Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 177-184    https://doi.org/10.1007/s11705-013-1324-7
RESEARCH ARTICLE
Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria
Hong’en QUAN1, He BAI1, Yang HAN1, Yong KANG1(), Jiao SUN1,2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
 Download: PDF(168 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The biosorption properties of dead sulfate reducing bacteria (SRB) for the removal of Cu(II) and Fe(III) from aqueous solutions was studied. The effects of the biosorbent concentration, the initial pH value and the temperature on the biosorption of Cu(II) and Fe(III) by the SRB were investigated. FTIR analysis verified that the hydroxyl, carbonyl and amine functional groups of the SRB biosorbent were involved in the biosorption process. For both Cu(II) and Fe(III), an increase in the SRB biosorbent concentration resulted in an increase in the removal percentage but a decrease in the amount of specific metal biosorption. The maximum specific metal biosorption was 93.25 mg?g–1 at pH 4.5 for Cu(II) and 88.29 mg?g–1 at pH 3.5 for Fe(III). The temperature did not have a significant effect on biosorption. In a binary metal system, the specific biosorption capacity for the target metal decreased when another metal ion was added. For both the single metal and binary metal systems, the biosorption of Cu(II) and Fe(III) onto a SRB biosorbent was better represented by a Langmuir model than by a Freundlich model.

Keywords sulfate reducing bacteria      biosorption      Cu(II)      Fe(III)     
Corresponding Author(s): KANG Yong,Email:ykang@tju.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Hong’en QUAN,He BAI,Yang HAN, et al. Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria[J]. Front Chem Sci Eng, 2013, 7(2): 177-184.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1324-7
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/177
Fig.1  FTIR spectra of biosorbents with (a) no metal loaded, (b) Cu(II) loaded and (c) Fe(III)-loaded
Fig.2  Effect of biosorbent concentration on metal biosorption at 30°C and pH 2.0. (a) Cu(II) 300 mg?L; (b) Fe(III) 300 mg?L
Fig.3  Effect of pH on metal biosorption at 30°C with a biosorbent concentration of 2.498 g?L, Cu(II) 300 mg?L and Fe(III) 300 mg?L
Fig.4  Effect of temperature on metal biosorption, biosorbent concentration= 2.498 g?L, pH= 2.0, Cu(II) 300 mg?L and Fe(III) 300 mg?L
Fig.5  Biosorption of target metal in binary metal systems at 30°C with biosorbent concentration= 2.498 g?Land pH= 2.0. (a) Cu(II) = 100-600 mg?L; (b) Fe(III) = 100-600 mg?L
ConcentrationLangmuir modelFreundlich model
(g?L–1)qmax/( mg?g–1)b/( L?mg–1)r2 LRLnk /(mg?g–1) (L?mg–1)1/nr2 F
1.249187.290.00470.97230.26181.75694.27100.9819
2.498375.340.00120.97810.58141.27221.09430.9686
3.747120.640.00530.93320.23921.77363.02660.8759
4.99692.090.00840.98060.16561.92893.63990.9780
6.24580.250.00710.98720.19011.81072.47980.9738
7.49468.220.00880.96270.15921.85462.50440.9623
Tab.1  Isotherm parameters obtained from Langmuir and Freundlich models for Cu(II)
(a) Fitting parameters at various biosorbent concentrations at 30°C and pH 2.0
pHLangmuir modelFreundlich model
qmax/( mg?g-1)b/( L?mg-1)r2 LRLnk /(mg?g-1) (L?mg-1)1/nr2 F
2.0150.690.00470.93180.26181.77523.55580.9400
3.0164.300.00480.93380.25771.77793.95180.9380
3.5169.320.00510.91400.24631.79244.30270.9173
4.0178.520.00430.92730.27931.71053.59500.9404
4.5169.210.00460.91390.26601.75203.79170.8933
5.0159.210.00530.91930.23921.82164.29810.9154
Tab.2  (b) Fitting parameters at various pHs at 30°C with a biosorbent concentration of 2.498 g?L
Concentration /(g?L-1)Langmuir modelFreundlich model
qmax/(mg?g-1)b/(L?mg-1)r2 LRLnk /(mg?g-1) (L?mg-1)1/nr2 F
1.249197.200.00210.96610.44251.51551.71590.9449
2.498261.210.00270.95750.38171.41182.07220.9284
3.747153.980.00280.99750.37311.48251.49560.9947
4.996111.230.00380.99670.30491.54851.51350.9844
6.245147.760.00260.98580.39061.34860.98300.9932
7.49485.940.00710.98960.19011.69762.25850.9573
Tab.3  Isotherm parameters obtained from Langmuir and Freundlich models for Fe(III)
(a) Fitting parameters at various biosorbent concentrations at 30°C and pH 2.0
pHLangmuir modelFreundlich model
qmax/(mg?g-1)b/(L?mg-1)r2 LRLnk/(mg?g-1) (L ?mg-1)1/nr2 F
2.0176.670.00370.94620.31061.66022.96180.9077
2.5160.570.00400.90870.29411.71383.12270.8600
3.0140.230.00570.86240.22621.90594.41220.7741
3.5221.290.00300.93860.35711.53582.54710.9109
4.0238.550.00300.96100.35711.46462.34590.9386
4.5149.220.00490.87980.25381.79763.74460.8147
Tab.4  (b) Fitting parameters at various pHs at 30°C with a biosorbent concentration of 2.498 g?L
Target metalCoupled metal /(mg?L-1)Langmuir modelFreundlich model
qmax/(mg? g-1)b /( L?mg-1)r2 Lnk /(mg?g-1) (L? mg-1)1/nr2 F
Cu(II)0375.340.00120.97811.27231.09440.9686
100120.330.00340.95311.69112.03500.9250
200134.520.00200.98051.45500.96850.9768
Fe(III)0261.210.00270.95750.94940.92840.9284
100159.770.00280.96301.41182.07260.9494
200100.370.00440.97821.56351.87640.9458
Tab.5  Isotherm parameters of Langmuir and Freundlich models in binary metal system at 30°C with a biosorbent concentration of 2.498 g?L and pH 2.0
1 Kikot P, Viera M, Mignone C, Donati E. Study of the effect of pH and dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional factorial design. Hydrometallurgy , 2010, 104(3-4): 494-500
doi: 10.1016/j.hydromet.2010.02.026
2 Zhou W, Wang J, Shen B, Hou W, Zhang Y. Biosorption of copper (II) and cadmium (II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids and Surfaces. B, Biointerfaces , 2009, 72(1): 295-302
3 Balistrieri L S, Seal R R II, Piatak N M, Paul B. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine. Applied Geochemistry , 2007, 22(5): 930-952
doi: 10.1016/j.apgeochem.2007.02.005
4 Chen B Y, Utgikar V P, Harmon S M, Tabak H H, Bishop D F, Govind R. Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. International Biodeterioration & Biodegradation , 2000, 46(1): 11-18
doi: 10.1016/S0964-8305(00)00054-8
5 Kieu H T Q, Müller E, Horn H. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Research , 2011, 45(13): 3863-3870
doi: 10.1016/j.watres.2011.04.043
6 Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. Journal of Environmental Quality , 2007, 36(1): 1-16
doi: 10.2134/jeq2006.0066
7 Pagnanelli F, Viggi C C, Toro L. Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulfate reducing bacteria: biosorption versus bioprecipitation. Bioresource Technology , 2010, 101(9): 2981-2987
doi: 10.1016/j.biortech.2009.12.009
8 van Houten R T, Elferink S J W H, van Hamel S E, Pol L W H, Lettinga G. Sulfate reduction by aggregates of sulfate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Bioresource Technology , 1995, 54(1): 73-79
doi: 10.1016/0960-8524(95)00117-4
9 de Vargas I, Macaskie L E, Guibal E. Biosorption of palladium and platinum by sulfate reducing bacteria. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2004, 79(1): 49-56
doi: 10.1002/jctb.928
10 Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnology Advances , 2009, 27(2): 195-226
doi: 10.1016/j.biotechadv.2008.11.002
11 Sari A, Tuzen M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials , 2008, 160(2-3): 349-355
doi: 10.1016/j.jhazmat.2008.03.005
12 Masoudzadeh N, Zakeri F, Lotfabad T, Sharafi H, Masoomi F, Zahiri H S, Ahmadian G, Noghabi K A. Lotfabad Tb, Sharafi H, Masoomi F, Zahiri H S, Ahmadian G, Noghabi K A. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. Journal of Hazardous Materials , 2011, 197: 190-198
doi: 10.1016/j.jhazmat.2011.09.075
13 Vijayaraghavan K, Palanivelu K, Velan M. Biosorption of copper (II) and cobalt (II) from aqueous solutions by crab shell particles. Bioresource Technology , 2006, 97(12): 1411-1419
doi: 10.1016/j.biortech.2005.07.001
14 Karthikeyan S, Balasubramanian R, Iyer C S P. lyer C S. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresource Technology , 2007, 98(2): 452-455
doi: 10.1016/j.biortech.2006.01.010
15 Yin Y, Hu Y, Xiong F. Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus. International Biodeterioration & Biodegradation , 2011, 65(7): 1012-1018
doi: 10.1016/j.ibiod.2011.08.001
16 Dundar M, Nuhoglu C, Nuhoglu Y. Biosorption of Cu (II) ions onto the litter of natural trembling poplar forest. Journal of Hazardous Materials , 2008,151(1): 86-95
doi: 10.1016/j.jhazmat.2007.05.055
17 Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. Journal of Hazardous Materials , 2008, 155(1-2): 327-333
doi: 10.1016/j.jhazmat.2007.11.064
18 Gupta V K, Rastogi A, Nayak A. Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. Journal of Colloid and Interface Science , 2010, 342(2): 533-539
doi: 10.1016/j.jcis.2009.10.074
19 Iqbal M, Edyvean R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering , 2004, 17(2): 217-223
doi: 10.1016/j.mineng.2003.08.014
20 Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresource Technology , 2008, 99(14): 6271-6279
doi: 10.1016/j.biortech.2007.12.002
21 Zakeri F, Noghabi K A, Sadeghizadeh M, Kardan M R, Masoomi F, Farshidpour M R, Atarilar A. Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas. Bioresource Technology , 2010, 101(23): 9163-9170
doi: 10.1016/j.biortech.2010.07.032
22 ?zcan A S, Erdem B, ?zcan A. Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 266(1-3): 73-81
doi: 10.1016/j.colsurfa.2005.06.001
[1] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[2] Tao Lu, Qilei Zhang, Shanjing Yao. Removal of dyes from wastewater by growing fungal pellets in a semi-continuous mode[J]. Front. Chem. Sci. Eng., 2017, 11(3): 338-345.
[3] Paul Fabrice NGUEMA,Zejiao LUO,Jingjing LIAN. The biosorption of Cr(VI) ions by dried biomass obtained from a chromium-resistant bacterium[J]. Front. Chem. Sci. Eng., 2014, 8(4): 454-464.
[4] Pratibha SANJENBAM, Kumar SAURAV, Krishnan KANNABIRAN. Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India[J]. Front Chem Sci Eng, 2012, 6(2): 198-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed