Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (5) : 778-796    https://doi.org/10.1007/s11704-016-6084-3
REVIEW ARTICLE
A survey on high coherence visual media retargeting: recent advances and applications
Weimin TAN,Bo YAN()
School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 201203, China
 Download: PDF(983 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The numerous works on media retargeting call for a thorough and comprehensive survey for reviewing and categorizing existing works and providing insights that can help future design of retargeting approaches and its applications. First, we present the basic problem of media retargeting and detail state-of-the-art retargeting methods devised to solve it. Second, we review recent works on objective quality assessment of media retargeting, where we find that although these works are designed to make the objective assessment result in accordance with the subjective evaluation, they are only suitable for certain situations. Considering the subjective nature of aesthetics, designing objective assessment metric for media retargeting could be a promising area for investigation. Third, we elaborate on other applications extended from retargeting techniques. We show how to apply the retargeting techniques in other fields to solve their challenging problems, and reveal that retargeting technique is not just a simple scaling algorithm, but a thought or concept, which has great flexibility and is quite useful.We believe this review can help researchers and practitioners to solve the existing problems of media retargeting and bring new ideas in their works.

Keywords media retargeting      quality assessment      aesthetenhancement      image retrieval      video synopsis     
Corresponding Author(s): Bo YAN   
Just Accepted Date: 16 May 2016   Online First Date: 18 July 2016    Issue Date: 07 September 2016
 Cite this article:   
Weimin TAN,Bo YAN. A survey on high coherence visual media retargeting: recent advances and applications[J]. Front. Comput. Sci., 2016, 10(5): 778-796.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6084-3
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I5/778
1 Grundmann M, Kwatra V, Han M, Essa I. Discontinuous seam-carving for video retargeting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 569–576
https://doi.org/10.1109/cvpr.2010.5540165
2 Avidan S, Shamir A. Seam carving for content-aware image resizing. ACM Transactions on Graphics (TOG), 2007, 26(3): 10
https://doi.org/10.1145/1276377.1276390
3 Panozzo D, Weber O, Sorkine O. Robust image retargeting via axisaligned deformation. Computer Graphics Forum, 2012, 31(2pt1): 229–236
https://doi.org/10.1111/j.1467-8659.2012.03001.x
4 Wang Y S, Tai C L, Sorkine O, Lee T Y. Optimized scale-and-stretch for image resizing. ACM Transactions on Graphics (TOG), 2008, 27(5): 118
https://doi.org/10.1145/1409060.1409071
5 Yan B, Li K, Yang X C, Hu T X. Seam searching based pixel fusion for image retargeting. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 15–23
https://doi.org/10.1109/TCSVT.2014.2329374
6 Fang Y M, Chen Z Z, Lin W S, Lin C W. Saliency-based image retargeting in the compressed domain. In: Proceedings of the 19th ACM international conference on Multimedia. 2011, 1049–1052
https://doi.org/10.1145/2072298.2071935
7 Mansfield A, Gehler P, Van Gool L, Rother C. Scene carving: scene consistent image retargeting. In: Daniilidis K, Maragos P, Paragios N, eds. Computer Vision–ECCV 2010. Springer Berlin Heidelberg, 2010, 143–156
https://doi.org/10.1007/978-3-642-15549-9_11
8 Qi S Y, Ho J. Seam segment carving: retargeting images to irregularlyshaped image domains. In: Fitzgibbon A, Lazebnik S, Perona P, et al, eds. Computer Vision–ECCV 2012, Springer Berlin Heidelberg, 2012, 314–326
https://doi.org/10.1007/978-3-642-33783-3_23
9 Shen J B, Wang D P, Li X L. Depth-aware image seam carving. IEEE Transactions on Cybernetics, 2013, 43(5): 1453–1461
https://doi.org/10.1109/TCYB.2013.2273270
10 Noh H, Han B. Seam carving with forward gradient difference maps. In: Proceedings of the 20th ACM international conference on Multimedia. 2012, 709–712
https://doi.org/10.1145/2393347.2396293
11 Battiato S, Farinella G M, Puglisi G, Ravi D. Saliency-based selection of gradient vector flow paths for content aware image resizing. IEEE Transactions on Image Processing, 2014, 23(5): 2081–2095
https://doi.org/10.1109/TIP.2014.2312649
12 Dong W M, Zhou N, Lee T Y, Wu F Z, Kong Y, Zhang X P. Summarization-based image resizing by intelligent object carving. IEEE Transactions on Visualization and Computer Graphics, 2014,20(1): 1
https://doi.org/10.1109/TVCG.2013.103
13 Santella A, Agrawala M, DeCarlo D, Salesin D, Cohen M. Gaze-based interaction for semi-automatic photo cropping. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2006, 771–780
https://doi.org/10.1145/1124772.1124886
14 Zhang L M, Wang M, Nie L Q, Hong L, Rui Y, Tian Q. Retargeting semantically-rich photos. IEEE Transactions on Multimedia (TMM), 2015, 17(9): 1538–1549
https://doi.org/10.1109/TMM.2015.2451954
15 Chang C H, Chuang Y Y. A line-structure-preserving approach to image resizing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1075–1082
https://doi.org/10.1109/cvpr.2012.6247786
16 Lin S S, Yeh I C, Lin C H, Lee T Y. Patch-based image warping for content-aware retargeting. IEEE Transactions on Multimedia (TMM), 2013, 15(2): 359–368
https://doi.org/10.1109/TMM.2012.2228475
17 Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167–181
https://doi.org/10.1023/B:VISI.0000022288.19776.77
18 Wu Y C, Liu X T, Liu S X, Ma K L. ViSizer: a visualization resizing framework. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(2): 278–290
https://doi.org/10.1109/TVCG.2012.114
19 Gallea R, Ardizzone E, Pirrone R. Physical metaphor for streaming media retargeting. IEEE Transactions on Multimedia, 2014, 16(4): 971–979
https://doi.org/10.1109/TMM.2014.2305917
20 Yan B, Yang X C, Li K. Efficient image retargeting via adaptive pixel fusion. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 929–932
https://doi.org/10.1145/2647868.2654959
21 Rubinstein M, Shamir A, Avidan S. Multi-operator media retargeting. ACM Transactions on Graphics, 2009, 28(3): 23
https://doi.org/10.1145/1531326.1531329
22 Dong W M, Zhou N, Paul J C, Zhang X P. Optimized image resizing using seam carving and scaling. ACM Transactions on Graphics, 2009, 28(5): 125
https://doi.org/10.1145/1618452.1618471
23 Liu Z, Yan H B, L. Shen L Q, Ngan K N, Zhang Z Y. Adaptive image retargeting using saliency-based continuous seam carving. Optical Engineering, 2010, 49(1)
24 Zhang G X, Cheng M M, Hu S M, Martin R R. A shape-preserving approach to image resizing. Computer Graphics Forum, 2009, 28(7): 1897–1906
https://doi.org/10.1111/j.1467-8659.2009.01568.x
25 Liu Y, Sun L F, Yang S Q. A retargeting method for stereoscopic 3D video. Computational Visual Media, 2015, 1(2): 119–127
https://doi.org/10.1007/s41095-015-0016-2
26 Dong W M, Wu F Z, Kong Y, Mei X, Lee T Y, Zhang X P. Image retargeting by texture-aware synthesis. IEEE Transactions on Visualization and Computer Graphics (TVCG), 2016, 22(2): 1088–1101
https://doi.org/10.1109/TVCG.2015.2440255
27 Dong W M, Bao G B, Zhang X P, Paul J C. Fast multi-operator image resizing and evaluation. Journal of Computer Science and Technology, 2012, 27(1): 121–134
https://doi.org/10.1007/s11390-012-1211-6
28 Wu H, Wang Y S, Feng K C, Wong T T, Lee T Y, Heng P A. Resizing by symmetry-summarization. ACM Transactions on Graphics, 2010, 29(6): 159
https://doi.org/10.1145/1882261.1866185
29 Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998 (11): 1254–1259
https://doi.org/10.1109/34.730558
30 Hu S M, Chen T, Xu K, Cheng M M, Martin R R. Internet visual media processing: a survey with graphics and vision applications. The Visual Computer, 2013, 29(5): 393–405
https://doi.org/10.1007/s00371-013-0792-6
31 Kraevoy V, Sheffer A, Shamir A, Cohen-Or D. Non-homogeneous resizing of complex models. ACM Transactions on Graphics, 2008, 27(5): 111
https://doi.org/10.1145/1409060.1409064
32 Wang K P, Zhang C M. Content-aware model resizing based on surface deformation. Computers & Graphics, 2009, 33(3): 433–438
https://doi.org/10.1016/j.cag.2009.03.004
33 Xiao C X, Jin L Q, Nie Y W, Wang R F, Sun H Q, Ma K L. Contentaware model resizing with symmetry-preservation. The Visual Computer, 2015, 31(2): 155–167
https://doi.org/10.1007/s00371-014-0919-4
34 Chen L, Meng X X. Anisotropic resizing of model with geometric textures. In: Proceedings of the 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling. 2009, 289–294
https://doi.org/10.1145/1629255.1629292
35 Lin J J, Cohen-Or D, Zhang H, Liang C, Sharf A, Deussen O, Chen B Q. Structure-preserving retargeting of irregular 3D architecture. ACM Transactions on Graphics, 2011, 30(6): 183
https://doi.org/10.1145/2070781.2024217
36 Shamir A, Sorkine O. Visual media retargeting. ACM SIGGRAPH ASIA 2009 Courses, 2009
37 Rubinstein M, Shamir A, Avidan S. Improved seam carving for video retargeting. ACM Transactions on Graphics, 2008, 27(3): 1–9
https://doi.org/10.1145/1360612.1360615
38 Chiang C K, Wang S F, Chen Y L, Lai S H. Fast JND-based video carving with GPU acceleration for real-time video retargeting. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(11): 1588–1597
https://doi.org/10.1109/TCSVT.2009.2031462
39 Chao W L, Su H H, Chien S Y, Hsu W, Ding J J. Coarse-to-fine temporal optimization for video retargeting based on seam carving. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo. 2011, 1–6
https://doi.org/10.1109/ICME.2011.6012025
40 Deselaers T, Dreuw P, Ney H. Pan, zoom, scan – time-coherent, trained automatic video cropping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8
https://doi.org/10.1109/cvpr.2008.4587729
41 Fan X, Xie X, Zhou H Q, Ma W Y. Looking into video frames on small displays. In: Proceedings of the 11th ACM international conference on Multimedia. 2003, 247–250
https://doi.org/10.1145/957013.957063
42 Liu F, Gleicher M. Video retargeting: automating pan and scan. In: Proceedings of the 14th Annual ACM International Conference on Multimedia. 2006, 241–250
https://doi.org/10.1145/1180639.1180702
43 Kopf S, Haenselmann T, Farin D, Effelsberg W. Automatic generation of summaries for the Web. In: Yeung M M, Lienhart R W, Li C S, eds. Storage and Retrieval for Image and Video Databases, 2004, 417–428
44 Wolf L, Guttmann M, Cohen-Or D. Non-homogeneous content-driven video-retargeting. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–6
https://doi.org/10.1109/iccv.2007.4409010
45 Zhang Y F, Hu S M, Martin R R. Shrinkability maps for content-aware video resizing. Computer Graphics Forum, 2008, 27(7): 1797–1804
https://doi.org/10.1111/j.1467-8659.2008.01325.x
46 Wang Y S, Fu H, Sorkine O, Lee T Y, Seidel H P. Motion-aware temporal coherence for video resizing. ACMTransactions on Graphics, 2009, 28(5): 127
https://doi.org/10.1145/1618452.1618473
47 Krähenbühl P, Lang M, Hornung A, Gross M. A system for retargeting of streaming video. ACM Transactions on Graphics, 2009, 28(5): 126
https://doi.org/10.1145/1618452.1618472
48 Kim J S, Kim J H, Kim C S. Adaptive image and video retargeting technique based on Fourier analysis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1730–1737
49 Wang S F, Lai S H. Compressibility-aware media retargeting with structure preserving. IEEE Transactions on Image Processing, 2011, 20(3): 855–865
https://doi.org/10.1109/TIP.2010.2076293
50 Shi L, Wang J Q, Duan L Y, Lu H Q. Consumer video retargeting: context assisted spatial-temporal grid optimization. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009, 301–310
https://doi.org/10.1145/1631272.1631315
51 Wang Y S, Lin H C, Sorkine O, Lee T Y. Motion-based video retargeting with optimized crop-and-warp. ACM Transactions on Graphics, 2010, 29(4): 90
https://doi.org/10.1145/1778765.1778827
52 Wang Y S, Hsiao J H, Sorkine O, Lee T Y. Scalable and coherent video resizing with per-frame optimization. ACM Transactions on Graphics, 2011, 30(4): 88
https://doi.org/10.1145/2010324.1964983
53 Yen T C, Tsai C M, Lin C W. Maintaining temporal coherence in video retargeting using mosaic-guided scaling. IEEE Transactions on Image Processing, 2011, 20(8): 2339–2351
https://doi.org/10.1109/TIP.2011.2114357
54 Khan S, Shah M. Object based segmentation of video using color, motion and spatial information. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001
https://doi.org/10.1109/cvpr.2001.991039
55 Paris S. Edge-preserving smoothing and mean-shift segmentation of video streams. In: Forsyth D, Torr P, Zisserman A, eds. Computer Vision–ECCV 2008. Springer Berlin Heidelberg, 2008, 460–473
https://doi.org/10.1007/978-3-540-88688-4_34
56 Wang J, Thiesson B, Xu Y Q, Cohen M. Image and video segmentation by anisotropic kernel mean shift. In: Proceedings of the 10th European Conference on Computer Vision. 2004, 238–249
https://doi.org/10.1007/978-3-540-24671-8_19
57 Hu Y Q, Rajan D. Hybrid shift map for video retargeting. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. 2010, 577–584
https://doi.org/10.1109/CVPR.2010.5540162
58 Yan B, Sun K R, Liu L. Matching area based seam carving for video retargeting. IEEE Transactions on Circuits and Systems for Video Technology. 2013, 23(2): 302–310
https://doi.org/10.1109/TCSVT.2012.2203740
59 Lin S S, Lin C H, Yeh I C, Chang S H, Yeh C K, Lee T Y. Contentaware video retargeting using object-preserving warping. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1677–1686
https://doi.org/10.1109/TVCG.2013.75
60 Qu Z, Wang J Q, Xu M, Lu H Q. Context-aware video retargeting via graph model. IEEE Transactions on Multimedia, 2013, 15(7): 1677–1687
https://doi.org/10.1109/TMM.2013.2267727
61 Yuan Z, Lu T R, Huang Y, Wu D P, Yu H. Addressing visual consistency in video retargeting: a refined homogeneous approach. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(6): 890–903
https://doi.org/10.1109/TCSVT.2011.2181230
62 Li B, Duan L Y, Wang J, Ji R, Lin C W, Gao W. Spatiotemporal grid flow for video retargeting. IEEE Transactions on Image Processing, 2014, 23(4): 1615–1628
https://doi.org/10.1109/TIP.2014.2305843
63 Nie Y W, Zhang Q, Wang R F, Xiao C X. Video retargeting combining warping and summarizing optimization. The Visual Computer, 2013, 29(6–8): 785–794
https://doi.org/10.1007/s00371-013-0830-4
64 Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600–612
https://doi.org/10.1109/TIP.2003.819861
65 Hsu C C, Lin C W, Fang Y, Lin W. Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 377–389
https://doi.org/10.1109/JSTSP.2014.2311884
66 Bare B, Li K, Wang W Y, Yan B. Learning to assess image retargeting. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 925–928
https://doi.org/10.1145/2647868.2654957
67 Rubinstein M, Gutierrez D, Sorkine O, Shamir A. A comparative study of image retargeting. ACM Transactions on Graphics, 2010, 29(6): 160
https://doi.org/10.1145/1882261.1866186
68 Pele O, Werman M. Fast and robust earth mover’s distances. In: Proceedings of the 12th IEEE international conference on Computer vision. 2009, 460–467
https://doi.org/10.1109/iccv.2009.5459199
69 Liu C, Yuen J, Torralba A, Sivic J, Freeman W T. Sift flow: dense correspondence across different scenes. In: Proceedings of the 10th European Conference on Computer Vision. 2008, 28–42
https://doi.org/10.1007/978-3-540-88690-7_3
70 Liu Y J, Luo X, Xuan Y M, Chen W F, Fu X L. Image retargeting quality assessment. Computer Graphics Forum, 2011, 30(2): 583–592
https://doi.org/10.1111/j.1467-8659.2011.01881.x
71 Zhang J, Kuo C C J. An objective quality of experience (QoE) assessment index for retargeted images. In: Proceedings of the ACM International Conference on Multimedia. 2014, 257–266
https://doi.org/10.1145/2647868.2654922
72 Fang Y M, Zeng K, Wang Z, Lin W S, Fang Z J, Lin C W. Objective quality assessment for image retargeting based on structural similarity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(1): 95–105
https://doi.org/10.1109/JETCAS.2014.2298919
73 Barnes C, Shechtman E, Finkelstein A, Goldman D. Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics, 2009, 28(3): 24
https://doi.org/10.1145/1531326.1531330
74 Manjunath B S, Ohm J R, Vasudevan V V, Yamada A. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(6): 703–715
https://doi.org/10.1109/76.927424
75 Simakov D, Caspi Y, Shechtman E, Irani M. Summarizing visual data using bidirectional similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8
https://doi.org/10.1109/cvpr.2008.4587842
76 Kasutani E, Yamada A. The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. In: Proceedings of the 2001 International Conference on Image Processing. 2001, 674–677
https://doi.org/10.1109/icip.2001.959135
77 Yan B, Yuan B H, Yang B. Effective video retargeting with jittery assessment. IEEE Transactions on Multimedia, 2014, 16(1): 272–277
https://doi.org/10.1109/TMM.2013.2286112
78 Tsai S S, Chen D, Takacs G, Chandrasekhar V, Singh J P, Girod B. Location coding for mobile image retrieval. In: Proceedings of the 5th International ICST Mobile Multimedia Communications Conference. 2009
https://doi.org/10.4108/ICST.MOBIMEDIA2009.7406
79 V Chandrasekhar V, Takacs G, Chen D, Tsai S, Grzeszczuk R, Girod B. Chog: compressed histogram of gradients a low bit-rate feature descriptor. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2504–2511
80 Lowe D G. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
81 Yang X Y, Liu L L, Qian X M, Mei T, Shen J L, Tian Q. Mobile visual search via hievarchical sparse coding. In: Proceedings of the 2014 IEEE International Conference on Multimedia and Expo. 2014, 1–6
https://doi.org/10.1109/icme.2014.6890294
82 Tan W M, Yan B, Li K, Tian Q. Image retargeting for preserving robust local feature: application to mobile visual search. IEEE Transactions on Multimedia, 2016, 18(1): 128–137
https://doi.org/10.1109/TMM.2015.2500727
83 Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 506–513
84 Seber G A F. Multivariate observations. John Wiley & Sons, 2009
85 Spath H. The cluster dissection and analysis theory FORTRAN programs examples. Prentice-Hall, Inc., 1985
86 Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1–8
https://doi.org/10.1109/cvpr.2007.383172
87 Nie L Q, Wang M, Gao Y, Zha Z J, Chua T S. Beyond text QA: multimedia answer generation by harvesting Web information. IEEE Transactions on Multimedia, 2013, 15(2): 426–441
https://doi.org/10.1109/TMM.2012.2229971
88 Nie L Q, Yan S C, Wang M, Hong R C, Chua T S. Harvesting visual concepts for image search with complex queries. In: Proceedings of the 20th ACM international conference on Multimedia. 2012, 59–68
https://doi.org/10.1145/2393347.2393363
89 Nie L Q, Wang M, Zha Z J, Chua T S. Oracle in image search: a content-based approach to performance prediction. ACM Transactions on Information Systems, 2012, 30(2): 13
https://doi.org/10.1145/2180868.2180875
90 Hong R C, Li G D, Nie L Q, Tang J H, Chua T S. Exploring large scale data for multimedia QA: an initial study. In: proceedings of the ACM International Conference on Image and Video Retrieval. 2010, 74–81
https://doi.org/10.1145/1816041.1816055
91 Lu S P, Dauphin G, Lafruit G, Munteanu A. Color retargeting: interactive time-varying color image composition from time-lapse sequences. Computational Visual Media, 2015, 1(4): 321–330
https://doi.org/10.1007/s41095-015-0031-3
92 Guo Y W, Liu M, Gu T T, Wang W P. Improving photo composition elegantly: considering image similarity during composition optimization. Computer Graphics Forum, 2012, 31(7): 2193–2202
https://doi.org/10.1111/j.1467-8659.2012.03212.x
93 Zhang F L, Wang M, Hu S M. Aesthetic image enhancement by dependence-aware object recomposition. IEEE Transactions on Multimedia, 2013, 15(7): 1480–1490
https://doi.org/10.1109/TMM.2013.2268051
94 Li K, Yan B, Li J, Majumder A. Seam carving based aesthetics enhancement for photos. Signal Processing: Image Communication, 2015, 39: 509–516
https://doi.org/10.1016/j.image.2015.07.005
95 Bertalmio M, Sapiro G, Caselles V, Ballester C. Image in-painting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 2000, 417–424
96 Yeung M M, Yeo B L. Video visualization for compact presentation and fast browsing of pictorial content. IEEE Transactions on Circuits and Systems for Video Technology, 1997, 7(5): 771–785
https://doi.org/10.1109/76.633496
97 Oh J, Wen Q, Lee J, Hwang S, Video abstraction. Hershey, PA: Idea Group Inc. and IRM Press, 2004
98 Liu T M, Zhang H J, Qi F H. A novel video key-frame-extraction algorithm based on perceived motion energy model. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(10): 1006–1013
https://doi.org/10.1109/TCSVT.2003.816521
99 Hanjalic A, Zhang H J. An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8): 1280–1289
https://doi.org/10.1109/76.809162
100 You J Y, Liu G Z, Sun L, Li H L. A multiple visual models based perceptive analysis framework for multilevel video summarization. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(3): 273–285
https://doi.org/10.1109/TCSVT.2007.890857
101 Qu W, Zhang Y F, Wang D L, Feng S, Yu G. Semantic movie summarization based on string of IE-RoleNets. Computational Visual Media, 2015, 1(2): 129–141
https://doi.org/10.1007/s41095-015-0015-3
102 Pritch Y, Rav-Acha A, Peleg S. Nonchronological video synopsis and indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1971–1984
https://doi.org/10.1109/TPAMI.2008.29
103 Lu S P, Zhang S H, Wei J, Hu S M, Martin R R. Timeline editing of objects in video. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1218–1227
https://doi.org/10.1109/TVCG.2012.145
104 Nie Y W, Sun H Q, Li P, Xiao C X, Ma K L. Object movements synopsis via part assembling and stitching. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(9): 1303–1315
https://doi.org/10.1109/TVCG.2013.2297931
105 Nie Y W, Xiao C X, Sun H Q, Li P. Compact video synopsis via global spatiotemporal optimization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1664–1676
https://doi.org/10.1109/TVCG.2012.176
106 Li K, Yan B, Wang W, Gharavi H. An effective video synopsis approach with seam carving. IEEE Signal Processing Letters, 2016, 23(1): 11–14
https://doi.org/10.1109/LSP.2015.2496558
107 Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827–832
https://doi.org/10.1109/TPAMI.2005.102
108 Li Z, Ishwar P, Konrad J. Video condensation by ribbon carving. IEEE Transactions on Image Processing, 2009, 18(11): 2572–2583
https://doi.org/10.1109/TIP.2009.2026677
[1]  Supplementary Material Download
[1] Ying LI, Xiangwei KONG, Haiyan FU, Qi TIAN. Contextual modeling on auxiliary points for robust image reranking[J]. Front. Comput. Sci., 2019, 13(5): 1010-1022.
[2] Kun SU, Gongping YANG, Lu YANG, Peng SU, Yilong YIN. Non-negative locality-constrained vocabulary tree for finger vein image retrieval[J]. Front. Comput. Sci., 2019, 13(2): 318-332.
[3] Xiang FENG, Wanggen WAN, Richard Yi Da XU, Haoyu CHEN, Pengfei LI, J. Alfredo SÁNCHEZ. A perceptual quality metric for 3D triangle meshes based on spatial pooling[J]. Front. Comput. Sci., 2018, 12(4): 798-812.
[4] Xueming WANG, Zechao LI, Jinhui TANG. Visual understanding by mining social media: recent advances and challenges[J]. Front. Comput. Sci., 2018, 12(3): 406-422.
[5] Le DONG, Wenpu DONG, Ning FENG, Mengdie MAO, Long CHEN, Gaipeng KONG. Color space quantization-based clustering for image retrieval[J]. Front. Comput. Sci., 2017, 11(6): 1023-1035.
[6] Ge SONG,Xiaoyang TAN. Hierarchical deep hashing for image retrieval[J]. Front. Comput. Sci., 2017, 11(2): 253-265.
[7] Li CUI. SWVFS: a saliency weighted visual feature similarity metric for image quality assessment[J]. Front. Comput. Sci., 2014, 8(1): 145-155.
[8] Zhiyi MA, Xiao HE, Chao LIU. Assessing the quality of metamodels[J]. Front Comput Sci, 2013, 7(4): 558-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed