Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2019, Vol. 13 Issue (3) : 460-470    https://doi.org/10.1007/s11704-017-6464-3
RESEARCH ARTICLE
Integrating GPS trajectory and topics from Twitter stream for human mobility estimation
Satoshi MIYAZAWA1(), Xuan SONG2, Tianqi XIA1, Ryosuke SHIBASAKI2, Hodaka KANEDA3
1. Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8563, Japan
2. Center for Spatial Information Science, The University of Tokyo, Kashiwa 277-8568, Japan
3. Zenrin DataCom Co.,Ltd, Tokyo 108-6206, Japan
 Download: PDF(1241 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Understanding urban dynamics and large-scale human mobility will play a vital role in building smart cities and sustainable urbanization. Existing research in this domain mainly focuses on a single data source (e.g., GPS data, CDR data, etc.). In this study, we collect big and heterogeneous data and aim to investigate and discover the relationship between spatiotemporal topics found in geo-tagged tweets and GPS traces from smartphones. We employ Latent Dirichlet Allocation-based topicmodeling on geo-tagged tweets to extract and classify the topics. Then the extracted topics from tweets and temporal population distribution from GPS traces are jointly used to model urban dynamics and human crowd flow. The experimental results and validations demonstrate the efficiency of our approach and suggest that the fusion of cross-domain data for urban dynamics modeling is more practical than previously thought.

Keywords GPS trajectory      human mobility      SNS      locationbasedsocial network (LBSN)      topic modeling      data mining      spatiotemporal topic     
Corresponding Author(s): Satoshi MIYAZAWA   
Just Accepted Date: 16 May 2017   Online First Date: 25 May 2018    Issue Date: 24 April 2019
 Cite this article:   
Satoshi MIYAZAWA,Xuan SONG,Tianqi XIA, et al. Integrating GPS trajectory and topics from Twitter stream for human mobility estimation[J]. Front. Comput. Sci., 2019, 13(3): 460-470.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-017-6464-3
https://academic.hep.com.cn/fcs/EN/Y2019/V13/I3/460
1 YZheng, LCapra, OWolfson, H Yang. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38
https://doi.org/10.1145/2629592
2 DZhang, ZWang, BGuo, Z Yu. Social and community intelligence: technologies and trends. IEEE Software, 2012, 29(4): 88–92
https://doi.org/10.1109/MS.2012.96
3 ZXiong, YZheng, CLi. Data vitalization’s perspective towards smart city: a reference model for data service oriented architecture. In: Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 2014, 865–874
https://doi.org/10.1109/CCGrid.2014.74
4 FCalabrese, MDiao, G DLorenzo, J Ferreira, CRatti. Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transportation Research Part C: Emerging Technologies, 2013, 26: 301–313
https://doi.org/10.1016/j.trc.2012.09.009
5 CKang, XMa, DTong, Y Liu. Intra-urban human mobility patterns: an urban morphology perspective. Physica A: Statistical Mechanics and its Applications, 2012, 391(4): 1702–1717
https://doi.org/10.1016/j.physa.2011.11.005
6 XSong, QZhang, YSekimoto, R Shibasaki. Prediction of human emergency behavior and their mobility following large-scale disaster. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 5–14
https://doi.org/10.1145/2623330.2623628
7 ZZhai, BLiu, JWang, H Xu, PJia. Product feature grouping for opinion mining. IEEE Intelligent Systems, 2012, 27(4): 37–44
https://doi.org/10.1109/MIS.2011.38
8 YKim, JHan, CYuan. TOPTRAC: topical trajectory pattern mining. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, 587–596
https://doi.org/10.1145/2783258.2783342
9 TCheng, TWicks. Event detection using Twitter: a spatio-temporal approach. PLoS One, 2014, 9(6): e97807
https://doi.org/10.1371/journal.pone.0097807
10 YGrinberger, NShoval. A temporal-contextual analysis of urban dynamics using location-based data. International Journal of Geographical Information Science, 2015, 29(11): 1969–1987
https://doi.org/10.1080/13658816.2015.1049951
11 SSpaccapietra, CParent, M LDamiani, J A De Macedo, FPorto, CVangenot. A conceptual view on trajectories. Data & knowledge engineering, 2008, 65(1): 126–146
https://doi.org/10.1016/j.datak.2007.10.008
12 YSekimoto, R Shibasaki, HKanasugi , TUsui, Y Shimazaki. PFlow: reconstructing people flow recycling large-scale social survey data. IEEE Pervasive Computing, 2011, 10(4), 27–35
https://doi.org/10.1109/MPRV.2011.43
13 JWang, QGu, JWu, GLiu, ZXiong. Traffic speed prediction and congestion source exploration: a deep learning method. In: Proceedings of the 16th IEEE International Conference on Data Mining. 2016, 499–508
https://doi.org/10.1109/ICDM.2016.0061
14 JWang, FGao, PCui, C Li, ZXiong. Discovering urban spatiotemporal structure from time-evolving traffic networks. In: Proceedings of the 16th Asia-Pacific Web Conference. 2014, 93–104
15 WDong, YWang, HYu. An identification model of urban critical links with macroscopic fundamental diagram theory. Frontiers of Computer Science, 2017, 11(1): 27–37
https://doi.org/10.1007/s11704-016-6080-7
16 LChen, XMa, GPan, J Jakubowicz. Understanding bike trip patterns leveraging bike sharing system open data. Frontiers of Computer Science, 2017, 11(1): 38–48
https://doi.org/10.1007/s11704-016-6006-4
17 JWang, YWang, DZhang, L Wang, CChen, J WLee, YHe. Realtime and generic queue time estimation based on mobile crowdsensing. Frontiers of Computer Science, 2017, 11(1): 49–60
https://doi.org/10.1007/s11704-016-5553-z
18 CChen, XChen, ZWang, Y Wang, DZhang. Scenicplanner: planning scenic travel routes leveraging heterogeneous user-generated digital footprints. Frontiers of Computer Science, 2017, 11(1): 61–74
https://doi.org/10.1007/s11704-016-5550-2
19 XSong, QZhang, YSekimoto, T Horanont, SUeyama, RShibasaki. Modeling and probabilistic reasoning of population evacuation during large-scale disaster. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013, 1231–1239
https://doi.org/10.1145/2487575.2488189
20 JWang, CChen, JWu, ZXiong. No longer sleeping with a bomb: a duet system for protecting urban safety from dangerous goods. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 1673–1681
https://doi.org/10.1145/3097983.3097985
21 JWang, YLin, JWu, ZWang, ZXiong. Coupling implicit and explicit knowledge for customer volume prediction. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, 1569–1575
22 ZFan, XSong, RShibasaki. CitySpectrum: anon-negative tensor factorization approach. In: Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2014, 213–223
https://doi.org/10.1145/2632048.2636073
23 JYuan, YZheng, XXie. Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 186–194
https://doi.org/10.1145/2339530.2339561
24 BGuo, ZWang, ZYu, YWang, N YYen, R Huang, , XZhou. Mobile crowd sensing and computing: the review of an emerging humanpowered sensing paradigm. ACM Computing Surveys, 2015, 48(1): 7
https://doi.org/10.1145/2794400
25 FMorstatter, J Pfeffer, HLiu, K MCarley. Is the sample good enough? Comparing data from Twitter’s streaming API with Twitter’s firehose. In: Proceedings of ICWSM. 2013, 400–408
26 ESteiger, J P De Albuquerque, AZipf. An advanced systematic literature review on spatiotemporal analyses of Twitter data. Transactions in GIS, 2015, 19(6): 809–834
https://doi.org/10.1111/tgis.12132
27 TCheng, TWicks. Event detection using Twitter: a spatio-temporal approach. PLoS One, 2014 , 9(6): e97807
https://doi.org/10.1371/journal.pone.0097807
28 TSakaki, M Okazaki, YMatsuo. Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 919–931
https://doi.org/10.1109/TKDE.2012.29
29 AAbbasi, T H Rashidi, MMaghrebi, S TWaller. Utilising location based social media in travel survey methods: bringing Twitter data into the play. In: Proceedings of the 8th ACM SIGSPATIAL International Workshop on Location-Based Social Networks. 2015, 1–9
https://doi.org/10.1145/2830657.2830660
30 JAo, PZhang, YCao. Estimating the locations of emergency events from Twitter streams. Procedia Computer Science, 2014, 31: 731–739
https://doi.org/10.1016/j.procs.2014.05.321
31 M ACameron, RPower, BRobinson, J Yin. Emergency situation awareness from twitter for crisis management. In: Proceedings of the 21st International Conference on World Wide Web. 2012, 695–698
https://doi.org/10.1145/2187980.2188183
32 VFrias-Martinez, E Frias-Martinez. Spectral clustering for sensing urban land use using Twitter activity. Engineering Applications of Artificial Intelligence, 2014, 35: 237–245
https://doi.org/10.1016/j.engappai.2014.06.019
33 RJurdak, KZhao, JLiu, M AbouJaoude, MCameron, DNewth. Understanding human mobility from Twitter. PLoS One, 2015, 10(7): e0131469
https://doi.org/10.1371/journal.pone.0131469
34 J IBlanford, ZHuang, ASavelyev, A M MacEachren. Geo-located tweets. Enhancing mobility maps and capturing cross-border movement. PLoS One, 2015, 10(6): e0129202
https://doi.org/10.1371/journal.pone.0129202
35 BHawelka, ISitko, EBeinat, S Sobolevsky, PKazakopoulos, CRatti. Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 2014, 41(3): 260–271
https://doi.org/10.1080/15230406.2014.890072
36 BPan, YZheng, DWilkie, C Shahabi. Crowd sensing of traffic anomalies based on human mobility and social media. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013, 334–343
https://doi.org/10.1145/2525314.2525343
37 R ˇ Reh˙uˇrek. Subspace tracking for latent semantic analysis. In: Proceedings of the 33rd European Conference on Advances in Information Retrieval. 2011, 289–300
38 D MBlei, A YNg, M IJordan. Latent dirichlet allocation. Journal of Machine Learning research, 2003, 3(4-5), 993–1022
39 M DHoffman, D MBlei, FBach. Online learning for latent dirichlet allocation. In: Proceedings of the Neural Information Processing Systems Conference. 2010, 856–864
40 YZheng. Methodologies for cross-domain data fusion: an overview. IEEE Transactions on Big Data, 2015, 1(1): 16–34
https://doi.org/10.1109/TBDATA.2015.2465959
41 JWang, XHe, ZWang, J W Wu, N JYuan, XXie, ZXiong. CD-CNN: a partially supervised cross-domain deep learning model for urban resident recognition. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
[1] Genan DAI, Xiaoyang HU, Youming GE, Zhiqing NING, Yubao LIU. Attention based simplified deep residual network for citywide crowd flows prediction[J]. Front. Comput. Sci., 2021, 15(2): 152317-.
[2] Yuling MA, Chaoran CUI, Jun YU, Jie GUO, Gongping YANG, Yilong YIN. Multi-task MIML learning for pre-course student performance prediction[J]. Front. Comput. Sci., 2020, 14(5): 145313-.
[3] Guijuan ZHANG, Yang LIU, Xiaoning JIN. A survey of autoencoder-based recommender systems[J]. Front. Comput. Sci., 2020, 14(2): 430-450.
[4] Lu LIU, Shang WANG. Meta-path-based outlier detection in heterogeneous information network[J]. Front. Comput. Sci., 2020, 14(2): 388-403.
[5] Xu-Ying LIU, Sheng-Tao WANG, Min-Ling ZHANG. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data[J]. Front. Comput. Sci., 2019, 13(5): 996-1009.
[6] Shuaiqiang WANG, Yilong YIN. Polygene-based evolutionary algorithms with frequent pattern mining[J]. Front. Comput. Sci., 2018, 12(5): 950-965.
[7] Bo SUN, Haiyan CHEN, Jiandong WANG, Hua XIE. Evolutionary under-sampling based bagging ensemble method for imbalanced data classification[J]. Front. Comput. Sci., 2018, 12(2): 331-350.
[8] Yuan LI, Yuhai ZHAO, Guoren WANG, Xiaofeng ZHU, Xiang ZHANG, Zhanghui WANG, Jun PANG. Finding susceptible and protective interaction patterns in large-scale genetic association study[J]. Front. Comput. Sci., 2017, 11(3): 541-554.
[9] Junhua LU,Wei CHEN,Yuxin MA,Junming KE,Zongzhuang LI,Fan ZHANG,Ross MACIEJEWSKI. Recent progress and trends in predictive visual analytics[J]. Front. Comput. Sci., 2017, 11(2): 192-207.
[10] Chengliang WANG,Yayun PENG,Debraj DE,Wen-Zhan SONG. DPHK: real-time distributed predicted data collecting based on activity pattern knowledge mined from trajectories in smart environments[J]. Front. Comput. Sci., 2016, 10(6): 1000-1011.
[11] Xin XU,Wei WANG,Jianhong WANG. A three-way incremental-learning algorithm for radar emitter identification[J]. Front. Comput. Sci., 2016, 10(4): 673-688.
[12] Wenmei LIU,Hui LIU. Major motivations for extract method refactorings: analysis based on interviews and change histories[J]. Front. Comput. Sci., 2016, 10(4): 644-656.
[13] Yaobin HE, Haoyu TAN, Wuman LUO, Shengzhong FENG, Jianping FAN. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data[J]. Front. Comput. Sci., 2014, 8(1): 83-99.
[14] Fabian GIESEKE, Gabriel MORUZ, Jan VAHRENHOLD. Resilient k-d trees: k-means in space revisited[J]. Front Comput Sci, 2012, 6(2): 166-178.
[15] Xiaolong LI, Gang PAN, Zhaohui WU, Guande QI, Shijian LI, Daqing ZHANG, Wangsheng ZHANG, Zonghui WANG. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Front Comput Sci, 2012, 6(1): 111-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed