Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (1) : 161810    https://doi.org/10.1007/s11704-021-0410-0
RESEARCH ARTICLE
A verifiable privacy-preserving data collection scheme supporting multi-party computation in fog-based smart grid
Zhusen LIU1, Zhenfu CAO1,2(), Xiaolei DONG1, Xiaopeng ZHAO1, Haiyong BAO1,3, Jiachen SHEN1
1. Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
2. Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518055, China
3. School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
 Download: PDF(949 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Incorporation of fog computing with low latency, preprocession (e.g., data aggregation) and location awareness, can facilitate fine-grained collection of smart metering data in smart grid and promotes the sustainability and efficiency of the grid. Recently, much attention has been paid to the research on smart grid, especially in protecting privacy and data aggregation. However, most previous works do not focus on privacy-preserving data aggregation and function computation query on enormous data simultaneously in smart grid based on fog computation. In this paper, we construct a novel verifiable privacy-preserving data collection scheme supporting multi-party computation(MPC), named VPDC-MPC, to achieve both functions simultaneously in smart grid based on fog computing. VPDC-MPC realizes verifiable secret sharing of users’ data and data aggregation without revealing individual reports via practical cryptosystem and verifiable secret sharing scheme. Besides, we propose an efficient algorithm for batch verification of share consistency and detection of error reports if the external adversaries modify the SMs’ report. Furthermore, VPDC-MPC allows both the control center and users with limited resources to obtain arbitrary arithmetic analysis (not only data aggregation) via secure multi-party computation between cloud servers in smart grid. Besides, VPDC-MPC tolerates fault of cloud servers and resists collusion. We also present security analysis and performance evaluation of our scheme, which indicates that even with tradeoff on computation and communication overhead, VPDC-MPC is practical with above features.

Keywords smart grid      fog computing      data aggregation      verifiable secret sharing      error detection      secure multi-party computation      secure function query      privacy-preserving     
Corresponding Author(s): Zhenfu CAO   
Just Accepted Date: 05 February 2021   Issue Date: 23 November 2021
 Cite this article:   
Zhusen LIU,Zhenfu CAO,Xiaolei DONG, et al. A verifiable privacy-preserving data collection scheme supporting multi-party computation in fog-based smart grid[J]. Front. Comput. Sci., 2022, 16(1): 161810.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-021-0410-0
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I1/161810
1 G Arnold . Challenges and opportunities in smart grid: aposition article. Proceedings of the IEEE, 2011, 99 (6): 922- 927
https://doi.org/10.1109/JPROC.2011.2125930
2 M H Rehmani , M Reisslein , A Rachedi , M Erol-Kantarci , M Radenkovic . Guest editorial special section on smart grid and renewable energy resources: information and communication technologies with industry perspective. IEEE Transactions on Industrial Informatics, 2017, 13 (6): 3119- 3123
https://doi.org/10.1109/TII.2017.2756625
3 O Yousuf , R N Mir . A survey on the internet of things security. Information and Computer Security, 2019, 27 (2): 292- 323
https://doi.org/10.1108/ICS-07-2018-0084
4 X Li , J Li , S M Yiu , C Z Gao , J B Xiong . Privacy-preserving edge-assisted image retrieval and classification in IoT. Frontiers of Computer Science in China, 2019, 13 (5): 1136- 1147
https://doi.org/10.1007/s11704-018-8067-z
5 J Sequeiros , F Chimuco , M Samaila , M F Mário , R M I Pedro . Attack and system modeling applied to IoT, cloud, and mobile ecosystems: embedding security by design. ACM Computing Surveys, 2020, 53 (2): 1- 32
6 U Ozgur , S Tonyali , K Akkaya , F Senel . Comparative evaluation of smart grid AMI networks: performance under privacy. In: Proceedings of IEEE Symposium on Computers and Communication. 2016, 1134- 1136
7 M Wen , S Chen , R X Lu , B B Li , S J Chen . Security and efficiency enhanced revocable access control for fog-based smart grid system. IEEE Access, 2019, 7: 137968- 137981
https://doi.org/10.1109/ACCESS.2019.2942414
8 X D Shen , L H Zhu , C Xu , K Sharif , R X Lu . A privacy-preserving data aggregation scheme for dynamic groups in fog computing. Information Sciences, 2020, 514: 118- 130
https://doi.org/10.1016/j.ins.2019.12.007
9 N Tariq , M Asim , F Al-Obeidat , M Z Farooqi , T Baker , M Hammoudeh , I Ghafir . The security of big data in fog-enabled iot applications including blockchain: a survey. Sensors, 2019, 19 (8): 1788
https://doi.org/10.3390/s19081788
10 J Wu , K Ota , M X Dong , Li Jianhua , H K Wang . Big data analysis-based security situational awareness for smart grid. IEEE Transactions on Big Data, 2018, 4 (3): 408- 417
https://doi.org/10.1109/TBDATA.2016.2616146
11 C X Zhou . Security analysis of a certi cateless public provable data possession scheme with privacy preserving for cloud-based smart grid data management system. International Journal of Network Security, 2020, 22 (4): 584- 588
12 A Abidin , A Aly , S Cleemput , M Mustafa . An MPC-based privacypreserving protocol for a local electricity trading market. In: Proceedings of International Conference on Cryptology and Network Security. 2016, 615- 625
13 F Knirsch , G Eibl , D Engel . Error-resilient masking approaches for privacy preserving data aggregation. IEEE Transactions on Smart Grid, 2018, 9 (4): 3351- 3361
https://doi.org/10.1109/TSG.2016.2630803
14 S Tonyali , O Cakmak , K Akkaya , M M Mahmoud , I Güvenç . Secure data obfuscation scheme to enable privacy-preserving state estimation in smart grid AMI networks. IEEE Internet of Things Journal, 2016, 3 (5): 709- 719
https://doi.org/10.1109/JIOT.2015.2510504
15 F D Garcia , B Jacobs . Privacy-friendly energy-metering via homomorphic encryption. In: Proceedings of the 6th International Workshop of Security and Trust Management. 2010, 226- 238
16 Y N Liu , W Guo , C Fan , L Chang , C Cheng . A practical privacypreserving data aggregation (3PDA) scheme for smart grid. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1767- 1774
https://doi.org/10.1109/TII.2018.2809672
17 H J Jo , I S Kim , D H Lee . Efficient and privacy-preserving metering protocols for smart grid systems. IEEE Transactions on Smart Grid, 2016, 7 (3): 1732- 1742
https://doi.org/10.1109/TSG.2015.2449278
18 R X Lu , X H Liang , X D Lin , X Shen . EPPA: an efficient and privacypreserving aggregation scheme for secure smart grid communications. IEEE Transactions on Parallel and Distributed Systems, 2012, 23 (9): 1621- 1631
https://doi.org/10.1109/TPDS.2012.86
19 D He , N Kumar , S Zeadally , A Vinel , L Yang . Efficient and privacypreserving data aggregation scheme for smart grid against internal adversaries. IEEE Transactions on Smart Grid, 2017, 8 (5): 2411- 2419
https://doi.org/10.1109/TSG.2017.2720159
20 A Abdallah , X Shen . A lightweight lattice-based homomorphic privacypreserving data aggregation scheme for smart grid. IEEE Transactions on Smart Grid, 2018, 9 (1): 396- 405
https://doi.org/10.1109/TSG.2016.2553647
21 A Abdallah , X Shen . Lightweight security and privacy preserving scheme for smart grid customer-side networks. IEEE Transactions on Smart Grid, 2017, 8 (3): 1064- 1074
https://doi.org/10.1109/TSG.2015.2463742
22 A C Yao . Protocols for secure computations (extended abstract). In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. 1982, 160- 164
23 M Ben-Or , S Goldwasser , A Wigderson . Completeness theorems for noncryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. 1988, 1- 10
24 C Gentry . Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. 2009, 169- 178
25 I Chillotti , N Gama , M Georgieva , M Izabachène . Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security. 2017, 377- 408
https://doi.org/10.1007/978-3-319-70694-8_14
26 G Danezis , C Fournet , M Kohlweiss , S Z Béguelin . Smart meter aggregation via secret-sharing. In: Proceedings of the 2013 ACM Workshop on Smart Energy Grid Security. 2013, 75- 80
27 C Rottondi , G Verticale , C Krauss . Distributed privacy-preserving aggregation of metering data in smart grids. IEEE Journal on Selected Areas in Communications, 2013, 31 (7): 1342- 1354
https://doi.org/10.1109/JSAC.2013.130716
28 M A Mustafa , S Cleemput , A Aly , A Abidin . A secure and privacypreserving protocol for smart metering operational data collection. IEEE Transactions on Smart Grid, 2019, 10 (6): 6481- 6490
https://doi.org/10.1109/TSG.2019.2906016
29 T E Gamal . A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1984, 31: 469- 472
https://doi.org/10.1109/TIT.1985.1057074
30 T P Pedersen . Non-interactive and information-theoretic secure verifiable secret sharing. In: Proceedings of the 11th International Cryptology Conference. 1991, 129- 140
https://doi.org/10.1007/3-540-46766-1_9
31 P Paillier . Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques. 1999, 223- 238
https://doi.org/10.1007/3-540-48910-X_16
32 L Chen , R Lu , Z Cao . PDAFT: a privacy-preserving data aggregation scheme with fault tolerance for smart grid communications. Peer-to-Peer Networking and Applications, 2015, 8 (6): 1122- 1132
https://doi.org/10.1007/s12083-014-0255-5
33 D Boneh , E J Goh , K Nissim . Evaluating 2-dnf formulas on ciphertexts. In: Proceedings of the 2nd International Conference of Theory of Cryptography. 2005, 325- 341
34 C A Melchor , G Castagnos , P Gaborit . Lattice-based homomorphic encryption of vector spaces. In: Proceedings of 2008 IEEE International Symposium on Information Theory. 2008, 1858- 1862
https://doi.org/10.1109/ISIT.2008.4595310
35 X L Dong , J Zhou , K Alharbi , X D Lin , Z F Cao . An elgamal-based efficient and privacy-preserving data aggregation scheme for smart grid. In: Proceedings of IEEE Global Communications Conference. 2014, 4720- 4725
https://doi.org/10.1109/GLOCOM.2014.7037553
36 H Shen , M W Zhang , J Shen . Efficient privacy-preserving cube-data aggregation scheme for smart grids. IEEE Transactions on Information Forensics and Security, 2017, 12 (6): 1369- 1381
https://doi.org/10.1109/TIFS.2017.2656475
37 A Shamir . How to share a secret. Communications of the ACM, 1979, 22 (11): 612- 613
https://doi.org/10.1145/359168.359176
38 R Canetti . Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 2000, 13 (1): 143- 202
https://doi.org/10.1007/s001459910006
39 J N Liu , J Weng , A J Yang , Y Z Chen , X D Lin . Enabling efficient and privacy-preserving aggregation communication and function query for fog computing-based smart grid. IEEE Transaction on Smart Grid, 2020, 11 (1): 247- 257
https://doi.org/10.1109/TSG.2019.2920836
[1] Article highlights Download
[1] Abdelfettah MAATOUG, Ghalem BELALEM, Saïd MAHMOUDI. A location-based fog computing optimization of energy management in smart buildings: DEVS modeling and design of connected objects[J]. Front. Comput. Sci., 2023, 17(2): 172501-.
[2] Zhixin ZENG, Xiaodi WANG, Yining LIU, Liang CHANG. MSDA: multi-subset data aggregation scheme without trusted third party[J]. Front. Comput. Sci., 2022, 16(1): 161808-.
[3] Kaushal SHAH, Devesh JINWALA. Privacy preserving secure expansive aggregation with malicious node identification in linear wireless sensor networks[J]. Front. Comput. Sci., 2021, 15(6): 156813-.
[4] Fei MENG, Leixiao CHENG, Mingqiang WANG. ABDKS: attribute-based encryption with dynamic keyword search in fog computing[J]. Front. Comput. Sci., 2021, 15(5): 155810-.
[5] Deying LI, Qinghua ZHU, Jiannong CAO, . Approximation algorithm for constructing data aggregation trees for wireless sensor networks[J]. Front. Comput. Sci., 2009, 3(4): 524-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed