Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (2) : 217-230    https://doi.org/10.1007/s11704-017-6132-7
REVIEW ARTICLE
A survey on one-bit compressed sensing: theory and applications
Zhilin LI(), Wenbo XU, Xiaobo ZHANG, Jiaru LIN
Key Lab of Universal Wireless Communications,Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(512 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the past few decades, with the growing popularity of compressed sensing (CS) in the signal processing field, the quantization step in CS has received significant attention. Current research generally considers multi-bit quantization. For systems employing quantization with a sufficient number of bits, a sparse signal can be reliably recovered using various CS reconstruction algorithms.

Recently, many researchers have begun studying the onebit case for CS. As an extreme case of CS, onebit CS preserves only the sign information of measurements, which reduces storage costs and hardware complexity. By treating one-bit measurements as sign constraints, it has been shown that sparse signals can be recovered using certain reconstruction algorithms with a high probability. Based on the merits of one-bit CS, it has been widely applied to many fields, such as radar, source location, spectrum sensing, and wireless sensing network.

In this paper, the characteristics of one-bit CS and related works are reviewed. First, the framework of one-bit CS is introduced. Next, we summarize existing reconstruction algorithms. Additionally, some extensions and practical applications of one-bit CS are categorized and discussed. Finally, our conclusions and the further research topics are summarized.

Keywords compressed sensing      one-bit quantization      sign information      support      consistency     
Corresponding Author(s): Zhilin LI   
Just Accepted Date: 05 January 2017   Online First Date: 06 March 2018    Issue Date: 22 March 2018
 Cite this article:   
Zhilin LI,Wenbo XU,Xiaobo ZHANG, et al. A survey on one-bit compressed sensing: theory and applications[J]. Front. Comput. Sci., 2018, 12(2): 217-230.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-017-6132-7
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I2/217
1 Donoho D L. Compressed sensing. IEEE Transanctions on Information Theory, 2006, 52(4): 1289–1306
https://doi.org/10.1109/TIT.2006.871582
2 Lexa M A, Davies M E, Thompson J S. Reconciling compressive sampling systems for spectrally sparse continuous-time signals. IEEE Transactions on Signal Processing, 2012, 60(1): 155–171
https://doi.org/10.1109/TSP.2011.2169408
3 Xu W B, Li Z L, Tian Y, Wang Y, Lin J R. Perturbation analysis of simultaneous orthogonal matching pursuit. Signal Processing, 2015, 116(C): 91–100
https://doi.org/10.1016/j.sigpro.2015.04.009
4 Gao K, Batalama S N, Pados D A, Suter B W. Compressive sampling with generalized polygons. IEEE Transactions on Signal Processing, 2011, 59(10): 4759–4766
https://doi.org/10.1109/TSP.2011.2160860
5 Laska J N, Baraniuk R G. Regime change: bit-depth versus measurement-rate in compressive sensing. IEEE Transactions on Signal Processing, 2012, 60(7): 3496–3505
https://doi.org/10.1109/TSP.2012.2194710
6 Jacques L, Laska J N, Boufounos P T, Baraniuk R G. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on Information Theory, 2011, 59(4): 2082–2102
https://doi.org/10.1109/TIT.2012.2234823
7 Baraniuk R, Foucart S, Needell D, Plan Y, Wootters M. Exponential decay of reconstruction error from binary measurements of sparse signals. arXiv preprint, arXiv:1407.8246, 2014
8 Knudson K, Saab R, Ward R. One-bit compressive sensing with norm estimation. IEEE Transactions on Information Theory, 2014, 62(5): 2748–2758
https://doi.org/10.1109/TIT.2016.2527637
9 Plan Y, Vershynin R. Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Transactions on Information Theory, 2013, 59(1): 482–494
https://doi.org/10.1109/TIT.2012.2207945
10 Ai A, Lapanowski A, Plan Y, Vershynin R. One-bit compressed sensing with non-gaussian measurements. Linear Algebra & Its Applications, 2014, 441(1): 222–239
https://doi.org/10.1016/j.laa.2013.04.002
11 Fang J, Shen Y, Li H. One-bit quantization design and adaptive methods for compressed sensing. Mathematics, 2013
12 Boufounos P T, Baraniuk R G. 1-bit compressive sensing. In: Proceedings of the 42nd Annual Conference on Information Sciences and Systems. 2008, 16–21
https://doi.org/10.1109/CISS.2008.4558487
13 Hale E T, Yin W, Zhang Y. A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. CAAM Technical Report TR07-07. 2007
14 Laska J N, Wen Z, Yin W, Baraniuk R G. Trust, but verify: fast and accurate signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal Processing, 2011, 59(11): 5289–5301
https://doi.org/10.1109/TSP.2011.2162324
15 Boufounos P T. Greedy sparse signal reconstruction from sign measurements. In: Proceedings of the Conference Record of the 43rd Asilomar Conference on Signals, Systems and Computers. 2009, 1305–1309
https://doi.org/10.1109/ACSSC.2009.5469926
16 Yan M, Yang Y, Osher S. Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Transanctions on Signal Processing, 2012, 60(7): 3868–3875
https://doi.org/10.1109/TSP.2012.2193397
17 Movahed A, Panahi A, Durisi G. A robust rfpi-based 1-bit compressive sensing reconstruction algorithm. In: Proceedings of the IEEE Information Theory Workshop. 2012, 567–571
https://doi.org/10.1109/ITW.2012.6404739
18 Yang Z, Xie L, Zhang C. Variational bayesian algorithm for quantized compressed sensing. IEEE Transactions on Signal Processing, 2013, 61(11): 2815–2824
https://doi.org/10.1109/TSP.2013.2256901
19 Li F W, Fang J, Li H B, Huang L. Robust one-bit Bayesian compressed sensing with sign-flip errors. IEEE Signal Processing Letters, 2015, 22(7): 857–861
https://doi.org/10.1109/LSP.2014.2373380
20 Zhou T Y, Tao D C. 1-bit hamming compressed sensing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings. 2012, 1862–1866
https://doi.org/10.1109/ISIT.2012.6283603
21 Tian Y, Xu W B, Wang Y, Yang H W. A distributed compressed sensing scheme based on one-bit quantization. In: Proceedings of the 79th Vehicular Technology Conference. 2014, 1–6
https://doi.org/10.1109/VTCSpring.2014.7022772
22 Xiong J P, Tang Q H, Zhao J. 1-bit compressive data gathering for wireless sensor networks. Journal of Sensors, 2014, 2014(7): 177–183
https://doi.org/10.1155/2014/805423
23 Shen Y N, Fang J, Li H B. One-bit compressive sensing and source location is wireless sensor networks. In: Proceedings of IEEE China Summit and International Conference on Signal and Information Processing. 2013, 379–383
24 Feng C, Valaee S, Tan Z H. Multiple target localization using compressive sensing. In: Proceedings of IEEE Global Telecommunications Conference. 2009, 1–6
https://doi.org/10.1109/GLOCOM.2009.5425808
25 Chen C H, Wu J Y. Amplitude-aided 1-bit compressive sensing over noisy wireless sensor networks. IEEE Wireless Communications Letters, 2015, 4(5): 473–476
https://doi.org/10.1109/LWC.2015.2441702
26 Meng J, Li H S, Han Z. Sparse event detection in wireless sensor neworks using compressive sensing. In: Proceedings of the 43rd Annual Conference on Information Sciences and Systems. 2009, 181–185
27 Sakdejayont T, Lee D, Peng Y, Yamashita Y, Morikawa H. Evaluation of memory-efficient 1-bit compressed sensing in wireless sensor networks. In: Proceedings of the Hummanitarian Technologhy Conference. 2013, 326–329
https://doi.org/10.1109/R10-HTC.2013.6669064
28 Lee D, Sasaki T, Yamada T, Akabane K, Yamaguchi Y, Uehara K. Spectrum sensing for networked system using 1-bit compressed sensing with partial random circulant measurement matrices. In: Proceedings of the Vehicular Technology Conference. 2012, 1–5
https://doi.org/10.1109/VETECS.2012.6240259
29 Fu N, Yang L, Zhang J C. Sub-nyquist 1 bit sampling system for sparse multiband signals. In: Proceedings of the 22nd European Signal Processing Conference. 2014, 736–740
30 Alberti G, Franceschetti G, Schirinzi G, Pascazio V. Time-domain convolution of one-bit coded radar signals. IEE Proceedings F- Radar and Signal Processing, 1991, 138(5): 438–444
https://doi.org/10.1049/ip-f-2.1991.0057
31 Franceschetti G, Merolla S, Tesauro M. Phase quantized sar signal processing: Theory and experiments. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 201–214
https://doi.org/10.1109/7.745692
32 Dong X, Zhang Y H. A map approach for 1-bit compressive sensing in synthetic aperture radar imaging. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1237–1241
https://doi.org/10.1109/LGRS.2015.2390623
33 Allstot E G, Chen A Y, Dixon A M R, Gangopadhyay D, Mitsuda H, Allstot D J. Compressed sensing of ECG bio-signals using one-bit measurement matrices. In: Proceedings of the 9th IEEE International New Circuits and Systems Conference. 2011, 213–216
https://doi.org/10.1109/NEWCAS.2011.5981293
34 Haboba J, Mangia M, Rovatti R, Setti G. An architecture for 1-bit localized compressive sensing with applications to eeg. In: Proceedings of IEEE Biomedical Circuits and Systems Conference. 2011, 137–140
https://doi.org/10.1109/BioCAS.2011.6107746
35 Candes E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9–10): 589–592
https://doi.org/10.1016/j.crma.2008.03.014
36 Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 2009, 57(7): 2479–2493
https://doi.org/10.1109/TSP.2009.2016892
37 Kaasschieter E F. Preconditioned conjugate gradients for solving singular systems. Journal of Computational and Applied Mathematics, 1988, 24(1–2): 265–275
https://doi.org/10.1016/0377-0427(88)90358-5
38 Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274
https://doi.org/10.1016/j.acha.2009.04.002
39 Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. 1993, 40–44
https://doi.org/10.1109/ACSSC.1993.342465
40 Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 2009, 9(3): 317–334
https://doi.org/10.1007/s10208-008-9031-3
41 Needell D, Tropp J A. Cosamp: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321
https://doi.org/10.1016/j.acha.2008.07.002
42 Do T T, Lu G, Nguyen N, Tran T D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers. 2008, 581–587
https://doi.org/10.1109/ACSSC.2008.5074472
43 Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356
https://doi.org/10.1109/TSP.2007.914345
44 Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129–159
https://doi.org/10.1137/S003614450037906X
45 Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273–282
https://doi.org/10.1111/j.1467-9868.2011.00771.x
46 Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223
https://doi.org/10.1002/cpa.20124
47 Shen Y, Fang J, Li H, Chen Z. A one-bit reweighted iterative algorithm for sparse signal recovery. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, 5915–5919
https://doi.org/10.1109/ICASSP.2013.6638799
48 Zhang L J, Yi J F, Jin R. Efficient algorithms for robust one-bit compressive sensing. In: Proceedings of the 31st International Conference on Machine Learning. 2014, 820–828
49 Wang H, Wan Q. One bit support recovery. In: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing. 2010, 1–4
https://doi.org/10.1109/WICOM.2010.5600266
50 Plan Y, Vershynin R. One-bit compressed sensing by linear programming. Communications on Pure and Applied Mathematics, 2013, 66(8): 1275–1297
https://doi.org/10.1002/cpa.21442
51 North P, Needell D. One-bit compressive sensing with partial support. In: Proceedings of the 6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. 2015, 349–352
https://doi.org/10.1109/CAMSAP.2015.7383808
52 Fu X, Han F M, Zou H X. Robust 1-bit compressive sensing against sign flips. In: Proceedings of IEEE Global Communications Conference. 2014, 3121–3125
https://doi.org/10.1109/GLOCOM.2014.7037285
53 Zayyani H, Korki M, Marvasti F. Dictionary learning for blind one bit compressed sensing. IEEE Signal Processing Letters, 2016, 23(2): 187–191
https://doi.org/10.1109/LSP.2015.2503804
54 Huang X L, Shi L, Yan M, Suykens J A K. Pinball loss minimization for one-bit compressive sensing. Mathematics, 2015
55 Yan M. Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM Journal on Imaging Sciences, 2013, 6(3): 1227–1245
https://doi.org/10.1137/12087178X
56 Tipping M. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1(3): 211–244
57 Chen S, Banerjee A. One-bit compressed sensing with the k-support norm. In: Proceedings of the 18th International Conference on Artificial Intelligence and Statistics. 2015, 138–146
58 Zhou T Y, Tao D C. k-bit hamming compressed sensing. In: Proceedings of IEEE International Symposium on Information Theory. 2013, 679–683
https://doi.org/10.1109/ISIT.2013.6620312
59 Baron D, Wakin M B, Duarte M F, Sarvotham S, Baraniuk R G. Distributed compressed sensing. Preprint, 2012, 22(10): 2729–2732
60 Yin H P, Li J X, Chai Y, Yang S X. A survey on distributed compressed sensing theory and applications. Frontiers of Computer Science, 2014, 8(6): 893–904
https://doi.org/10.1007/s11704-014-3461-7
61 Tian Y, Xu W B, Wang Y, Yang H W. Joint reconstruction algorithms for one-bit distributed compressed sensing. In: Proceedings of the 22nd International Conference on Telecommunications. 2015, 338–342
https://doi.org/10.1109/ICT.2015.7124707
62 Nakarmi U, Rahnavard N. Joint wideband spectrum sensing in frequency overlapping cognitive radio networks using distributed compressive sensing. In: Proceedings of the Military Communications Conference. 2011, 1035–1040
https://doi.org/10.1109/MILCOM.2011.6127433
63 Li Z L, Xu W B, Wang Y, Lin J R. A tree-based regularized orthogonal matching pursuit algorithm. In: Proceedings of the 22nd International Conference on Telecommunications. 2015, 343–347
https://doi.org/10.1109/ICT.2015.7124708
64 He L H, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing. IEEE Transactions on Signal Processing, 2009, 57(9): 3488–3497
https://doi.org/10.1109/TSP.2009.2022003
65 Allstot E G, Chen A Y, Dixon A M R, Gangopadhyay D. Compressive sampling of ecg bio-signals: quantization noise and sparsity considerations. In: Proceedings of the IEEE Biomedical Circuits and Systems Conference. 2010, 41–44
https://doi.org/10.1109/BIOCAS.2010.5709566
66 Haboba J, Rovatti R, Setti G. Rads converter: an approach to analog to information conversion. In: Proceedings of the 19th IEEE International Conference on Electronics, Circuits and Systems. 2012, 49–52
https://doi.org/10.1109/ICECS.2012.6463560
67 Movahed A, Reed M C. Iterative detection for compressive sensing: Turbo cs. In: Proceedings of IEEE International Conference on Communications. 2014, 4518–4523
https://doi.org/10.1109/ICC.2014.6884033
68 Yamada T, Lee D, Toshinaga H, Akabane K, Yamaguchi Y, Uehara K. 1-bit compressed sensing with edge detection for compressed radio wave data transfer. In: Proceedings of the 18th Asia-Pacific Conference on Communications. 2012, 407–411
https://doi.org/10.1109/APCC.2012.6388170
69 Mo J, Schniter P, Prelcic N G, Heath R W. Channel estimation in millimeter wave mimo systems with one-bit quantization. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. 2014, 957–961
https://doi.org/10.1109/ACSSC.2014.7094595
70 Luo C. A low power self-capacitive touch sensing analog front end with sparse multi-touch detection. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2014, 3007–3011
https://doi.org/10.1109/ICASSP.2014.6854152
71 Chen H, Shao H. Sparse recovery-based doa estimator with signaldependent dictionary. In: Proceedings of the 8th International Conference on Signal Processing and Communication Systems. 2014, 1–4
72 Gupta A, Nowak R, Recht B. Sample complexity for 1-bit compressed sensing and sparse classification. In: Proceedings of IEEE International Symposium on Information Theory Proceedings. 2010, 1553–1557
https://doi.org/10.1109/ISIT.2010.5513510
73 Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489–509
https://doi.org/10.1109/TIT.2005.862083
74 Rauhut H. Circulant and toeplitz matrices in compressed sensing. Mathematics, 2009
75 Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magzine, 2008, 25(2): 21–30
https://doi.org/10.1109/MSP.2007.914731
76 Candes E, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215
https://doi.org/10.1109/TIT.2005.858979
77 Scarlett J, Evans J S, Dey S. Compressed sensing with prior information: information-theoretic limits and practical decoders. IEEE Transactions on Signal Processing, 2013, 61(2): 427–439
https://doi.org/10.1109/TSP.2012.2225051
78 Eldar Y C, Kuppinger P, Bolcskei H. Compressed sensing of blocksparse signals: uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 2010, 58(6): 3042–3054
https://doi.org/10.1109/TSP.2010.2044837
79 Yu X H, Baek S J. Sufficient conditions on stable recovery of sparse signals with partial support information. IEEE Signal Processing Letters, 2013, 20(5): 539–542
https://doi.org/10.1109/LSP.2013.2254712
80 Friedlander M P, Mansour H, Saab R, Yilmaz O. Recovering compressively sampled signals using partial support information. IEEE Transactions on Information Theory, 2012, 58(2): 1122–1134
https://doi.org/10.1109/TIT.2011.2167214
81 Miosso C J, Borries R V, Pierluissi J H. Compressive sensing with prior information: requirements and probabilities of reconstruction in l1- minimization. IEEE Transactions on Signal Processing, 2013, 61(9): 2150–2164
https://doi.org/10.1109/TSP.2012.2231076
82 Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory, 2010, 56(9): 4395–4401
https://doi.org/10.1109/TIT.2010.2054653
83 Liu E, Temlyakov V N. The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Transactions on Information Theory, 2012, 58(4): 2040–2047
https://doi.org/10.1109/TIT.2011.2177632
84 Ding J, Chen L M, Gu Y T. Perturbation analysis of orthogonal matching pursuit. IEEE Transactions on Signal Processing, 2013, 61(2): 398–410
https://doi.org/10.1109/TSP.2012.2222377
85 Mo Q, Shen Y. A remark on the restricted isometry property in orthogonal matching pursuit. IEEE Transactions on Infirmation Theroy, 2012, 58(6): 3654–3656
https://doi.org/10.1109/TIT.2012.2185923
86 Maleh R. Improved RIP analysis of orthogonal matching pursuit. Computer Science, 2011
87 Dai W, Milenkovic O. Subspace pursuit for compressive sensing: Closing the gap between performance and complexity. IEEE Transactions on Infirmation Theroy, 2008, 55(5): 2230–2249
https://doi.org/10.1109/TIT.2009.2016006
[1] Di MA, Songcan CHEN. Bayesian compressive principal component analysis[J]. Front. Comput. Sci., 2020, 14(4): 144303-.
[2] Chenchen HUANG, Huiqi HU, Xing WEI, Weining QIAN, Aoying ZHOU. Partition pruning for range query on distributed log-structured merge-tree[J]. Front. Comput. Sci., 2020, 14(3): 143604-.
[3] Hui XUE, Haiming XU, Xiaohong CHEN, Yunyun WANG. A primal perspective for indefinite kernel SVM problem[J]. Front. Comput. Sci., 2020, 14(2): 349-363.
[4] Yuanrui ZHANG, Frédéric MALLET, Yixiang CHEN. A verification framework for spatio-temporal consistency language with CCSL as a specification language[J]. Front. Comput. Sci., 2020, 14(1): 105-129.
[5] Fei WANG, Tieyun QIAN, Bin LIU, Zhiyong PENG. Patent expanded retrieval via word embedding under composite-domain perspectives[J]. Front. Comput. Sci., 2019, 13(5): 1048-1061.
[6] Hui XUE, Sen LI, Xiaohong CHEN, Yunyun WANG. A maximum margin clustering algorithm based on indefinite kernels[J]. Front. Comput. Sci., 2019, 13(4): 813-827.
[7] Xiang FENG, Wanggen WAN, Richard Yi Da XU, Haoyu CHEN, Pengfei LI, J. Alfredo SÁNCHEZ. A perceptual quality metric for 3D triangle meshes based on spatial pooling[J]. Front. Comput. Sci., 2018, 12(4): 798-812.
[8] Hao ZHU,Yongming NIE,Tao YUE,Xun CAO. The role of prior in image based 3D modeling: a survey[J]. Front. Comput. Sci., 2017, 11(2): 175-191.
[9] Yu TANG,Hailong SUN,Xu WANG,Xudong LIU. An efficient and highly available framework of data recency enhancement for eventually consistent data stores[J]. Front. Comput. Sci., 2017, 11(1): 88-104.
[10] Kezhi LI,Shuang CONG. State of the art and prospects of structured sensing matrices in compressed sensing[J]. Front. Comput. Sci., 2015, 9(5): 665-677.
[11] Qiang LI,Yahong HAN,Jianwu DANG. Image decomposing for inpainting using compressed sensing in DCT domain[J]. Front. Comput. Sci., 2014, 8(6): 905-915.
[12] Hongpeng YIN,Jinxing LI,Yi CHAI,Simon X. YANG. A survey on distributed compressed sensing: theory and applications[J]. Front. Comput. Sci., 2014, 8(6): 893-904.
[13] Xu YU,Jing YANG,Zhiqiang XIE. Training SVMs on a bound vectors set based on Fisher projection[J]. Front. Comput. Sci., 2014, 8(5): 793-806.
[14] Shangfei WANG,Shan HE,Yue WU,Menghua HE,Qiang JI. Fusion of visible and thermal images for facial expression recognition[J]. Front. Comput. Sci., 2014, 8(2): 232-242.
[15] Wei KE, Xiaoshan LI, Zhiming LIU, Volker STOLZ. rCOS: a formal model-driven engineering method for component-based software[J]. Front Comput Sci, 2012, 6(1): 17-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed