Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (2) : 162303    https://doi.org/10.1007/s11704-020-0209-4
RESEARCH ARTICLE
Side-channel analysis attacks based on deep learning network
Yu OU1,2, Lang LI1,2,3()
1. Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang 421002, China
2. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
3. College of Computer Science and Technology, Hengyang Normal University, Hengyang 421002, China
 Download: PDF(6444 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There has been a growing interest in the side-channel analysis (SCA) field based on deep learning (DL) technology. Various DL network or model has been developed to improve the efficiency of SCA. However, few studies have investigated the impact of the different models on attack results and the exact relationship between power consumption traces and intermediate values. Based on the convolutional neural network and the autoencoder, this paper proposes a Template Analysis Pre-trained DL Classification model named TAPDC which contains three sub-networks. The TAPDC model detects the periodicity of power trace, relating power to the intermediate values and mining the deeper features by the multi-layer convolutional net. We implement the TAPDC model and compare it with two classical models in a fair experiment. The evaluative results show that the TAPDC model with autoencoder and deep convolution feature extraction structure in SCA can more effectively extract information from power consumption trace. Also, Using the classifier layer, this model links power information to the probability of intermediate value. It completes the conversion from power trace to intermediate values and greatly improves the efficiency of the power attack.

Keywords side-channel analysis      template attack      machine learning      deep learning     
Corresponding Author(s): Lang LI   
Just Accepted Date: 30 July 2020   Issue Date: 08 September 2021
 Cite this article:   
Yu OU,Lang LI. Side-channel analysis attacks based on deep learning network[J]. Front. Comput. Sci., 2022, 16(2): 162303.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-0209-4
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I2/162303
Fig.1  MLP in template analysis
Fig.2  Single neural node
Fig.3  Convolution layer and pooling layer
Fig.4  TAPDC model
Fig.5  700-dim power trace
Fig.6  Autoencoder structure
Fig.7  
Fig.8  The result or pre-training
Fig.9  Training result of MLP with (a) Training-set loss; (b) Testing-set loss
Fig.10  Attack results of MLP
Fig.11  Training result of CNN with (a) Training-set loss; (b) Testing-set loss
Fig.12  Attack result of CNN
Fig.13  Training result of TAPDC with (a) Training-set loss; (b) Testing-set loss
Fig.14  Attack result of TAPDC
Networks MLP CNN TAPDC
Mean result (intermediate value) Accuracy 0.006 0.0069 0.0071
Mean Hamming-weight Accuracy 0.4839 0.5721 0.581
Tab.1  Result of Accuracy
1 M Jaegeun , Y Jung Im , J P Hyuk . IoT application protection against power analysis attack. Computers and Electrical Engineering, 2018, 67 : 566– 578
https://doi.org/10.1016/j.compeleceng.2018.02.030
2 Brier E, Clavier C, Olivier F. Correlation power analysis with a leakage model. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems. 2004, 16–29
3 J Chang , H Wang , F Wang , A Zhang , Y Ji . RKA security for identity-based signature scheme. IEEE Access, 2020, 8 : 17833– 17841
https://doi.org/10.1109/ACCESS.2020.2967904
4 Mangard S, Pramstaller N, Oswald E. Successfully attacking masked AES hardware implementations. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems. 2005, 157–171
5 J Van Cleemput , B De Sutter , B De Bosschere . Adaptive compiler strategies for mitigating timing side channel attacks. IEEE Transactions on Dependable and Secure Computing, 2020, 17( 1): 35– 49
https://doi.org/10.1109/TDSC.2017.2729549
6 Yoshikawa M, Nozaki Y, Asahi K. Multiple rounds aware power analysis attack for a lightweight cipher SIMECK. In: Proceedings of IEEE Second International Conference on Big Data Computing Service & Applications. 2016, 252–256
7 BS GO , DV Le , MG Song , M Park , I K Yu . Design and electromagnetic analysis of an induction-type coilgun system with a pulse power module. IEEE Transactions on Plasma Science, 2019, 47( 1): 971– 976
https://doi.org/10.1109/TPS.2018.2874955
8 P Kocher , J Jaffe , B Jun , P Rohatgi . Introduction to differential power analysis. Journal of Cryptographic Engineering, 2011, 1( 1): 5– 27
https://doi.org/10.1007/s13389-011-0006-y
9 C Carlet , J C Faugere , C Goyet , G Renault . Analysis of the algebraic side channel attack. Journal of Cryptographic Engineering, 2012, 2( 1): 45– 62
https://doi.org/10.1007/s13389-012-0028-0
10 Ghoshal A, Patranabis S, Mukhopadhyay D. Template-based fault injection analysis of block ciphers. In: Proceedings of International Conference on Security, Privacy, and Applied Cryptography Engineering. 2018, 21–36
11 Wan W, Chen H, Chen J. The attack case of ECDSA on blockchain based on improved simple power analysis. In: Proceedings of International Conference on Artificial Intelligence and Security. 2019, 120–132
12 Rivest R L. Cryptography and machine learning. In: Proceedings of Advances in Cryptology–ASIACRYPT. 1991, 427-439
13 G Hospodar , B Gierlichs , E D Mulder , I Verbauwhede , J Vandewalle . Machine learning in side-channel analysis: a first study. Journal of Cryptographic Engineering, 2011, 1( 4): 293– 302
https://doi.org/10.1007/s13389-011-0023-x
14 Heuser A, Zohner M. Intelligent machine homicide-breaking cryptographic devices using support vector machines. In: Proceedings of Constructive Side-Channel Analysis and Secure Design. 2012, 249–264
15 Bartkewitz T, Lemke-Rust K. Efficient template attacks based on probabilistic multi-class support vector machines. In: Proceedings of Smart Card Research and Advanced Applications. 2012, 263–276
16 Lerman L, Poussier R, Bontempi G, Markowitch O, Standaert F X. Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Proceedings of Constructive Side-Channel Analysis and Secure Design. 2015, 20–33
17 Martinasek Z, Dzurenda P, Malina L. Profiling power analysis attack based on MLP in DPA contest V4.2. In: Proceedings of International Conference on Telecommunications and Signal Processing. 2016, 223–226
18 Z Martinasek , L Malina , K Trasy . Profiling power analysis attack based on multi-layer perceptron network. Computational Problems in Science and Engineering, 2015, 343 : 317– 339
19 Cagli E, Dumas C, Prouff E. Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Proceedings of International Conference on Cryptographic Hardware and Embedded Systems. 2017, 45–68
20 Maghrebi H, Portigliatti T, Prouff E. Breaking cryptographic implementations using deep learning techniques. In: Proceedings of International Conference on Security, Privacy, and Applied Cryptography Engineering. 2016, 3–26
21 E Prouff , R Strullu , R Benadjila , E Cagli , C Dumas . Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Journal of Cryptographic Engineering, 2020, 10( 2): 163– 188
https://doi.org/10.1007/s13389-019-00220-8
22 R Chen , W Wu , H Qi , J Wang , H Wang . A stacked autoencoder neural network algorithm for breast cancer diagnosis with magnetic detection electrical impedance tomography. IEEE Access, 2020, 8 : 5428– 5437
https://doi.org/10.1109/ACCESS.2019.2961810
[1] Yi WEI, Mei XUE, Xin LIU, Pengxiang XU. Data fusing and joint training for learning with noisy labels[J]. Front. Comput. Sci., 2022, 16(6): 166338-.
[2] Donghong HAN, Yanru KONG, Jiayi HAN, Guoren WANG. A survey of music emotion recognition[J]. Front. Comput. Sci., 2022, 16(6): 166335-.
[3] Tian WANG, Jiakun LI, Huai-Ning WU, Ce LI, Hichem SNOUSSI, Yang WU. ResLNet: deep residual LSTM network with longer input for action recognition[J]. Front. Comput. Sci., 2022, 16(6): 166334-.
[4] Pinzhuo TIAN, Yang GAO. Improving meta-learning model via meta-contrastive loss[J]. Front. Comput. Sci., 2022, 16(5): 165331-.
[5] Zhengxiong HOU, Hong SHEN, Xingshe ZHOU, Jianhua GU, Yunlan WANG, Tianhai ZHAO. Prediction of job characteristics for intelligent resource allocation in HPC systems: a survey and future directions[J]. Front. Comput. Sci., 2022, 16(5): 165107-.
[6] Zhen SONG, Yu GU, Zhigang WANG, Ge YU. DRPS: efficient disk-resident parameter servers for distributed machine learning[J]. Front. Comput. Sci., 2022, 16(4): 164321-.
[7] Tian WANG, Shiye LEI, Youyou JIANG, Choi CHANG, Hichem SNOUSSI, Guangcun SHAN, Yao FU. Accelerating temporal action proposal generation via high performance computing[J]. Front. Comput. Sci., 2022, 16(4): 164317-.
[8] Xin LIU, An WANG, Liehuang ZHU, Yaoling DING, Zeyuan LYU, Zongyue WANG. SCARE and power attack on AES-like block ciphers with secret S-box[J]. Front. Comput. Sci., 2022, 16(4): 164814-.
[9] Kaimin WEI, Tianqi LI, Feiran HUANG, Jinpeng CHEN, Zefan HE. Cancer classification with data augmentation based on generative adversarial networks[J]. Front. Comput. Sci., 2022, 16(2): 162601-.
[10] Suyu MEI. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes[J]. Front. Comput. Sci., 2022, 16(1): 161901-.
[11] Xinyu TONG, Ziao YU, Xiaohua TIAN, Houdong GE, Xinbing WANG. Improving accuracy of automatic optical inspection with machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161310-.
[12] Yi REN, Ning XU, Miaogen LING, Xin GENG. Label distribution for multimodal machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161306-.
[13] Xiaobing SUN, Tianchi ZHOU, Rongcun WANG, Yucong DUAN, Lili BO, Jianming CHANG. Experience report: investigating bug fixes in machine learning frameworks/libraries[J]. Front. Comput. Sci., 2021, 15(6): 156212-.
[14] Qiang LIN, Yusheng HAO, Caihong LIU. Wi-Fi based non-invasive detection of indoor wandering using LSTM model[J]. Front. Comput. Sci., 2021, 15(6): 156505-.
[15] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed