Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 167-171    https://doi.org/10.1007/s11705-009-0006-y
RESEARCH ARTICLE
Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite
Jiangbo WANG, Zhong XIN()
State Key Lab of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(161 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The thermal degradation behaviors of polycarbonate/polymethylphenylsilsesquioxane (FRPC) composites were investigated by thermogravimetric analysis (TGA) under isothermal conditions in nitrogen atmosphere. The isothermal kinetics equation was used to describe the thermal degradation process. The results showed that activation energy (E), in the case of isothermal degradation, was a quick increasing function of conversion (α) for polycarbonate (PC) but was a strong and decreasing function of conversion for FRPC. Under the isothermal condition, the addition of polymethylphenylsilsesquioxane (PMPSQ) retardanted the thermal degradation and enhanced the thermal stability of PC during the early and middle stages of thermal degradation. It also indicated a possible existence of a difference in nucleation, nuclei growth, and gas diffusion mechanism in the thermal degradation process between PC and FRPC. Meanwhile, the addition of PMPSQ influenced the lifetime of PC, but the composite still met the demand in manufacturing and application.

Keywords polycarbonate      polymethylphenylsilsesquioxane      thermal degradation kinetics      activation energy      lifetime     
Corresponding Author(s): XIN Zhong,Email:xzh@ecust.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Jiangbo WANG,Zhong XIN. Thermal degradation kinetics and lifetime estimation for polycarbonate/polymethylphenylsilsesquioxane composite[J]. Front Chem Eng Chin, 2009, 3(2): 167-171.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0006-y
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/167
Fig.1  Isothermogravimetric curves for PC and FRPC in nitrogen
Fig.2  Relation between degree of conversion and time of PC and FRPC
Fig.3  Arrhenius dependence of ln
aPCFRPC
E/(kJ?mol-1)ln[A/g(x)]E/(kJ?mol-1)ln[A/g(x)]
0.143.385.86160.2627.05
0.247.845.91142.3123.21
0.361.437.73131.0220.77
0.473.139.35128.4019.98
0.585.1711.08127.0919.47
0.696.3012.69121.7118.25
0.7105.9714.07112.9016.40
0.8117.3415.72100.1313.83
0.9125.3916.7681.3910.12
Tab.1  Kinetic data for isothermal degradation of PC and FRPC
Fig.4  Temperature-time curves of PC and FRPC with variant degree of conversion
sample10%30%50%70%90%
PC5.318.740.475.0148.0
FRPC2.17.113.224.354.7
Tab.2  Time needed with the variant degree of conversion for PC and FRPC at 420°C (unit: min)
sample200°C300°C400°C500°C600°C
PC38936.6891.062.68.81.9
FRPC375305.21338.125.51.40.1
Tab.3  of PC and FRPC at variant temperature (unit: min)
1 Nishihara H, Suda Y, Sakuma T. Halogen- and phosphorus-free flame retardant PC plastic with excellent moldability and recyclability. J Fire Sci , 2003, 21: 451-464
doi: 10.1177/0734904103035147
2 Liu S M, Ye H, Zhou Y S, He J H, Jiang Z J, Zhao J Q, Huang X B. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FT-IR. Polym Degrad Stab , 2006, 91: 1808-1814
doi: 10.1016/j.polymdegradstab.2005.11.013
3 Nodera A, Kanai1 T. Flame retardancy of a polycarbonate-polydimethylsiloxane block copolymer: the effect of the dimethylsiloxane block size. J Appl Polym Sci , 2006, 100: 565-575
doi: 10.1002/app.23331
4 Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym Adv Technol , 1998, 9: 593-600
doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<593::AID-PAT810>3.0.CO;2-U
5 Hayashida K, Ohtani H, Tsuge S, Nakanishi K. Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques. Polym Bull , 2002, 48: 483-490
doi: 10.1007/s00289-002-0063-6
6 Zhou W J, Yang H. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone. Thermochi Acta , 2007, 452: 43-48
doi: 10.1016/j.tca.2006.10.013
7 Vyazovkin S, Wight C A. Kinetics in solids. Annu Rev Phys Chem , 1997, 48: 125-149
doi: 10.1146/annurev.physchem.48.1.125
8 GamLin C, Dutta N, Choudhury N R, Kehoe D, Matisons J. Influence of ethylene-propylene ratio on the thermal degradation behavior of EPDM elastomers. Thermochim Acta , 2001, 367: 185-193
doi: 10.1016/S0040-6031(00)00668-7
9 Vyazovkin S, Wight C A. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater , 1999, 11: 3386-3393
doi: 10.1021/cm9904382
10 Lua A C, Su J C. Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide. Polym Degrad Stab , 2006, 91: 144-153
doi: 10.1016/j.polymdegradstab.2005.04.021
11 Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet , 1996, 28: 95-101
doi: 10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G
12 Saha B, Maiti A K, Ghoshal A K. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta , 2006, 444: 46-52
doi: 10.1016/j.tca.2006.02.018
13 Paik P, Kar K K. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: effects of particle size. Polym Degrad Stab , 2008, 93: 24-35
doi: 10.1016/j.polymdegradstab.2007.11.001
14 Denardin E L G, Janissek P R, Samios D. Time-temperature dependence of the thermo-oxidative aging of polychloroprene rubber: the time-temperature-transformation (TTT) superposition method and the lifetime prediction. Thermochim Acta , 2003, 395: 159-167
doi: 10.1016/S0040-6031(02)00182-X
[1] Zijian Cui, Kaiyue Zhang, Guangyu Xing, Yaqing Feng, Shuxian Meng. Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2017, 11(3): 395-404.
[2] Renxing Wang,Zhenyu Liu,Leiming Ji,Xiaojin Guo,Xi Lin,Junfei Wu,Qingya Liu. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Front. Chem. Sci. Eng., 2016, 10(4): 517-525.
[3] Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
[4] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
[5] YU Moxin, LI Zhong, XI Hongxia, XIA Qibin, WANG Shuwen. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene[J]. Front. Chem. Sci. Eng., 2008, 2(3): 269-275.
[6] RUN Mingtao, ZHANG Dayu, WU Sizhu, WU Gang. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites[J]. Front. Chem. Sci. Eng., 2007, 1(1): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed