Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (5) : 185328    https://doi.org/10.1007/s11704-023-3026-8
RESEARCH ARTICLE
Blockchain based federated learning for intrusion detection for Internet of Things
Nan SUN1, Wei WANG2,3, Yongxin TONG4, Kexin LIU2,3()
1. School of Cyber Science and Technology, Beihang University, Beijing 100191, China
2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
3. Zhongguancun Laboratory, Beijing 100094, China
4. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
 Download: PDF(13066 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In Internet of Things (IoT), data sharing among different devices can improve manufacture efficiency and reduce workload, and yet make the network systems be more vulnerable to various intrusion attacks. There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices. Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types. In this paper, a distributed federated intrusion detection method is proposed, utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types. Besides, the blockchain technique is introduced in the federated learning process for the consensus of the entire framework. Experimental results are provided to show that our approach can identify the malicious entities, while outperforming the existing methods in discovering new intrusion attack types.

Keywords intrusion detection      federated learning      new attacks discovering      blockchain     
Corresponding Author(s): Kexin LIU   
Just Accepted Date: 05 June 2023   Issue Date: 14 September 2023
 Cite this article:   
Nan SUN,Wei WANG,Yongxin TONG, et al. Blockchain based federated learning for intrusion detection for Internet of Things[J]. Front. Comput. Sci., 2024, 18(5): 185328.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-3026-8
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I5/185328
Fig.1  Distributed federated learning model
  
Fig.2  Blockchain based federated learning model
Fig.3  Novel attack intrusion detection model
Dataset Samples Dimensionss Classes Data distribution
Train_labeled Train_unlabeled Test
AWID-CLS 1795575 Feature:155 Normal 195982 1110570 326638
Flooding 5818 32970 9696
Injection 7845 44459 13075
Impersonation 5822 32996 9704
AWID-ATK 1795575 Feature:155 Amoke 0 24944 6236
Arp 7753 43935 12921
Authentiacation 420 2380 700
Beacon 216 1224 359
Cafe 0 36712 9177
Deauthentication 1253 7105 2089
Evil 315 1791 527
Fragmentation 93 523 154
Probe 187 1059 312
Normal 195982 1110570 326638
Tab.1  Description of AWID datasets
Method(AWID-CLS) Accuracy Flooding Injection Impersonation Normal Method(AWID-ATK) Accuracy
J48 [22] 96.2 99.83 100 70.55 96.14 local σ K-means [27] 86.67
Random forest [22] 95.6 99.97 99.92 95.44 96.14 LSTM+DTW [28] 94.41
Majority voting [22] 96.32 100 100 100 96.15 DEKM [29] 95.07
Neural network [22] 99.3 ? ? ? ? ELSC [30] 90.77
Stacked autoencoder [22] 99.88 ? ? ? ? refined ASC [27] 96.63
Autoencoded DNN [22] 99.9 99.42 99.87 99.9 99.93 Federated K-means Cluster [31] 94.8
Proposed 99.74 99.68 100 98.35 99.95 Proposed 98.8
Tab.2  Comparison results on AWID dataset
Fig.4  Comparison results of different algorithms
Subset N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 Federated Ideal
ACC 98.58 99.92 99.88 99.96 98.53 99.24 98.64 99.24 98.78 99.62 96.75 98.8
ARI 97.81 99.95 99.93 99.92 98.69 98.65 98.58 98.52 98.92 99.5 ? 98.66
NMI 94.7 99.51 98.11 99.46 95.97 97.26 96.46 97.18 96.45 98.58 ? 96.93
Amoke 54.73 ? ? ? 89.71 99.81 83.74 ? 90.96 ? 85.16 92.85
Arp ? 100 100 ? 100 100 100 ? 100 100 100 100
Authentiacation 100 ? ? 99.83 98.34 99.88 ? 99.87 98.96 94.74 98.59 99.82
Beacon 100 ? ? 100 ? ? 100 100 ? 100 100 100
Cafe ? ? 97.88 ? 97.92 100 98.05 ? 98.13 ? 95.72 97.83
Deauthentication 100 100 ? 100 100 ? 100 100 100 ? 93.98 98.06
Evil ? ? ? ? 98.98 ? 97.77 100 98.16 ? 98.86 99.36
Fragmentation 98.82 91.58 100 91.84 100 55.22 100 ? ? 96.15 88.43 88.49
Probe ? 100 ? 100 ? 100 100 99.89 ? 100 91.35 98.47
Normal 96.78 98.53 98.76 99.91 94.18 97.95 95.64 97.26 95.44 98.74 96.8 98.67
Tab.3  Experiments results on AWID-ATK dataset
Fig.5  Novel attacks discovering results. (a) Entity 4; (b) Entity 7
Fig.6  Attack detection performance on different training schemes (a) AWID-CLS dataset; (b) AWID-ATK dataset
Fig.7  Running time of different datasets
Fig.8  Comparison results for AWID dataset with and without blockchain
Fig.9  Blockchain verification results for AWID dataset (attack level is 0.9). (a) Proof of Stake for AWID-CLS; (b) Proof of Stake for AWID-ATK
  
  
  
  
1 X, Li Z, Hu M, Xu Y, Wang J Ma . Transfer learning based intrusion detection scheme for internet of vehicles. Information Sciences, 2021, 547: 119–135
2 M, Razian M, Fathian H, Wu A, Akbari R Buyya . SAIoT: scalable anomaly-aware services composition in CloudIoT environments. IEEE Internet of Things Journal, 2021, 8( 5): 3665–3677
3 S, Deng H, Zhao W, Fang J, Yin S, Dustdar Y A Zomaya . Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal, 2020, 7( 8): 7457–7469
4 D, Jiang Y, Song Y, Tong Y, Wu W, Zhao Q, Xu Q Yang . Federated topic modeling. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 1071–1080
5 V, Mothukuri P, Khare M R, Parizi S, Pouriyeh A, Dehghantanha G Srivastava . Federated-learning-based anomaly detection for IoT security attacks. IEEE Internet of Things Journal, 2022, 9( 4): 2545–2554
6 T, Song Y, Tong S Wei . Profit allocation for federated learning. In: Proceedings of 2019 IEEE International Conference on Big Data. 2019, 2577–2586
7 Q, Wu X, Chen Z, Zhou J Zhang . FedHome: cloud-edge based personalized federated learning for in-Home health monitoring. IEEE Transactions on Mobile Computing, 2022, 21( 8): 2818–2832
8 O, Alkadi N, Moustafa B, Turnbull K K R Choo . A deep blockchain framework-enabled collaborative intrusion detection for protecting IOT and cloud networks. IEEE Internet of Things Journal, 2021, 8( 12): 9463–9472
9 Y, Tong X, Pan Y, Zeng Y, Shi C, Xue Z, Zhou X, Zhang L, Chen K, Xu W Lv . Hu-Fu: efficient and secure spatial queries over data federation. Proceedings of the VLDB Endowment, 2022, 15( 6): 1159–1172
10 M, Abdel-Basset N, Moustafa H, Hawash I, Razzak K M, Sallam O M Elkomy . Federated intrusion detection in blockchain-based smart transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23( 3): 2523–2537
11 H, Chen A S, Asif J, Park C C, Shen M Bennis . Robust blockchained federated Learning with model validation and proof-of-stake inspired consensus. In: Proceedings of AAAI 2021 Workshop - Towards Robust, Secure and Efficient Machine Learning. 2021
12 J, Ashraf D A, Bakhshi N, Moustafa H, Khurshid A, Javed A Beheshti . Novel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2021, 22( 7): 4507–4518
13 Y, Shi Y, Tong Z, Su D, Jiang Z, Zhou W Zhang . Federated topic discovery: a semantic consistent approach. IEEE Intelligent Systems, 2021, 36( 5): 96–103
14 Y, Wu N H, Dai H Wang . Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4. 0. IEEE Internet of Things Journal, 2021, 8( 4): 2300–2317
15 H, Liu S, Zhang P, Zhang X, Zhou X, Shao G, Pu Y Zhang . Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Transactions on Vehicular Technology, 2021, 70( 6): 6073–6084
16 G, D’Angelo A, Castiglione F Palmieri . A cluster-based multidimensional approach for detecting attacks on connected vehicles. IEEE Internet of Things Journal, 2021, 8( 16): 12518–12527
17 J, Yang X, Chen S, Chen X, Jiang X Tan . Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection. IEEE Transactions on Information Forensics and Security, 2021, 16: 3538–3553
18 L, Nie Y, Wu X, Wang L, Guo G, Wang X, Gao S Li . Intrusion detection for secure social internet of things based on collaborative edge computing: a generative adversarial network-based approach. IEEE Transactions on Computational Social Systems, 2022, 9( 1): 134–145
19 T E, Lin H, Xu H Zhang . Discovering new intents via constrained deep adaptive clustering with cluster refinement. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 8360–8367
20 K, Han S A, Rebuffi S, Ehrhardt A, Vedaldi A Zisserman . Automatically discovering and learning new visual categories with ranking statistics. In: Proceedings of the 8th International Conference on Learning Representations. 2020
21 M, Castro B Liskov . Practical byzantine fault tolerance. In: Proceedings of the 3rd Symposium on Operating Systems Design and Implementation. 1999
22 S, Rezvy Y, Luo M, Petridis A, Lasebae T Zebin . An efficient deep learning model for intrusion classification and prediction in 5G and IoT networks. In: Proceedings of the 53rd Conference on Information Sciences and Systems. 2019, 1–6
23 D K, Dennis T, Li V Smith . Heterogeneity for the win: one-shot federated clustering. In: Proceedings of the 38th International Conference on Machine Learning. 2021
24 C, Kolias G, Kambourakis A, Stavrou S Gritzalis . Intrusion detection in 802. 11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 2016, 18( 1): 184–208
25 S, Han J, Pool J, Tran W J Dally . Learning both weights and connections for efficient neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015
26 G, Zhang F, Pan M, Dang’ana Y, Mao S, Motepalli S, Zhang H A Jacobsen . Reaching consensus in the Byzantine Empire: a comprehensive review of BFT consensus algorithms. 2022, arXiv preprint arXiv: 2204.03181
27 M, Alshammari J, Stavrakakis M Takatsuka . Refining a k-nearest neighbor graph for a computationally efficient spectral clustering. Pattern Recognition, 2021, 114: 107869
28 E, Barkhordar H M, Shirali-Shahreza R H Sadeghi . Clustering of Bank Customers using LSTM-based encoder-decoder and Dynamic Time Warping. 2021, arXiv preprint arXiv: 2110.11769
29 W, Guo K, Lin W Ye . Deep embedded K-means clustering. In: Proceedings of 2021 International Conference on Data Mining Workshops. 2021
30 H, Li X, Ye A, Imakura T Sakurai . Ensemble learning for spectral clustering. In: Proceedings of 2020 IEEE International Conference on Data Mining. 2020, 1094–1099
31 B, Xie X, Dong C Wang . An improved K-means clustering intrusion detection algorithm for wireless networks based on federated learning. Wireless Communications and Mobile Computing, 2021, 2021: 9322368
[1] FCS-23026-OF-NS_suppl_1 Download
[1] Xinwen GAO, Shaojing FU, Lin LIU, Yuchuan LUO. BVDFed: Byzantine-resilient and verifiable aggregation for differentially private federated learning[J]. Front. Comput. Sci., 2024, 18(5): 185810-.
[2] Xingxing CHEN, Qingfeng CHENG, Weidong YANG, Xiangyang LUO. An anonymous authentication and secure data transmission scheme for the Internet of Things based on blockchain[J]. Front. Comput. Sci., 2024, 18(3): 183807-.
[3] Tiezheng GUO, Zhiwei ZHANG, Ye YUAN, Xiaochun YANG, Guoren WANG. Hybrid concurrency control protocol for data sharing among heterogeneous blockchains[J]. Front. Comput. Sci., 2024, 18(3): 183104-.
[4] B Swaroopa REDDY, T Uday Kiran REDDY. CompactChain: an efficient stateless chain for UTXO-model blockchain[J]. Front. Comput. Sci., 2024, 18(2): 182806-.
[5] Shiwei LU, Ruihu LI, Wenbin LIU. FedDAA: a robust federated learning framework to protect privacy and defend against adversarial attack[J]. Front. Comput. Sci., 2024, 18(2): 182307-.
[6] Jian AN, Siyuan WU, Xiaolin GUI, Xin HE, Xuejun ZHANG. A blockchain-based framework for data quality in edge-computing-enabled crowdsensing[J]. Front. Comput. Sci., 2023, 17(4): 174503-.
[7] Xianfeng LIANG, Shuheng SHEN, Enhong CHEN, Jinchang LIU, Qi LIU, Yifei CHENG, Zhen PAN. Accelerating local SGD for non-IID data using variance reduction[J]. Front. Comput. Sci., 2023, 17(2): 172311-.
[8] Peng LI, Junzuo LAI, Yongdong WU. Accountable attribute-based authentication with fine-grained access control and its application to crowdsourcing[J]. Front. Comput. Sci., 2023, 17(1): 171802-.
[9] Kaiyue ZHANG, Xuan SONG, Chenhan ZHANG, Shui YU. Challenges and future directions of secure federated learning: a survey[J]. Front. Comput. Sci., 2022, 16(5): 165817-.
[10] Chaofan WANG, Xiaohai DAI, Jiang XIAO, Chenchen LI, Ming WEN, Bingbing ZHOU, Hai JIN. Demystifying Ethereum account diversity: observations, models and analysis[J]. Front. Comput. Sci., 2022, 16(4): 164505-.
[11] Zeli WANG, Hai JIN, Weiqi DAI, Kim-Kwang Raymond CHOO, Deqing ZOU. Ethereum smart contract security research: survey and future research opportunities[J]. Front. Comput. Sci., 2021, 15(2): 152802-.
[12] Yan ZHU, Khaled RIAD, Ruiqi GUO, Guohua GAN, Rongquan FENG. New instant confirmation mechanism based on interactive incontestable signature in consortium blockchain[J]. Front. Comput. Sci., 2019, 13(6): 1182-1197.
[13] Lian YU, Wei-Tek TSAI. State synchronization in process-oriented chaincode[J]. Front. Comput. Sci., 2019, 13(6): 1166-1181.
[14] Yu ZHANG, Yuxing HAN, Jiangtao WEN. SMER: a secure method of exchanging resources in heterogeneous internet of things[J]. Front. Comput. Sci., 2019, 13(6): 1198-1209.
[15] Libo FENG, Hui ZHANG, Wei-Tek TSAI, Simeng SUN. System architecture for high-performance permissioned blockchains[J]. Front. Comput. Sci., 2019, 13(6): 1151-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed