Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (3) : 173806    https://doi.org/10.1007/s11704-022-2003-y
RESEARCH ARTICLE
A fine-grained privacy protection data aggregation scheme for outsourcing smart grid
Hongyang LI1, Xinghua LI1, Qingfeng CHENG2()
1. School of Cyber Engineering, Xidian University, Xi’an 710071, China
2. Strategic Support Force Information Engineering University, Zhengzhou 450001, China
 Download: PDF(7214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Compared with the traditional power grid, smart grid involves many advanced technologies and applications. However, due to the rapid development of various network technologies, smart grid is facing the challenges of balancing privacy, security, efficiency, and functionality. In the proposed scheme, we design a privacy protection scheme for outsourcing smart grid aided by fog computing, which supports fine-grained privacy-protected data aggregation based on user characteristics. The fog server matches the encrypted characteristics in the received message with the encrypted aggregation rules issued by the service provider. Therefore, the service provider can get more fine-grained analysis data based on user characteristics. Different from the existing outsourcing smart grid schemes, the proposed scheme can achieve real-time pricing on the premise of protecting user privacy and achieving system fault tolerance. Finally, experiment analyses demonstrate that the proposed scheme has less computation overhead and lower transmission delay than existing schemes.

Keywords smart grid      data aggregation      fine-grained      privacy preservation      real-time pricing     
Corresponding Author(s): Qingfeng CHENG   
Just Accepted Date: 24 May 2022   Issue Date: 03 November 2022
 Cite this article:   
Hongyang LI,Xinghua LI,Qingfeng CHENG. A fine-grained privacy protection data aggregation scheme for outsourcing smart grid[J]. Front. Comput. Sci., 2023, 17(3): 173806.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-2003-y
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I3/173806
Scheme F1 F2 F3 F4 F5 F6 F7
Xue et al. [9] Yes Yes No No Yes No Yes
Zuo et al. [10] Yes Yes Yes Yes Yes No Yes
Boudia et al. [13] Yes Yes Yes Yes No No Yes
Li et al. [14] Yes Yes Yes No No No No
Liu et al. [15] Yes Yes Yes No No Yes No
Chen et al. [16] Yes Yes Yes No Yes No No
Gope et al. [17] Yes Yes No No Yes No No
Knirsch et al. [18] Yes Yes No No Yes Yes No
Song et al. [19] Yes Yes Yes No Yes No No
Han et al. [20] Yes Yes Yes Yes No Yes No
Zhuo et al. [21] Yes Yes Yes Yes No No No
Moham et al. [22] Yes Yes No Yes Yes Yes No
Tab.1  Comparative analysis of the existing schemes
Notation Description
E(Fp) An elliptic curve group
G A generator with order n0 of E(Fp)
FSi The ith fog server
SMi The ith smart meter under fog server FSi
pub,skey Public key and private key of Paillier
skr,pubr Public-private key pair for encrypting the rule list
skfi,pubfi Public-private key pair for FSi
Ri The ith aggregation rule
FL Aggregation rule list FL={R1,R2,,Rl}
LLi,l A list with the length of n bits
ARij Aggregation ciphertext with rule Rj under FSi
ARi Final aggregation result with rule Ri
Tab.2  Notations
Fig.1  System network model
Fig.2  Registration process of SM
Types Rules Meaning
R1 f1f2 Aggregate all user data with fu1=f1, fu2=f2, in characteristic identifier F=(fu1||fu2)
R2 f1? Aggregate all user data with fu1=f1, in characteristic identifier F=(fu1||fu2)
R3 ?f2 Aggregate all user data with fu2=f2, in characteristic identifier F=(fu1||fu2)
R4 ?? Aggregate all data
Tab.3  The aggregation rule
  
  
  
Symbol Meaning Time/ms
Tpm Point multiplication on E(Fp) 1.317
Tez Exponentiation in Zn2 4.269
Tp Bilinear pairing 3.846
Te2 Double exponentiation 4.279
Te Exponentiation 3.356
Tm Multiply in G1 0.015
Tab.4  Module coputing overhead
Scheme SM FS SP
Ours Tez+Te2+10Tpm (lk+1)Tp+2Tpm+l(k?1)Tm (t+2)Tp+l(t?1)Tm+2lTez
[7] (3Te+Tm)l 2l(k?1)Tm+l(k+1)Tp l(t+1)Tp+l(t?1)Tm+lTez
[9] (Te2+2Te+Tm)l 2l(k?1)Tm+l(k+1)Tp l(t+1)Tp+l(t?1)Tm+2lTez
Tab.5  Total computation cost
Fig.3  Computation cost of SM
Fig.4  Computation cost of FS
Fig.5  Computation cost of SP
Scheme System’s total communication cost
Ours nkLsm+tLf+Lp+Lu
[7] n(kLsm+tLf+Lp+Lu)
[9] n(kLsm+tLf+Lp+Lu)
Tab.6  Total communication cost
  
  
  
1 X, Fang S, Misra G, Xue D Yang . Smart grid—The new and improved power grid: a survey. IEEE Communications Surveys & Tutorials, 2012, 14( 4): 944–980
2 V C, Gungor D, Sahin T, Kocak S, Ergut C, Buccella C, Cecati G P Hancke . Smart grid technologies: communication technologies and standards. IEEE Transactions on Industrial Informatics, 2011, 7( 4): 529–539
3 G, Wood M Newborough . Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design. Energy and Buildings, 2003, 35( 8): 821–841
4 P, McDaniel S McLaughlin . Security and privacy challenges in the smart grid. IEEE Security & Privacy, 2009, 7( 3): 75–77
5 F, Diao F, Zhang X Cheng . A privacy-preserving smart metering scheme using linkable anonymous credential. IEEE Transactions on Smart Grid, 2015, 6( 1): 461–467
6 Okay F Y, Ozdemir S. A secure data aggregation protocol for fog computing based smart grids. In: Proceedings of the 12th IEEE International Conference on Compatibility, Power Electronics and Power Engineering. 2018, 1–6
7 J N, Liu J, Weng A, Yang Y, Chen X Lin . Enabling efficient and privacy-preserving aggregation communication and function query for fog computing-based smart grid. IEEE Transactions on Smart Grid, 2020, 11( 1): 247–257
8 A, Saleem A, Khan S U R, Malik H, Pervaiz H, Malik M, Alam A Jindal . FESDA: fog-enabled secure data aggregation in smart grid IoT network. IEEE Internet of Things Journal, 2020, 7( 7): 6132–6142
9 K, Xue Q, Yang S, Li D S L, Wei M, Peng I, Memon P Hong . PPSO: a privacy-preserving service outsourcing scheme for real-time pricing demand response in smart grid. IEEE Internet of Things Journal, 2019, 6( 2): 2486–2496
10 X, Zuo L, Li H, Peng S, Luo Y Yang . Privacy-preserving multidimensional data aggregation scheme without trusted authority in smart grid. IEEE Systems Journal, 2021, 15( 1): 395–406
11 Y, Liu T, Feng M, Peng J, Guan Y Wang . DREAM: Online control mechanisms for data aggregation error minimization in privacy-preserving crowdsensing. IEEE Transactions on Dependable and Secure Computing, 2022, 19( 2): 1266–1279
12 P, Samadi A H, Mohsenian-Rad R, Schober V W S, Wong J Jatskevich . Optimal real-time pricing algorithm based on utility maximization for smart grid. In: Proceedings of the 1st IEEE International Conference on Smart Grid Communications. 2010, 415–420
13 O R M, Boudia S M, Senouci M Feham . Elliptic curve-based secure multidimensional aggregation for smart grid communications. IEEE Sensors Journal, 2017, 17( 23): 7750–7757
14 S, Li K, Xue Q, Yang P Hong . PPMA: privacy-preserving multisubset data aggregation in smart grid. IEEE Transactions on Industrial Informatics, 2018, 14( 2): 462–471
15 Y, Liu W, Guo C I, Fan L, Chang C Cheng . A practical privacy-preserving data aggregation (3PDA) scheme for smart grid. IEEE Transactions on Industrial Informatics, 2019, 15( 3): 1767–1774
16 Y, Chen J F, Martínez-Ortega P, Castillejo L López . An elliptic curve-based scalable data aggregation scheme for smart grid. IEEE Systems Journal, 2020, 14( 2): 2066–2077
17 P, Gope B Sikdar . Lightweight and privacy-friendly spatial data aggregation for secure power supply and demand management in smart grids. IEEE Transactions on Information Forensics and Security, 2019, 14( 6): 1554–1566
18 F, Knirsch G, Eibl D Engel . Error-resilient masking approaches for privacy preserving data aggregation. IEEE Transactions on Smart Grid, 2018, 9( 4): 3351–3361
19 J, Song Y, Liu J, Shao C Tang . A dynamic membership data aggregation (DMDA) protocol for smart grid. IEEE Systems Journal, 2020, 14( 1): 900–908
20 S, Han S, Zhao Q, Li C H, Ju W Zhou . PPM-HDA: privacy-preserving and multifunctional health data aggregation with fault tolerance. IEEE Transactions on Information Forensics and Security, 2016, 11( 9): 1940–1955
21 S, Zhao F, Li H, Li R, Lu S, Ren H, Bao J H, Lin S Han . Smart and practical privacy-preserving data aggregation for fog-based smart grids. IEEE Transactions on Information Forensics and Security, 2021, 16: 521–536
22 A, Mohammadali M S Haghighi . A privacy-preserving homomorphic scheme with multiple dimensions and fault tolerance for metering data aggregation in smart grid. IEEE Transactions on Smart Grid, 2021, 12( 6): 5212–5220
23 P Paillier . Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of 1999 International Conference on the Theory and Application of Cryptographic Techniques. 1999, 223–238
24 Abdalla M, Bellare M, Rogaway P. DHAES: an encryption scheme based on the Diffie-Hellman problem. Cryptology ePrint Archive, See Eprint.iacr.org/1999/007 website
25 P, Faria Z Vale . Demand response in electrical energy supply: an optimal real time pricing approach. Energy, 2011, 36( 8): 5374–5384
26 H, Wang Z, Wang J Domingo-Ferrer . Anonymous and secure aggregation scheme in fog-based public cloud computing. Future Generation Computer Systems, 2018, 78: 712–719
27 N, Yang Q, Zhou S Xu . Public-key authenticated encryption with keyword search without pairings. Journal of Computer Research and Development, 2020, 57( 10): 2125–2135
28 B Lynn . On the implementation of pairing-based cryptosystems. Stanford University, Dissertation, 2007
[1] FCS-22003-OF-HL_suppl_1 Download
[1] Min HAO, Beihai TAN, Siming WANG, Rong YU, Ryan Wen LIU, Lisu YU. Exploiting blockchain for dependable services in zero-trust vehicular networks[J]. Front. Comput. Sci., 2024, 18(2): 182805-.
[2] Ye CHI, Jianhui YUE, Xiaofei LIAO, Haikun LIU, Hai JIN. A hybrid memory architecture supporting fine-grained data migration[J]. Front. Comput. Sci., 2024, 18(2): 182103-.
[3] Peng LI, Junzuo LAI, Yongdong WU. Accountable attribute-based authentication with fine-grained access control and its application to crowdsourcing[J]. Front. Comput. Sci., 2023, 17(1): 171802-.
[4] Bowen ZHAO, Shaohua TANG, Ximeng LIU, Yiming WU. Return just your search: privacy-preserving homoglyph search for arbitrary languages[J]. Front. Comput. Sci., 2022, 16(2): 162801-.
[5] Zhixin ZENG, Xiaodi WANG, Yining LIU, Liang CHANG. MSDA: multi-subset data aggregation scheme without trusted third party[J]. Front. Comput. Sci., 2022, 16(1): 161808-.
[6] Zhusen LIU, Zhenfu CAO, Xiaolei DONG, Xiaopeng ZHAO, Haiyong BAO, Jiachen SHEN. A verifiable privacy-preserving data collection scheme supporting multi-party computation in fog-based smart grid[J]. Front. Comput. Sci., 2022, 16(1): 161810-.
[7] Kaushal SHAH, Devesh JINWALA. Privacy preserving secure expansive aggregation with malicious node identification in linear wireless sensor networks[J]. Front. Comput. Sci., 2021, 15(6): 156813-.
[8] Yubao LIU, Xiuwei CHEN, Zhan LI, Zhijie LI, Raymond Chi-Wing WONG. An efficient method for privacy preserving location queries[J]. Front Comput Sci, 2012, 6(4): 409-420.
[9] Deying LI, Qinghua ZHU, Jiannong CAO, . Approximation algorithm for constructing data aggregation trees for wireless sensor networks[J]. Front. Comput. Sci., 2009, 3(4): 524-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed