Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (1) : 39-45    https://doi.org/10.1007/s11705-009-0098-4
RESEARCH ARTICLE
Modeling the aqueous reaction kinetics of estriol with ferrate
Cong LI(), Naiyun GAO
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
 Download: PDF(242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study the aqueous oxidation kinetics of estriol (E3) by potassium ferrate (K2FeO4), a chemical for its strong oxidizing power and for producing a coagulant from its reduced state (i.e. Fe(III)), was evaluated in the range of pH 8-12 with different molar ratios of the reactants. As the degree of Fe(VI) protonation varies with the solution pH, it was found that a first order model was not suitable to describe the oxidation reaction. This paper describes a theoretical representation that closely models the reaction kinetics of E3 and ferrate. From this modeling, the reaction rates of HFeO4-and FeO42-with E3 have been determined. The results show that the reactivity of HFeO4- with dissociated and undissociated E3 is greater than that of FeO42-, and that E3 is more reactive in its dissociated state.

Keywords ferrate      estriol      endocrine disruptor      kinetics      oxidation     
Corresponding Author(s): LI Cong,Email:congilli@yahoo.com.cn   
Issue Date: 05 March 2009
 Cite this article:   
Naiyun GAO,Cong LI. Modeling the aqueous reaction kinetics of estriol with ferrate[J]. Front Chem Eng Chin, 2009, 3(1): 39-45.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0098-4
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I1/39
Fig.1  XRD spectra of three KFeO samples
Fig.2  Molar fraction of Fe(VI) species at different pH
Compoundsk1/(M-1?s-1)k1/(M-1?s-1)k2/(M-1?s-1)k2/(M-1?s-1)
E39.28×1021.003×1031.12×1035.44×105
Tab.1  Rate constants of E3 degradation with ferrate(VI)
Compoundsk11/(M-1?s-1)k11/(M-1?s-1)k21/(M-1?s-1)k21/(M-1?s-1)
Fe(VI)9.76×1021.87×1036.83×1035.46×105
Tab.2  Rate constants of ferrate reduction with undissociated E3 and dissociated E3
Fig.3  Comparison of experimental data and pseudo first order reaction model for E3 degradation (A), and ferrate reduction at Fe(Ⅵ) : E3≥10 (B)
Fig.4  Comparison of experimental data and non-pseudo first order reaction model for E3 degradation (A), and ferrate reduction at Fe((Ⅵ) : E3≤5 (B)
Fig.5  Comparison of experimental data and new second order reaction model for E3 degradation (A), and ferrate reduction at Fe(VI) ∶ E3≥10 (B)
Fig.6  Comparison of experimental data and new second order reaction model for E3 degradation (A), and ferrate reduction at Fe(VI) ∶E3≤5 (B)
Fig.7  Comparison of experimental data and new second order reaction model for the degradation of steroid estrogens, EE2, E1, E2 and E3
1 Fry D M. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Sci Technol , 1995, 311: 65-171
2 Sumpter J P. Feminized responses in fish to environmental estrogens. Toxicol Lett , 1995, 82-83: 737–742
doi: 10.1016/0378-4274(95)03517-6
3 Jiang J Q, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Wat Res , 2002, 36: 1397-1408
doi: 10.1016/S0043-1354(01)00358-X
4 Sharma V K, Rivera W, Joshi V N, Millero F J, Oconnor D. Ferrate(VI) oxidation of thiourea. Environ Sci Technol , 1999, 33: 2645-2650
doi: 10.1021/es981083a
5 Jiang J Q, Wang S. Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environ Eng Sci , 2003, 20: 627-635
doi: 10.1089/109287503770736140
6 Huang H, Sommerfeld D, Dunn B C, Eyring E M, Lioyd C R. Ferrate(VI) oxidation of aqueous phenol: kinetics and mechanism. J Phys Chem A , 2001, 105: 3536-3541
doi: 10.1021/jp0039621
7 Bielski B H J, Thomas M J. Studies of hypervalent iron in aqueous solutions. 1. readiation induced reduction of iron(VI) to iron(V) by CO2-. J Am Chem Soc , 1987, 109: 7761-7764
doi: 10.1021/ja00259a026
8 Li C, Li X Z, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere , 2005, 61: 537-543
doi: 10.1016/j.chemosphere.2005.02.027
9 Jiang J Q, Lloyd B, Grigore L. Preparation and evaluation of potassium ferrate as an oxidant and coagulant for potable water treatment. Environ Eng Sci , 2001, 18: 323-328
doi: 10.1089/10928750152726041
10 Licht S, Naschitz V, Halperin L, Halperin N, Lin L, Chen J J, Ghosh S, Liu B. Analysis of ferrate (VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J Power Sources , 2001, 101: 167-176
doi: 10.1016/S0378-7753(01)00786-8
11 Sharma V K. Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res , 2002, 6: 143-156
doi: 10.1016/S1093-0191(01)00119-8
12 Graham N, Jiang C C, Li X Z, Jiang J Q, Ma J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere , 2004, 56: 949-956
doi: 10.1016/j.chemosphere.2004.04.060
13 Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water. II: dissociating organic compounds. Water Res , 1983, 17: 185-194
doi: 10.1016/0043-1354(83)90099-4
14 Langlais B, Reckhow D A, Brink R B, eds. Ozone in water treatment: application and engineering. New York: Lewis Publishers, 1991, 43-45
15 Pinkston K E, Sedlak D L. Transformation of aromatic ether and amine containing pharmaceuticals during chlorine disinfection. Environ Sci Technol , 2004, 38: 4019-4025
doi: 10.1021/es035368l
16 Li C, Li X Z, Graham N, Gao N Y. The aqueous degradation of bisphenol a and steroid estrogens by ferrate. Water Research , 2008, 42(1-2): 109-120
doi: 10.1016/j.watres.2007.07.023
[1] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[2] Zhifei Wu, Li Wang, Yixiao Hu, Hui Han, Xing Li, Ying Wang. The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template[J]. Front. Chem. Sci. Eng., 2020, 14(6): 967-975.
[3] Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan. Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 948-955.
[4] Anna Khlyustova, Nikolay Sirotkin. Plasma-assisted oxidation of benzoic acid[J]. Front. Chem. Sci. Eng., 2020, 14(4): 513-521.
[5] Longli Bo, Shaoyuan Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Front. Chem. Sci. Eng., 2019, 13(2): 385-392.
[6] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[7] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[8] Yuyao Ji, Min Ma, Xuqiang Ji, Xiaoli Xiong, Xuping Sun. Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions[J]. Front. Chem. Sci. Eng., 2018, 12(3): 467-472.
[9] Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J]. Front. Chem. Sci. Eng., 2017, 11(4): 603-612.
[10] Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading[J]. Front. Chem. Sci. Eng., 2017, 11(2): 185-196.
[11] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
[12] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[13] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[14] Yanxia Zheng,Heng Zhang,Lei Wang,Suojiang Zhang,Shaojun Wang. Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid[J]. Front. Chem. Sci. Eng., 2016, 10(1): 139-146.
[15] Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed