hao ZHENG,Xin GENG. Facial expression recognition via weighted group sparsity[J]. Front. Comput. Sci., 2017, 11(2): 266-275.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5204-4
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/266
1 Darwin C. The Expression of the Emotions in Man and Animals. London: Penguin Classics, 1872
https://doi.org/10.1037/10001-000
2 Ekman P, Friesen W V. Pictures of facial affect. Technical Report, San Francisco: California Medical Center, 1976
3 Fasel B, Luettin J. Automatic facial expression analysis: a survey. Pattern Recognition, 2008, 36(1): 259–275
https://doi.org/10.1016/S0031-3203(02)00052-3
4 Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2000, 22(12): 1424–1445
5 De La Torre F, Chu W, Xiong X, Cohn J. Intraface. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition. 2015, 1–8
https://doi.org/10.1109/fg.2015.7163082
6 Ekman P, Friesen W. Facial Action Coding System: Investigator’s Guide. Palo Alto, CA: Consulting Psychologists Press, 1993
7 Bartlett M S, Littlewort G, Fasel L, Movellan J R. Real time face detection and facial expression recognition: development and application to human-computer interaction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2003
https://doi.org/10.1109/cvprw.2003.10057
8 Bourel F, Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatiallylocalised facial dynamic. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. 2002, 113–118
https://doi.org/10.1109/AFGR.2002.1004141
9 Tian Y I, Kanade T, Cohn J F. Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 97–115
https://doi.org/10.1109/34.908962
10 Meng H Y, Bianchi-Berthouze N. Naturalistic affective expression classification by a multi-stage approach based on hidden Markov models. In: D’Mello S, Graesser A, Schuller B, et al, eds. Affective Computing and Intelligent Interaction. Lecture Notes in Computer Science, Vol 6975. Berlin: Springer, 2011, 378–387
https://doi.org/10.1007/978-3-642-24571-8_49
11 Cohen I, Sebe N, Garg A, Chen L S, Huang T S. Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding, 2003, 91(1): 160–187
https://doi.org/10.1016/S1077-3142(03)00081-X
12 Kotsia I, Pitas I. Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Transactions on Image Processing, 2007, 16(1): 172–187
https://doi.org/10.1109/TIP.2006.884954
13 Sebe N, Lew M S, Cohen I, Sun Y, Gevers T, Huang T S. Authentic facial expression analysis. Image and Vision Computing, 2007, 25(12): 1856–1863
https://doi.org/10.1016/j.imavis.2005.12.021
14 Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489–509
https://doi.org/10.1109/TIT.2005.862083
15 Chen S S, Donoho D L, Saunders M A. Atomatic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129–159
https://doi.org/10.1137/S003614450037906X
16 Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415
https://doi.org/10.1109/78.258082
17 Wright J, Yang A Y, Ganesh A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227
https://doi.org/10.1109/TPAMI.2008.79
18 Yang M, Zhang L. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Proceedings of European Conference on Computer Vision. 2010
https://doi.org/10.1007/978-3-642-15567-3_33
19 Zheng H, Xie J C, Jin Z. Heteroscedastic sparse representation classification for face recognition. Neural Processing Letters, 2012, 35(3): 233–244
https://doi.org/10.1007/s11063-012-9214-4
20 Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49–67
https://doi.org/10.1111/j.1467-9868.2005.00532.x
21 Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507
https://doi.org/10.1126/science.1127647
22 Lai Z H, Wong W K, Xu Y, Yang J, Tang J, Zhang D. Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 723–735
https://doi.org/10.1109/TNNLS.2015.2422994
23 Lai Z H, Xu Y, Chen Q C, Yang J, Zhang D. Multilinear sparse principal component analysis. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(10): 1942–1950
https://doi.org/10.1109/TNNLS.2013.2297381
24 Lai Z H, Wong W H, Xu Y. Sparse alignment for robust tensor learning. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(10): 1779–1792
https://doi.org/10.1109/TNNLS.2013.2295717
25 Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49–67
https://doi.org/10.1111/j.1467-9868.2005.00532.x
26 Huang J Z, Zhang T. The benefit of group sparsity. The Annals of Statistics, 2010, 38(4): 1978–2004
https://doi.org/10.1214/09-AOS778
27 Yuan X T, Liu X B, Yan S C. Visual classification with multitask joint sparse representation. IEEE Transactions on Image Processing, 2012, 21(10): 4349–4360
https://doi.org/10.1109/TIP.2012.2205006
28 Lin Y Y, Liu T L, Fuh C S. Local ensemble kernel learning for object category recognition. In: Proceedings of IEEE Conference on Computer Vision (ICCV). 2007
https://doi.org/10.1109/cvpr.2007.383084
29 Negahban S, Wainwright M J. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics, 2011, 39(2): 1069–1097
https://doi.org/10.1214/10-AOS850
30 Pong T K, Tseng P, Ji S, Ye J. Trace norm regularization: reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization, 2010, 20(6): 3465–3489
https://doi.org/10.1137/090763184
31 He Z F, Yang M, Liu H D. Multi-task joint feature selection for multilabel classification. Chinese Journal of Electronics, 2015, 24(2): 281–287
https://doi.org/10.1049/cje.2015.04.009
32 Cheng X, Li N J, Zhou T C, Wu Z Y, Zhou L. Multi-task object tracking with feature selection. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2015, (6): 1351–1354
https://doi.org/10.1587/transfun.E98.A.1351
33 Zheng H, Geng X, Tao D C, Jin Z. A multi-task model for simultaneous face identification and facial expression recognition. Neurocomputing, 2016, 171(1): 515–523
https://doi.org/10.1016/j.neucom.2015.06.079
34 Bakker B, Heskes T. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 2003, 4(4): 83–99
35 Evgeniou T, Pontil M. Regularized multi-task learning. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004
https://doi.org/10.1145/1014052.1014067
36 Ando R K, Zhang T. A framework for learning predictive from multiple tasks and unlabeled data. Journal of Machine Learning Research, 2005, 6: 1817–1853
37 Parameswaran S, Weinberger K Q. Large margin multi-task metric learning. In: Proceedings of Advances in Neural Information Processing Systems. 2010, 1867–1875
38 Zhang Y, Yeung D Y. Transfer metric learning by learning task relationships. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010
https://doi.org/10.1145/1835804.1835954
39 Chen X, Pan W K, Kwok J T, Garbonell J G. Accelerated gradient method for multi-task sparse learning problem. In: Proceedings of IEEE International Conference on Data Mining. 2009
https://doi.org/10.1109/icdm.2009.128
40 Gehler P, Nowozin S. On feature combination for multiclass object classification. In: Proceedings of the 12th IEEE International Conference on Computer Vision. 2009, 221–228
https://doi.org/10.1109/iccv.2009.5459169
41 Kanade T, Cohn J F, Tian Y. Comprehensive database for facial expression analysis. In: Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. 2000, 46–53
https://doi.org/10.1109/afgr.2000.840611
42 Wang J, Yin L J, Wei X Z, Sun Y. 3D facial expression recognition based on primitive surface feature distribution. In: Proceedings of IEEE Society Conference on Computer Vision and Pattern Recognition. 2006, 1399–1406
43 Dhall A, Goecke R, joshi J, Wagner M, Gedeon T. Emotion recognitionin the wild challenge 2013. In: Proceedings of the 15th ACM International Conference on Multimodal Interaction. 2013, 509–516
https://doi.org/10.1145/2522848.2531739
[1] Yuling MA, Chaoran CUI, Jun YU, Jie GUO, Gongping YANG, Yilong YIN. Multi-task MIML learning for pre-course student performance prediction[J]. Front. Comput. Sci., 2020, 14(5): 145313-.
[2] Rizwan Ahmed KHAN, Alexandre MEYER, Hubert KONIK, Saida BOUAKAZ. Saliency-based framework for facial expression recognition[J]. Front. Comput. Sci., 2019, 13(1): 183-198.
[3] Feifei ZHANG,Yongbin YU,Qirong MAO,Jianping GOU,Yongzhao ZHAN. Pose-robust feature learning for facial expression recognition[J]. Front. Comput. Sci., 2016, 10(5): 832-844.
[4] Shangfei WANG,Shan HE,Yue WU,Menghua HE,Qiang JI. Fusion of visible and thermal images for facial expression recognition[J]. Front. Comput. Sci., 2014, 8(2): 232-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed