Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (4) : 429-434    https://doi.org/10.1007/s11705-011-1138-4
RESEARCH ARTICLE
Photoluminescent properties of Sb3+-doped and (Sb3+, Eu3+) co-doped YBO3 phosphors prepared via hydrothermal method and solid-state process
Fushan WEN1(), Lingling SUN1, Jinhyeok KIM2
1. College of Chemistry & Chemical Engineering, China University of Petroleum, Dongying 257061, China; 2. Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, Kwangju 500–757, Republic of Korea
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sb3+-doped YBO3 crystals were prepared through a low-temperature hydrothermal method and a high-temperature solid-state technique, respectively. The effects of preparation methods on the morphologies and luminescent properties of YBO3 phosphors were investigated. The YBO3 crystals from the hydrothermal system look like flowers, whereas those from the solid-state process look like some agglomerates of little spheres. The Sb3+-doped YBO3 powders prepared via both methods showed the blue emission with the peak at around 452 nm, which corresponds to the 3P11S0 transition of Sb3+ ions. However, the emission intensity of the Sb3+-doped YBO3 from the hydrothermal system is about 3.5 times as much as that from the solid-state process. The (Sb3+,Eu3+) co-doped YBO3 crystals were also prepared through the two methods. The results showed that the emission intensity of Sb3+ ions in (Sb3+, Eu3+) co-doped YBO3 synthesized by the hydrothermal method is stronger than that by the solid-state process.

Keywords hydrothermal      solid-state      luminescent      borate     
Corresponding Author(s): WEN Fushan,Email:fushanwen@upc.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Fushan WEN,Lingling SUN,Jinhyeok KIM. Photoluminescent properties of Sb3+-doped and (Sb3+, Eu3+) co-doped YBO3 phosphors prepared via hydrothermal method and solid-state process[J]. Front Chem Sci Eng, 2011, 5(4): 429-434.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1138-4
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I4/429
Fig.1  Powder X-ray diffraction patterns of (a) hydrothermal, (b) solid-state method and (c) simulated of YBO
Fig.2  Scanning electron microscopy (SEM) of the YBO crystals with hydrothermal method (a) and solid-state method (b)
Fig.3  The excited spectra of Sb-doped YBO crystals with hydrothermal method (a) and solid-state method (b). ( = 452 nm)
Fig.4  The emission spectra of Sb-doped YBO crystals synthesized from (a) hydrothermal system and (b) solid-state system. ( = 250 nm)
Fig.5  The excited spectra of (Sb, Eu) co-doped YBO crystals with hydrothermal method (a) and solid-state method (b). ( = 592 nm)
Fig.6  The emission spectra of (Sb, Eu) co-doped YBO crystals (a) hydrothermal system and (b) solid-state system. The ratio of Sb/Eu in the initial reactants is 0.7. (λ = 252 nm)
1 Ren M, Lin J H, Dong Y, Yang L Q, Su M Z, You L P. Structure and phase transition of GdBO3. Chemistry of Materials , 1999, 11(6): 1576–1580
2 Wei Z G, Sun L D, Liao C S, Yin J L, Jiang X C, Yan C H, Lü S Z. Size-dependent chromaticity in YBO3: Eu nanocrystals: correlation with microstructure and site symmetry. Journal of Physical Chemistry B , 2002, 106(41): 10610–10617
3 Chadeyron G, El-Ghozzi M, Mahiou R, Arbus A, Cousseins J C. Revised structure of the orthoborate YBO3. Journal of Solid State Chemistry , 1997, 128(2): 261–266
4 Wei Z G, Sun L D, Liao C S, Jiang X C, Yan C H. Synthesis and size dependent luminescent properties of hexagonal (Y, Gd)BO3: Eu nanocrystals. Journal of Materials Chemistry , 2002, 12(12): 3665–3670
5 Wei Z G, Sun L D, Liao C S, Jiang X C, Yan C H, Tao Y, Hou X Y, Ju X. Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. Journal of Applied Physics , 2003, 93(12): 9783–9788
6 Koike J, Kojima T, Toyonaga R, Kagami A, Hase T, Inaho S. New tricolor phosphors for gas discharge display. Journal of the Electrochemical Society , 1979, 126(6): 1008–1010
7 Rao R P. Tb3+ activated green phosphors for plasma display panel applications. Journal of the Electrochemical Society , 2003, 150(8): H165–H171
8 Sohn K S, Choi Y Y, Park H D. Photoluminescence behavior of Tb3+-activated YBO3 phosphors. Journal of the Electrochemical Society , 2000, 147(5): 1988–1992
9 Jung K Y, Kim E J, Kang Y C. Morphology control and optimization of luminescent property of YBO3: Tb phosphor particles prepared by spray pyrolysis. Journal of the Electrochemical Society , 2004, 151(3): H69–H73
10 Lemanceau S, Bertrand-Chadeyron G, Mahiou R, El-Ghozzi M, Cousseins J C, Conflant P, Vannier R N. Synthesis and characterisation of H-LnBO3 orthoborates (Ln= La, Nd, Sm and Eu). Journal of Solid State Chemistry , 1999, 148(2): 229–235
11 Boyer D, Bertrand-Chadeyron G, Mahiou R, Caperaa C, Cousseins J C. Synthesis dependent luminescence efficiency in Eu3+-doped poly-crystalline YBO3. Journal of Materials Chemistry , 1999, 9(1): 211–214
12 Kim K N, Jung H K, Park H D, Kim D. Synthesis and characterization of red phosphor (Y, Gd)BO3: Eu by the coprecipitation method. Journal of Materials Research , 2002, 17(04): 907–910
13 Li Y Y, Feng S H. Synthesis of (Y, Gd)BO3: Eu phosphors by the microwave heating method. Chinese Journal of Luminescence, 1995, 16: 261–264 (in Chinese)
14 Kim D S, Lee R Y. Synthesis and photoluminescence properties of (Y, Gd)BO3: Eu phosphor prepared by ultrasonic spray. Journal of Materials Science , 2000, 35(19): 4777–4782
15 Thakare D S, Omanwar S K, Moharil S V, Dhopte S M, Muthal P L, Kondawar V K. Combustion synthesis of borate phosphors. Optical Materials , 2007, 29(12): 1731–1735
16 Jiang X C, Yan C H, Sun L D, Wei Z G, Liao C S. Hydrothermal homogeneous urea precipitation of hexagonal YBO3: Eu3+ nanocrystals with improved luminescent properties. Journal of Solid State Chemistry , 2003, 175(2): 245–251
17 Wang Y, Endo T, He L, Wu C. Synthesis and photoluminescence of Eu3+-doped (Y, Gd)BO3 phosphors by a mild hydrothermal process. Journal of Crystal Growth , 2004, 268(3–4): 568–574
18 Yang J, Zhang C, Wang L, Hou Z, Huang S, Lian H, Lin J. Hydrothermal synthesis and luminescent properties of LuBO3:Tb3+ microflowers. Journal of Solid State Chemistry , 2008, 181(10): 2672–2680
19 Tukia M, H?ls? J, Lastusaari M, Niittykoski J. Eu3+ doped rare earth orthoborates, RBO3 (R= Y, La and Gd), obtained by combustion synthesis. Optical Materials , 2005, 27(9): 1516– 1522
20 Sahoo T, Tripathy S K, Yu Y T, Ahn H K, Shin D C, Lee I H. Morphology and crystal quality investigation of hydrothermally synthesized ZnO micro-rods. Materials Research Bulletin , 2008, 43(8–9): 2060–2068
21 Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln= Eu, Sm, Dy). Journal of Physical Chemistry B , 1998, 102(50): 10129–10135
22 Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M. Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4: Eu, LaPO4: Ce and LaPO4: Ce, Tb. Advanced Materials , 1999, 11(10): 840–844
23 Wen F S, Zhao X, Ding H, Huo H, Chen J S. Hydrothermal synthesis and photoluminescent properties of Sb3+-doped and (Sb3+, Mn2+)-co-doped calcium hydroxyapatite. Journal of Materials Chemistry , 2002, 12(12): 3761–3765
24 Wen F S, Li W L, Moon J H, Kim J H. Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process. Solid State Communications , 2005, 135(1–2): 34–37
25 Shionoya S, Yen W M. Phosphor Handbook. New York: CRC Press, 1998, 57–58
26 Wen F S, Chen J S, Moon J H, Kim J H, Niu J H, Li W J. Hydrothermal synthesis and luminescent properties of Sb3+-doped Sr3(PO4)2. Journal of Solid State Chemistry , 2004, 177(9): 3114–3118
27 Oomen E W J L, Smit W M A, Blasse G. Jahn-Teller effect in the emission and excitation spectra of the Sb3+ ion in LnPO4 (Ln= Sc, Lu, Y). Physical Review B: Condensed Matter and Materials Physics , 1988, 37(1): 18–26
28 Oomen E W J L, Smit W M A, Blasse G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M= Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics. C. Solid State Physics , 1986, 19(17): 3263–3272
29 Wen F S, Li W L, Liu Z, Kim T U, Yoo K Y, Shin S H, Moon J H, Kim J H. Hydrothermal syntheis of Sb3+ doped and (Sb3+, Eu3+) co-doped YBO3 with nearly white light luminescence. Solid State Communications , 2005, 133(7): 417–420
30 Zhang J, Lin J. Vaterite-type YBO3:Eu3+ crystals: hydrothermal synthesis, morphology and photoluminescence properties. Journal of Crystal Growth , 2004, 271: 207–215
[1] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[2] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
[3] Tong Yu, Jiang Cheng, Lu Li, Benshuang Sun, Xujin Bao, Hongtao Zhang. Current understanding and applications of the cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 654-664.
[4] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[5] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
[6] Shengping WANG, Changqing MA, Yun SHI, Xinbin MA. Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis[J]. Front Chem Sci Eng, 2014, 8(1): 95-103.
[7] Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih. Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment[J]. Front Chem Sci Eng, 2012, 6(4): 371-380.
[8] John TELLAM, Xu ZONG, Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
[9] Xiaojuan NIU, Shuyi QIU, Yuangen WU, Jie YUAN, Yingying XU. Highly effective extraction of oil from soybean by pretreatment of solid-state fermentation with fungi[J]. Front Chem Sci Eng, 2011, 5(1): 122-125.
[10] YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen. Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template[J]. Front. Chem. Sci. Eng., 2008, 2(2): 135-139.
[11] FU Xiaoguo, CHEN Hongzhang, LI Hongqiang, MA Runyu. Study on microbial protein and the mechanism of solid-state fermentation with periodical dynamic changes of air[J]. Front. Chem. Sci. Eng., 2007, 1(2): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed