Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 192-207    https://doi.org/10.1007/s11704-016-6028-y
REVIEW ARTICLE
Recent progress and trends in predictive visual analytics
Junhua LU1,Wei CHEN1(),Yuxin MA1,Junming KE2,Zongzhuang LI1,Fan ZHANG3,Ross MACIEJEWSKI4
1. State Key Lab of Computer Aided Design and Computer Graphics, Zhejiang University, Hangzhou 310058, China
2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China
3. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
4. School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe AZ 85287-8809, USA
 Download: PDF(815 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A wide variety of predictive analytics techniques have been developed in statistics, machine learning and data mining; however, many of these algorithms take a black-box approach in which data is input and future predictions are output with no insight into what goes on during the process. Unfortunately, such a closed system approach often leaves little room for injecting domain expertise and can result in frustration from analysts when results seem spurious or confusing. In order to allow for more human-centric approaches, the visualization community has begun developing methods to enable users to incorporate expert knowledge into the prediction process at all stages, including data cleaning, feature selection, model building and model validation. This paper surveys current progress and trends in predictive visual analytics, identifies the common framework in which predictive visual analytics systems operate, and develops a summarization of the predictive analytics workflow.

Keywords predictive visual analytics      visualization      visual analytics      data mining      predictive analysis     
Corresponding Author(s): Wei CHEN   
Just Accepted Date: 08 June 2016   Online First Date: 31 October 2016    Issue Date: 06 April 2017
 Cite this article:   
Junhua LU,Wei CHEN,Yuxin MA, et al. Recent progress and trends in predictive visual analytics[J]. Front. Comput. Sci., 2017, 11(2): 192-207.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6028-y
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/192
39 Lin J, Wong J, Nichols J, Cypher A, Lau T A. End-user programming of mashups with vegemite. In: Proceedings of the 14th International Conference on Intelligent User Interfaces. 2009, 97–106
40 Scaffidi C, Myers B, Shaw M. Intelligently creating and recommending reusable reformatting rules. In: Proceedings of the 14th International Conference on Intelligent User Interfaces. 2009, 297–306
41 Ives Z, Knoblock C, Minton S, Jacob M, Talukdar P, Tuchinda R, Ambite J L, Muslea M, Gazen C. Interactive data integration through smart copy & paste. In: Proceedings of the Biennial Conference on Innovative Data Systems Research. 2009
42 Kandel S, Heer J, Plaisant C, Kennedy J, Van Ham F, Riche N H, Weaver C, Lee B, Brodbeck D, Buono P. Research directions in data wrangling: visualizations and transformations for usable and credible data. Information Visualization, 2011, 10(4): 271–288
https://doi.org/10.1177/1473871611415994
43 Robertson G G, Czerwinski M P, Churchill J E. Visualization of mappings between schemas. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2005, 431–439
https://doi.org/10.1145/1054972.1055032
44 Altova. Data integration: opportunities, challenges, and altova mapforce. , 2014
45 Informatica. The informatica data quality methodology: a framework to achieve pervasive data quality through enhanced businessit collaboration. , 2010
46 Zheng Y. Methodologies for cross-domain data fusion: an overview. IEEE Transactions on Big Data, 2015, 1(1): 16–34
https://doi.org/10.1109/TBDATA.2015.2465959
47 Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997, 1(3): 131–156
https://doi.org/10.1016/S1088-467X(97)00008-5
48 Fogarty J, Hudson S E. Toolkit support for developing and deploying sensor-based statistical models of human situations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2007, 135–144
https://doi.org/10.1145/1240624.1240645
49 Markovitch S, Rosenstein D. Feature generation using general constructor functions. Machine Learning, 2002, 49(1): 59–98
https://doi.org/10.1023/A:1014046307775
50 Schuller B, Reiter S, Rigoll G. Evolutionary feature generation in speech emotion recognition. In: Proceedings of the IEEE International Conference on Multimedia and Expo. 2006, 5–8
https://doi.org/10.1109/icme.2006.262500
1 Larose D T, larose C D. Data Mining and Predictive Analytics, 2nd ed. Hoboken: John Wiley & Sons, 2015
2 Schlangenstein M. UPS crunches data to make more routes more efficient, save gas. , 2013
51 Guo D S. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2003, 2(4): 232–246
https://doi.org/10.1057/palgrave.ivs.9500053
52 Seo J, Shneiderman B. A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In: Proceedings of the IEEE Symposium on Information Visualization. 2004, 65–72
3 Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232): 1012–1014
https://doi.org/10.1038/nature07634
4 Butler D. When Google got flu wrong. Nature, 2013, 494(7436): 155–156
https://doi.org/10.1038/494155a
5 Culotta A. Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the 1st Workshop on Social Media Analytics. 2010, 115–122
https://doi.org/10.1145/1964858.1964874
6 Lazer D, Kennedy R, King G, Vespignani A. The parable of Google flu: traps in big data analysis. Science, 2014, 343(6176): 1203–1205
https://doi.org/10.1126/science.1248506
7 Keim D A, Kohlhammer J, Ellis G, Mansmann F. Mastering the Information Age — Solving Problems with Visual Analytics. Goslar: Florian Mansmann, 2010
8 Bertini E, Lalanne D. Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In: Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration. 2009, 12–20
https://doi.org/10.1145/1562849.1562851
9 Sacha D, Stoffel A, Stoffel F, Kwon B C, Ellis G, Keim D. Knowledge generation model for visual analytics. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1604–1613
https://doi.org/10.1109/TVCG.2014.2346481
10 El-Assady M, Jentner W, Stein M, Fischer F, Schreck T, Keim D. Predictive visual analytics —approaches for movie ratings and discussion of open research challenges. In: Proceedings of IEEE VIS Workshop: Visualization for Predictive Analytics. 2014
53 Piringer H, Berger W, Hauser H. Quantifying and comparing features in high-dimensional datasets. In: Proceedings of the 12th International Conference on Information Visualization. 2008, 240–245
https://doi.org/10.1109/iv.2008.17
54 May T, Bannach A, Davey J, Ruppert T, Kohlhammer J. Guiding feature subset selection with an interactive visualization. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2011, 111–120
https://doi.org/10.1109/vast.2011.6102448
55 Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1): 273–324
https://doi.org/10.1016/S0004-3702(97)00043-X
56 Klemm P, Lawonn K, Glaöer S, Niemann U, Hegenscheid K, Völzke H, Preim B. 3D regression heat map analysis of population study data. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 81–90
https://doi.org/10.1109/TVCG.2015.2468291
57 Lu Y, Wang F, Maciejewski R. Business intelligence from social media: a study from the vast box office challenge. IEEE Computer Graphics and Applications, 2014, 34(5): 58–69
https://doi.org/10.1109/MCG.2014.61
58 Brooks M, Amershi S, Lee B, Drucker S M, Kapoor A, Simard P. Featureinsight: visual support for error-driven feature ideation in text classification. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2015, 105–112
https://doi.org/10.1109/vast.2015.7347637
59 Bögl M, Aigner W, Filzmoser P, Lammarsch T, Miksch S, Rind A. Visual analytics for model selection in time series analysis. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2237–2246
https://doi.org/10.1109/TVCG.2013.222
60 Lu Y, Kruger R, Thom D, Wang F, Koch S, Ertl T, Maciejewski R. Integrating predictive analytics and social media. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2014, 193–202
https://doi.org/10.1109/vast.2014.7042495
11 Krause J, Perer A, Bertini E. INFUSE: interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1614–1623
https://doi.org/10.1109/TVCG.2014.2346482
12 Gleicher M. Position paper: towards comprehensible predictive modeling. In: Proceedings of IEEE VIS Workshop: Visualization for Predictive Analytics. 2014
61 Piringer H, Berger W, Krasser J. Hypermoval: Interactive visual validation of regression models for real-time simulation. Computer Graphics Forum, 2010, 29(3): 983–992
https://doi.org/10.1111/j.1467-8659.2009.01684.x
62 Mühlbacher T, Piringer H. A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 1962–1971
https://doi.org/10.1109/TVCG.2013.125
63 Gotz D, Sun J. Visualizing accuracy to improve predictive model performance. In: Proceedings of the IEEE VISWorkshop on Visualization for Predictive Analytics. 2014
64 Quinlan J R. Induction of decision trees. Machine Learning, 1986, 1(1): 81–106
https://doi.org/10.1007/BF00116251
65 Suykens J A, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293–300
https://doi.org/10.1023/A:1018628609742
66 Johnson B, Shneiderman B. Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Conference on Visualization. 1991, 284–291
https://doi.org/10.1109/visual.1991.175815
67 Stasko J, Zhang E. Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: Proceedings of the IEEE Symposium on Information Visualization. 2000, 57–65
https://doi.org/10.1109/infvis.2000.885091
68 Ware M, Frank E, Holmes G, Hall M, Witten I H. Interactive machine learning: letting users build classifiers. International Journal of Human-Computer Studies, 2001, 55(3): 281–292
https://doi.org/10.1006/ijhc.2001.0499
69 Ankerst M, Elsen C, Ester M, Kriegel H P. Visual classification: an interactive approach to decision tree construction. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1999, 392–396
https://doi.org/10.1145/312129.312298
70 Van den Elzen S, Van Wijk J J. Baobabview: Interactive construction and analysis of decision trees. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2011, 151–160
https://doi.org/10.1109/vast.2011.6102453
71 Becker B, Kohavi R, Sommerfield D. Visualizing the simple Baysian classifier. In: Fayyad U, Grinstein G G, Wierse A, eds. Information Visualization in Data Mining and Knowledge Discovery. San Francisco: Morgan Kaufmann Publishers Inc., 2002
72 Caragea D, Cook D, Honavar V G. Gaining insights into support vec tor machine pattern classifiers using projection-based tour methods. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2001, 251–256
13 Kandel S, Paepcke A, Hellerstein J, Heer J. Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, 3363–3372
https://doi.org/10.1145/1978942.1979444
14 Rahm E, Do H H. Data cleaning: problems and current approaches. IEEE Data Eng. Bull., 2000, 23(4): 3–13
15 Kim W, Choi B J, Hong E K, Kim S K, Lee D. A taxonomy of dirty data. Data Mining and Knowledge Discovery, 2003, 7(1): 81–99
https://doi.org/10.1023/A:1021564703268
16 Ganuza M L, Ferracutti G, Gargiulo M F, Castro S M, Bjerg E, Gröller E, Matković K. The spinel explorer — interactive visual analysis of spinel group minerals. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1913–1922
https://doi.org/10.1109/TVCG.2014.2346754
17 Brown E T, Ottley A, Zhao H, Lin Q, Souvenir R, Endert A, Chang R. Finding waldo: learning about users from their interactions. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1663–1672
https://doi.org/10.1109/TVCG.2014.2346575
18 Born S, Sundermann S H, Russ C, Hopf R, Ruiz C E, Falk V, Gessat M. Stent maps — comparative visualization for the prediction of adverse events of transcatheter aortic valve implantations. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2704–2713
https://doi.org/10.1109/TVCG.2014.2346459
73 Ma Y. EasySVM: a visual analysis approach for open-box support vector machines. In: Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics. 2014
74 John G H, Langley P. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. 1995, 338–345
75 Ho T K. Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition. 1995, 278–282
76 Mühlbacher T, Piringer H, Gratzl S, Sedlmair M, Streit M. Opening the black box: strategies for increased user involvement in existing algorithm implementations. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1643–1652
https://doi.org/10.1109/TVCG.2014.2346578
77 Paiva J G S, Schwartz W R, Pedrini H, Minghim R. An approach to supporting incremental visual data classification. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 4–17
https://doi.org/10.1109/TVCG.2014.2331979
78 Talbot J, Lee B, Kapoor A, Tan D S. EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2009, 1283–1292
https://doi.org/10.1145/1518701.1518895
79 Wu Y, Pitipornvivat N, Zhao J, Yang S, Huang G, Qu H. egoSlider: visual analysis of egocentric network evolution. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 260–269
https://doi.org/10.1109/TVCG.2015.2468151
80 Stolper C D, Perer A, Gotz D. Progressive visual analytics: user-driven visual exploration of in-progress analytics. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1653–1662
https://doi.org/10.1109/TVCG.2014.2346574
81 Ng K, Ghoting A, Steinhubl S R, Stewart W F, Malin B, Sun J. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. Journal of Biomedical Informatics, 2014, 48: 160–170
https://doi.org/10.1016/j.jbi.2013.12.012
82 Chang C C, Lin C J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27
https://doi.org/10.1145/1961189.1961199
19 Xie C, Chen W, Huang X X, Hu Y Q, Barlowe S, Yang J. VAET: a visual analytics approach for e-transactions time-series. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1743–1752
https://doi.org/10.1109/TVCG.2014.2346913
20 Madhavan K, Elmqvist N, Vorvoreanu M, Chen X, Wong Y, Xian H, Dong Z, Johri A. Dia2: Web-based cyberinfrastructure for visual analysis of funding portfolios. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1823–1832
https://doi.org/10.1109/TVCG.2014.2346747
21 Hao M C, Janetzko H, Mittelstädt S, Hill W, Dayal U, Keim D A, Marwah M, Sharma R K. A visual analytics approach for peak-preserving prediction of large seasonal time series. Computer Graphics Forum, 2011, 30(3): 691–700
https://doi.org/10.1111/j.1467-8659.2011.01918.x
22 Hao M C, Marwah M, Janetzko H, Dayal U, Keim D A, Patnaik D, Ramakrishnan N, Sharma R K. Visual exploration of frequent patterns in multivariate time series. Information Visualization, 2012, 11(1): 71–83
https://doi.org/10.1177/1473871611430769
23 Malik A, Maciejewski R, Towers S, McCullough S, Ebert D S. Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1863–1872
https://doi.org/10.1109/TVCG.2014.2346926
24 Hollt T, Magdy A, Zhan P, Chen G, Gopalakrishnan G, Hoteit I, Hansen C D, Hadwiger M. Ovis: a framework for visual analysis of ocean forecast ensembles. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(8): 1114–1126
https://doi.org/10.1109/TVCG.2014.2307892
83 Bögl M, Aigner W, Filzmoser P, Gschwandtner T, Lammarsch T, Miksch S, Rind A. Visual analytics methods to guide diagnostics for time series model predictions. In: Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics. 2014
84 Andrienko N, Andrienko G, Rinzivillo S. Experiences from supporting predictive analytics of vehicle traffic. In: Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics. 2014
25 Doraiswamy H, Ferreira N, Damoulas T, Freire J, Silva C T. Using topological analysis to support event-guided exploration in urban data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2634–2643
https://doi.org/10.1109/TVCG.2014.2346449
26 Chen W, Guo F, Wang F Y. A survey of traffic data visualization. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 2970–2984
https://doi.org/10.1109/TITS.2015.2436897
27 Koch S, John M, Worner M, Muller A, Ertl T. Varifocalreader-in-depth visual analysis of large text documents. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1723–1732
https://doi.org/10.1109/TVCG.2014.2346677
28 Zhao J, Cao N, Wen Z, Song Y, Lin Y R, Collins C M. # FluxFlow: visual analysis of anomalous information spreading on social media. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1773–1782
https://doi.org/10.1109/TVCG.2014.2346922
29 Sun G, Wu Y, Liu S, Peng T Q, Zhu J J, Liang R. EvoRiver: visual analysis of topic coopetition on social media. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1753–1762
https://doi.org/10.1109/TVCG.2014.2346919
30 Klemm P, Oeltze-Jafra S, Lawonn K, Hegenscheid K, Volzke H, Preim B. Interactive visual analysis of image-centric cohort study data. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1673–1682
https://doi.org/10.1109/TVCG.2014.2346591
31 Arietta S M, Efros A, Ramamoorthi R, Agrawala M. City forensics: using visual elements to predict non-visual city attributes. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2624–2633
https://doi.org/10.1109/TVCG.2014.2346446
32 Ma Y X, Xu J Y, Peng D C, Zhang T, Jin C Z, Qu H M, Chen W, Peng Q S. A visual analysis approach for community detection of multi-context mobile social networks. Journal of Computer Science and Technology, 2013, 28(5): 797–809
https://doi.org/10.1007/s11390-013-1378-5
85 Maciejewski R, Hafen R, Rudolph S, Larew S G, Mitchell M, Cleveland W S, Ebert D S. Forecasting hotspots — a predictive analytics approach. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(4): 440–453
https://doi.org/10.1109/TVCG.2010.82
86 Cleveland R B, Cleveland W S, McRae J E, Terpenning I. STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 1990, 6(1): 3–73
87 Bryan C, Wu X, Mniszewski S, Ma K L. Integrating predictive analytics into a spatiotemporal epidemic simulation. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2015, 17–24
https://doi.org/10.1109/vast.2015.7347626
88 Chuang J, Socher R. Interactive visualizations for deep learning. In: Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics. 2014
89 Yeon H, Jang Y. Predictive visual analytics using topic composition. In: Proceedings of the 8th International Symposium on Visual Information Communication and Interaction. 2015, 1–8
https://doi.org/10.1145/2801040.2801054
90 Wu Y C, Liu S X, Yan K, Liu M C, Wu F Z. OpinionFlow: visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1763–1772
https://doi.org/10.1109/TVCG.2014.2346920
91 Choo J, Lee H, Kihm J, Park H. iVisClassifier: an interactive visual analytics system for classification based on supervised dimension reduction. In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technology. 2010, 27–34
https://doi.org/10.1109/vast.2010.5652443
92 Höferlin B, Netzel R, Höferlin M, Weiskopf D, Heidemann G. Interactive learning of ad-hoc classifiers for video visual analytics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology. 2012, 23–32
93 Heimerl F, Koch S, Bosch H, Ertl T. Visual classifier training for text document retrieval. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2839–2848
https://doi.org/10.1109/TVCG.2012.277
94 Munzner T. Visualization Analysis and Design. Boca Raton: CRC Press, 2014
95 Delevingne L. Hedge fund robots crushed human rivals in 2014. , 2015
96 Seifert M, Hadida A L. On the relative importance of linear model and human judge(s) in combined forecasting. Organizational Behavior and Human Decision Processes, 2013, 120(1): 24–36
https://doi.org/10.1016/j.obhdp.2012.08.003
97 Ruchikachorn P, Mueller K. Learning visualizations by analogy: promoting visual literacy through visualization morphing. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(9): 1028–1044
https://doi.org/10.1109/TVCG.2015.2413786
98 Amini F, Rufiange S, Hossain Z, Ventura Q, Irani P, McGuffin M J. The impact of interactivity on comprehending 2D and 3D visualizations of movement data. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 122–135
https://doi.org/10.1109/TVCG.2014.2329308
33 Van den Elzen S, Holten D, Blaas J, VanWijk J J. Dynamic network visualization with extended massive sequence views. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(8): 1087–1099
https://doi.org/10.1109/TVCG.2013.263
34 Van den Elzen S, Van Wijk J J. Multivariate network exploration and presentation: From detail to overview via selections and aggregations. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2310–2319
https://doi.org/10.1109/TVCG.2014.2346441
35 Van den Elzen S, Holten D, Blaas J, Van Wijk J J. Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 1–10
https://doi.org/10.1109/TVCG.2015.2468078
36 Gschwandtner T, Gärtner J, Aigner W, Miksch S. A taxonomy of dirty time-oriented data. In: Proceedings of International Conference on Availability, Reliability, and Security. 2012, 58–72
https://doi.org/10.1007/978-3-642-32498-7_5
37 Eaton C, Plaisant C, Drizd T. Visualizing missing data: graph interpretation user study. In: Proceedings of IFIP Conference on Human Computer Interaction. 2005, 861–872
https://doi.org/10.1007/11555261_68
38 Templ M, Alfons A, Filzmoser P. Exploring incomplete data using visualization techniques. Advances in Data Analysis and Classification, 2012, 6(1): 29–47
https://doi.org/10.1007/s11634-011-0102-y
[1] Genan DAI, Xiaoyang HU, Youming GE, Zhiqing NING, Yubao LIU. Attention based simplified deep residual network for citywide crowd flows prediction[J]. Front. Comput. Sci., 2021, 15(2): 152317-.
[2] Yuling MA, Chaoran CUI, Jun YU, Jie GUO, Gongping YANG, Yilong YIN. Multi-task MIML learning for pre-course student performance prediction[J]. Front. Comput. Sci., 2020, 14(5): 145313-.
[3] Guijuan ZHANG, Yang LIU, Xiaoning JIN. A survey of autoencoder-based recommender systems[J]. Front. Comput. Sci., 2020, 14(2): 430-450.
[4] Lu LIU, Shang WANG. Meta-path-based outlier detection in heterogeneous information network[J]. Front. Comput. Sci., 2020, 14(2): 388-403.
[5] Xu-Ying LIU, Sheng-Tao WANG, Min-Ling ZHANG. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data[J]. Front. Comput. Sci., 2019, 13(5): 996-1009.
[6] Satoshi MIYAZAWA, Xuan SONG, Tianqi XIA, Ryosuke SHIBASAKI, Hodaka KANEDA. Integrating GPS trajectory and topics from Twitter stream for human mobility estimation[J]. Front. Comput. Sci., 2019, 13(3): 460-470.
[7] Shuaiqiang WANG, Yilong YIN. Polygene-based evolutionary algorithms with frequent pattern mining[J]. Front. Comput. Sci., 2018, 12(5): 950-965.
[8] Bo SUN, Haiyan CHEN, Jiandong WANG, Hua XIE. Evolutionary under-sampling based bagging ensemble method for imbalanced data classification[J]. Front. Comput. Sci., 2018, 12(2): 331-350.
[9] Yuan LI, Yuhai ZHAO, Guoren WANG, Xiaofeng ZHU, Xiang ZHANG, Zhanghui WANG, Jun PANG. Finding susceptible and protective interaction patterns in large-scale genetic association study[J]. Front. Comput. Sci., 2017, 11(3): 541-554.
[10] Chengliang WANG,Yayun PENG,Debraj DE,Wen-Zhan SONG. DPHK: real-time distributed predicted data collecting based on activity pattern knowledge mined from trajectories in smart environments[J]. Front. Comput. Sci., 2016, 10(6): 1000-1011.
[11] Xin XU,Wei WANG,Jianhong WANG. A three-way incremental-learning algorithm for radar emitter identification[J]. Front. Comput. Sci., 2016, 10(4): 673-688.
[12] Wenmei LIU,Hui LIU. Major motivations for extract method refactorings: analysis based on interviews and change histories[J]. Front. Comput. Sci., 2016, 10(4): 644-656.
[13] Mingqiang GUO,Ying HUANG,Zhong XIE. A balanced decomposition approach to real-time visualization of large vector maps in CyberGIS[J]. Front. Comput. Sci., 2015, 9(3): 442-455.
[14] Djamal ZIANI. Feature selection on probabilistic symbolic objects[J]. Front. Comput. Sci., 2014, 8(6): 933-947.
[15] Yaobin HE, Haoyu TAN, Wuman LUO, Shengzhong FENG, Jianping FAN. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data[J]. Front. Comput. Sci., 2014, 8(1): 83-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed