Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (3) : 265-271    https://doi.org/10.1007/s11705-009-0010-2
RESEARCH ARTICLE
Preparation and characterization of alumina hollow fiber membranes
Tao WANG1, Yuzhong ZHANG1(), Guangfen LI1,2, Hong LI1
1. Key Laboratory of Hollow Fibre Membrane Materials and Membrane Process of Ministry of Education, Tianjin Polytechnic University, Tianjin 300160, China; 2. College of Material Science and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted of polyethersulfone (PES), N-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547 L/m2·h and 1.4 μm, respectively. Under 1600°C of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its’asymmetric structure even after the sintering process.

Keywords Al2O3      ceramic membranes      hollow fiber     
Corresponding Author(s): ZHANG Yuzhong,Email:zhangyz2004cn@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Tao WANG,Yuzhong ZHANG,Guangfen LI, et al. Preparation and characterization of alumina hollow fiber membranes[J]. Front Chem Eng Chin, 2009, 3(3): 265-271.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0010-2
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I3/265
dope composition/wt-%
Al2O3/(0.8 μm)50-54
PES6-10
NMP35-40
PVP0.5-1
dope temperature/°C25
coagulation bath temperature/°C25
internal coagulant temperature/°C25
injection rate of internal coagulant/(mL/min)3
air gap /cm3
nitrogen pressure /MPa0.1-0.15
Tab.1  Hollow fiber precursor spinning parameters
Fig.1  Thermogravimetric curve of the inorganic hollow fiber precursors (AlO/PES ratios: 8∶1)
Fig.2  SEM diagrams of the hollow fiber before sintering: (a) whole-section; (b) cross-section; (c) inner surface; (d) outer surface
Fig.3  SEM diagrams of the hollow fiber after sintering: (a) whole-section; (b) cross-section; (c) inner surface; (d) outer surface
Fig.4  SEM diagrams of the surface of hollow fiber after sintering with various AlO/PES ratios: (a) 6/1; (b) 7/1; (c) 8/1. A: inner surface; B: outer surface
Fig.5  Effect of alumina content on the pure water flux of membrane
Fig.6  Effect of alumina content on the membrane porosity and maximum pore size
Fig.7  SEM diagrams of the cross-section of hollow fiber at different sintering temperature with AlO/PES ratios of 8∶1. (a) 1200°C; (b) 1400°C; (c) 1600°C
Fig.8  Effect of sintering temperature on the membrane pure water flux (AlO/PES ratios: 8∶1)
Fig.9  Effect of sintering temperature on the membrane porosity and maximum pore size (AlO/PES ratios: 8∶1)
1 Qiu W L, Zhou F B, Kosuri M. Dehydration of ethanol-water mixtures using asymmetric hollow fiber membranes from commercial polyimides. J Membr Sci , 2009, 327: 96-103
doi: 10.1016/j.memsci.2008.11.029
2 Arunima S, Bijay P, Mahendra K, Vinod K. Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci , 2009, 145: 1-22
doi: 10.1016/j.cis.2008.07.004
3 Lu S, Chung T S, Alan R. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci , 2009, 327: 18-31
doi: 10.1016/j.memsci.2008.11.019
4 Terpstra R A, Feenstra F K. US Patent 5707584, 1998
5 Hammel J J. US Patent 48530011989
6 Gestel T V, Carlo V, Anita B, Chris D, Jan L. Corrosion properties of alumina and titania NF membranes. J Membr Sci , 2003, 214: 21-29
doi: 10.1016/S0376-7388(02)00517-3
7 Moresi M, Sebastiani I. Pectin recovery from model solutions using a laboratory-scale ceramic tubular UF membrane module. J Membr Sci , 2008, 322: 349-359
doi: 10.1016/j.memsci.2008.05.066
8 Way J D, Roberts D L. Hollow fiber inorganic membrane for gas separations. Sep Sci Technol , 1992, 27: 29
doi: 10.1080/01496399208018863
9 Maria M. C, Jerome R, Andrew R. B, Mark R W. Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. J Membr Sci , 2002, 205: 33-43
doi: 10.1016/S0376-7388(02)00049-2
10 Liu H, Tan X Y, Pang Z B, Liu S M. Novel dual structured mixed conducting ceramic hollow fibre membranes. Sep Purif Technol , 2008, 63: 243-247
doi: 10.1016/j.seppur.2008.04.017
11 Aust U, Benfer S, Dietze M, Tomandl G. Development of microporous ceramic membranes in the system TiO2/ZrO2. J Membr Sci , 2006, 281: 463-471
doi: 10.1016/j.memsci.2006.04.016
12 Colle R. D, Fontes S R. Demulsification of water/sunflower oil emulsions by a tangential filtration process using chemically impregnated ceramic tubes. J Membr Sci , 2007, 289: 58-66
doi: 10.1016/j.memsci.2006.11.048
13 Tan X Y, Qiao S Z, Liu S M. Porous and dense Ni hollow fibre membranes. J Alloys Compd , 2009, 470: 461-464
doi: 10.1016/j.jallcom.2008.02.106
14 Liu S M, Li K, Hughesc R. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceram Int , 2003, 29: 875-881
doi: 10.1016/S0272-8842(03)00030-0
15 Tan X Y, Liu S M, Li K. Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci , 2001, 188: 87-95
doi: 10.1016/S0376-7388(01)00369-6
[1] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[2] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[3] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[4] M. ABDELLAHI, M. ZAKERI, H. BAHMANPOUR. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling[J]. Front Chem Sci Eng, 2013, 7(2): 123-129.
[5] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
[6] Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO. A study on the catalytic performance of Pd/γ-Al2O3, prepared by microwave calcination, in the direct synthesis of dimethylether[J]. Front Chem Eng Chin, 2010, 4(4): 452-456.
[7] Hui FAN, Huayan ZHENG, Zhong LI. Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis[J]. Front Chem Eng Chin, 2010, 4(4): 445-451.
[8] Zhihong YANG, Guoliang ZHANG, Lan LIN, Danping REN, Qin MENG, Hongzi ZHANG. Effects of baffles on separation of aqueous ethanol solution with hollow fibers[J]. Front Chem Eng Chin, 2009, 3(1): 68-72.
[9] QIU Yejun, CHEN Jixiang, ZHANG Jiyan. Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas[J]. Front. Chem. Sci. Eng., 2007, 1(2): 167-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed