Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (3) : 339-342    https://doi.org/10.1007/s11705-010-0569-7
RESEARCH ARTICLE
PSS sorbents for removing trace hydrogen sulfide in methane
Limei ZHONG1(), Li ZHOU2
1. Qingdao University of Science & Technology, Qingdao 266042, China; 2. High Pressure Adsorption Laboratry, Tianjin University, Tianjin 300072, China
 Download: PDF(148 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sorbents of the pressure swing sorption process (PSS) to remove trace amount of H2S (190 ppm) contained in methane were experimentally studied. The sorbents consist of adsorbent carrier (silica gel or activated carbon) and absorbent which spreads outside the carrier granules’ pores (triethanolamine, TEA or N-methyl-2-pyrrolidone, NMP). The results of breakthrough and regeneration tests show that silica gel is more suitable to be the carrier than activated carbon and TEA is more suitable to be the absorbent than NMP. The loaded absorbent could enlarge the sorption capacity of H2S considerably. And the BET tests indicate that the absorbent deposits on the surface of the carrier’s pores and can reduce the mesopores’ size and block the micropores.

Keywords pressure swing sorption      H2S      methane      carrier      absorbent     
Corresponding Author(s): ZHONG Limei,Email:zhonglimei@qust.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Limei ZHONG,Li ZHOU. PSS sorbents for removing trace hydrogen sulfide in methane[J]. Front Chem Sci Eng, 2011, 5(3): 339-342.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0569-7
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I3/339
carrierbulk density /(g·mL-1)brunauer-emmett-Teller surface area /(m2·g-1)pore volume /(mL·g-1)average pore size /nmparticle size /mm
silica gel0.423350.85100.28-0.45
JX-1040.508120.34381.70.28-0.45
Tab.1  Physical properties of the silica gel and JX-104
absorbentexperimental formulaboiling point /°C (760 mmHg)freezing point /°Cvapor pressure /Paviscosity /cp
NMPC5H9ON202-24.4530.5 (60°C)1.65 (25°C)
TEAC6H15O3N36021.21.3 (20°C)15 (100°C)
Tab.2  Physical properties of NMP and TEA
Fig.1  Schematic flowchart of the experiment. PR, pressure regulator; MFC, mass flow controller; PT, pressure transducer; BP, backpressure valve; 3WV, three-way valve; V1-V16, valves.
Fig.2  Schematic apparatus for adsorption of N at 77 K
Fig.3  Breakthrough curves of JX-104 with 26% TEA
Fig.4  Breakthrough curves of silica gel with 26% TEA
Fig.5  Breakthrough curves of silica gel with 26% TEA and NMP
Fig.6  Regeneration curves of silica gel with 26% TEA and NMP
Fig.7  Adsorption isotherms of N on the sorbents at 77 K
load ratio09.714.319.423.026.032.5
specific area /(m2·g-1)388352302257242214197
pore volume /(mL·g-1)1.0010.9550.9180.8860.8710.8480.824
Tab.3  Specific surface area and pore volume of the adsorbents
Fig.8  Pore size distribution of the sorbents
1 Kersen ü, Holappa L. Surface characterization and the gas response of a mixed, Fe2O3-Fe2(MoO4)3, oxide to low concentrations of H2S in air. Electroanalysis , 2008, 20(22): 2442–2446
2 Tian S, Mo H, Zhang R, Ning P, Zhou T. Enhanced removal of hydrogen sulfide from a gas stream by 3-aminopropyltriethoxysilane-surface-functionalized activated carbon. Adsorption , 2009, 15(5-6): 477–488
3 Ivanov E S, Brodskii M L, Timonin A V. Corrosion resistance and tendency towards corrosion-mechanical failure of new pipe steels in hydrogen sulfide-containing media in Northern Russia oil fields. Metallurgist , 2009, 53(7-8): 421–428
4 Gabbay D S, De Roos F, Perrone J. Twenty-foot fall averts fatality from massive hydrogen sulfide exposure. Journal of Emergency Medicine , 2001, 20(2): 141–144
5 Polychronopoulou K, Galisteo F C, Granados M L, Fierro J L G, Bakas T, Efstathiou A M. Novel Fe-Mn-Zn-Ti-O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. Journal of Catalysis , 2005, 236(2): 205–220
6 Ramirez M, Gómez J M, Cantero D, Páca J, Halecky M, Kozliak E I, Sobotka M. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor. Folia Microbiologica , 2009, 54(5): 409–414
7 Polychronopoulou K, Fierro J L G, Efstathiou A M. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental , 2005, 57(2): 125–137
8 Novochinskii I I, Song C, Ma X, Liu X, Shore L, Lampert J, Farrauto R J. Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates. Energy & Fuels , 2004, 18(2): 576–583
9 Xing C, Zhang Y, Yan W, Guo L. Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. International Journal of Hydrogen Energy , 2006, 31(14): 2018–2024
10 Jin Y M, Veiga M C, Kennes C. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnology and Bioengineering , 2005, 92(4): 462–471
11 Zhou L, Yu M, Zhong L ,Zhou Y. Feasiblility study on pressure swing sorption for removing H2S from natural gas. Chemical Engineering Science , 2004, 59(12): 2401–2406
12 Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548–552
13 Sing K. The use of nitrogen adsorption for the characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 187-188: 3–9
14 Wang X. Chemical and morphological characterization of mesoporous material supported copper oxide nanoparticles for potential application. Journal of Porous Materials ,
doi: 10.1007/s10934-010-9418-9
doi: 10.1007/s10934-010-9418-9
[1] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[2] Leijing Liu, Hao Zhang, Bo Xiao, Yang Liu, Bin Xu, Chen Wang, Shanpeng Wen, Erjun Zhou, Gang Chen, Chan Im, Wenjing Tian. Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system[J]. Front. Chem. Sci. Eng., 2021, 15(1): 127-137.
[3] Xinghong Duo, Lingchuang Bai, Jun Wang, Jintang Guo, Xiangkui Ren, Shihai Xia, Wencheng Zhang, Abraham Domb, Yakai Feng. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation[J]. Front. Chem. Sci. Eng., 2020, 14(5): 889-901.
[4] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[5] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[6] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[7] Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
[8] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[9] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[10] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[11] Sunhui Chen,Qiuling Liang,Shuping Xie,Ergang Liu,Zhili Yu,Lu Sun,Meong Cheol Shin,Seung Jin Lee,Huining He,Victor C. Yang. Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 383-388.
[12] Vaibhav Mundra, Ram I. Mahato. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus[J]. Front. Chem. Sci. Eng., 2014, 8(4): 387-404.
[13] Yan LI,Zhehao WEI,Yong WANG. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane[J]. Front. Chem. Sci. Eng., 2014, 8(2): 133-140.
[14] Piyawat PUE-ON, Vissanu MEEYOO, Thirasak RIRKSOMBOOON. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts[J]. Front Chem Sci Eng, 2013, 7(3): 289-296.
[15] Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV. Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Front Chem Sci Eng, 2013, 7(3): 279-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed