Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 447-455    https://doi.org/10.1007/s11705-013-1370-1
RESEARCH ARTICLE
Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure
Jingcai ZHAO, Xingfu SONG(), Ze SUN, Jianguo YU
National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(220 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study on thermodynamic property of NH3-CO2-H2O system provided the basic data for ammonia carbonation. Simulations on vapor-liquid equilibrium (VLE) of ammonia carbonation with different physical properties were discussed in NH3-H2O and NH3-CO2-H2O systems, respectively. The results indicated that at low temperature (303.15 K–363.15 K) and pressure (0.1–0.4 MPa), the PR (Peng-Robinson) equation was suitable for the description of the thermodynamic state in NH3-H2O system. NRTL (Non-Random-Two-Liquid) series models were selected for NH3-CO2-H2O mixed electrolyte solution system. VLE data regression results showed that NRTL series models were suitable for describing thermodynamic properties of NH3-CO2-H2O system, because average relative error fitting with each model was about 1%. As an asymmetric electrolytes model in NRTL model, E–NRTLRK (Electrolyte NRTL Redlich Kwong) could most accurately fit VLE data of NH3-CO2-H2O system, with fitting error less than 1%. In the extent temperature range of 273.15 K–363.15 K, the prediction of product component using E-NRTLRK model for ammonia carbonation agreed well with the data reported in literature.

Keywords vapor-liquid equilibrium      activity coefficient      carbon dioxide      ammonia      NRTL     
Corresponding Author(s): SONG Xingfu,Email:xfsong@ecust.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Ze SUN,Jianguo YU,Jingcai ZHAO, et al. Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure[J]. Front Chem Sci Eng, 2013, 7(4): 447-455.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1370-1
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/447
Fig.1  NH-HO VLE data regression with different models
Model305 K340 K382 K
RSSlRSSvSRSSlRSSvSRSSlRSSvS
LKP0.002490.03410.06710.004070.1670.6030.0009960.05982.045
PR0.001030.003920.01440.0007260.0460.1734.179E-050.009690.722
RKS0.001770.03400.06260.01730.07660.8560.0009860.08773.015
PSRK0.001300.008510.02570.0004380.1060.3900.0001890.06572.632
SRK0.001770.03260.06050.01710.07500.8220.0009380.08232.882
Literature------0.02270.17115.526
Tab.1  Regression result in NH-HO
ParametersRKSKIJ H2ORKSKIJ NH3PRKIJ H2OPRKIJ NH3
RKSKIJ H2O1-0.2791-0.251
RKSKIJ NH3-0.2790-0.2510
Tab.2  PR equation parameters for NH-HO system
MethodNH3CO2H2O
error (l) /%error (v) /%error (l) /%error (v) / %error (l) /%error (v) /%
NRTL0.920.580.318.900.517.48
NRTL-RK0.920.610.308.900.527.33
E-NRTL0.920.610.308.890.527.33
E-NRTLRK0.790.720.3611.010.4211.49
Liter0.84a1.03a
Tab.3  NH-CO-HO VLE regression by NRTL series models
T/KP/MPaNH3(l)CO2(l)H2O(l)NH3(v)CO2(v)H2O(v)
exp.cal.exp.cal.exp.cal.exp.cal.exp.cal.exp.cal.
303.150.1010.3000.3030.2000.2000.5000.4980.9750.9720.0010.0010.0240.027
303.150.1960.3750.3780.2000.2000.4250.4220.9900.9900.0000.0000.0100.010
313.150.1010.2650.2570.2000.2030.5350.5400.9400.9330.0100.0060.0500.061
313.150.1010.2750.2720.2500.2520.4750.4760.9400.9330.0110.0080.0490.059
313.150.1960.3280.3300.2000.1990.4720.4710.9750.9780.0010.0010.0240.021
313.150.1960.3350.3390.2500.2490.4150.4120.9760.9780.0020.0020.0230.020
323.150.290.3420.3390.2500.2510.4080.4100.9720.9720.0050.0040.0230.023
323.150.290.3550.3540.3000.3000.3450.3450.9740.9740.0060.0060.0200.020
323.150.390.3760.3730.2000.2000.4240.4270.9830.9830.0020.0020.0160.015
323.150.390.3780.3820.2500.2490.3720.3690.9830.9840.0020.0020.0150.014
333.150.290.3050.3050.2500.2500.4450.4450.9470.9450.0160.0160.0370.039
333.150.290.3200.3230.3000.2990.3800.3780.9500.9470.0180.0200.0320.033
333.150.390.3400.3400.2500.2500.4100.4100.9650.9660.0090.0090.0260.025
333.150.390.3500.3560.3000.2980.3500.3470.9670.9660.0100.0120.0230.022
343.150.290.2930.2910.3000.3020.4070.4070.8520.8590.1020.0870.0460.054
343.150.290.3130.3090.3500.3530.3370.3380.8320.8470.1270.1100.0410.042
343.150.390.3180.3200.3000.2990.3820.3810.9120.9120.0500.0520.0380.036
343.150.390.3400.3400.3500.3480.3100.3120.9090.9110.0560.0610.0350.027
353.150.290.2320.2360.2500.2490.5180.5150.6920.6540.2280.2400.0800.106
353.150.290.2460.2470.3000.3000.4540.4530.5800.5630.3560.3490.0640.088
353.150.390.2720.2710.2500.2500.4780.4780.8100.8120.1250.1220.0650.066
353.150.390.2900.2890.3000.3000.4100.4120.7800.7810.1620.1670.0580.053
363.150.390.2200.2200.2000.2000.5800.5800.6500.6420.2450.2390.1050.119
363.150.390.2300.2290.2500.2500.5200.5210.5300.5230.3850.3770.0850.100
Tab.4  NH-CO-HO VLE regression by E-NRTLRK
Component iNH3NH3CO2H2OH2OH2OH2O
Component jCO2H2OH2ONH4+NH2COO-HCO3-CO32-
Temperature units°C°C°C°C°C°C°C
AIJ33.21611.480-15.7200000
AJI22.393-11.73937.70140000
BIJ-14913.300-4198.1404945.8920000
BJI-6475.1704354.897-11840.1000000
CIJ0.20.20.20.30.30.30.3
Tab.5  Binary interaction parameters of E-NRTLRK in the NH-CO-HO system
Molecule i or Electrolyte iMolecule j or Electrolyte jValue
H2OH3O+NH2COO-8.045
H2OH3O+OH-8.045
H2OHCO3-8.045
H2OCO32-8.045
H2ONH4+NH2COO-4.669
H2ONH4+OH-8.045
H2ONH4+HCO3-4.654
H2ONH4+CO32-8.045
H3O+NH2COO-H2O-4.072
H3O+OH-H2O-4.072
H3O+HCO3-H2O-4.072
H3O+CO32-H2O-4.072
NH4+NH2COO-H2O-2.929
NH4+OH-H2O-4.072
NH4+HCO3-H2O-1.761
NH4+CO32-H2O-4.072
NH3NH4+NH2COO-10
NH4+NH2COO-NH3-2
NH3NH4+HCO3-10
NH4+HCO3-NH3-2
CO2H3O+OH-15
H3O+OH-CO2-8
CO2H3O+HCO3-15
H3O+HCO3-CO2-8
CO2H3O+CO32-15
H3O+CO32-CO2-8
Tab.6  Parameters of electrolyte pairs (GMELCC)
CNH3 /mol-1CCO32- /mol-1 (cal.)CCO32-/mol-1 (exp.)Average relative deviation
1.310.10.10.015
1.990.150.15
2.70.210.21
3.430.260.26
4.180.310.32
4.980.360.38
Tab.7  Comparison of simulation result on ammonia carbonation product with experimental data []
Fig.2  Process conditions of (NH)CO production simulation
1 Wu Y, Wang Y F, Zeng Q H, Gong X, Yu Z H. Experimental study on capturing CO2 greenhouse gas by mixture of ammonia and soil. Frontiers of Chemical Engineering in China , 2009, 3(4): 468–473
doi: 10.1007/s11705-009-0257-7
2 Marc S, Frank B, Thomas H. Evaluation of strategies for the subsequent use of CO2. Frontiers of Chemical Engineering in China , 2010, 4(2): 172–183
doi: 10.1007/s11705-009-0236-z
3 Jiri P, Benjamin C, Lu Y. Vapor-liquid equilibriums in system ammonia-water at 14.69 and 65 psia. Journal of Chemical & Engineering Data , 1975, 20(2): 182–183
doi: 10.1021/je60065a005
4 Liang Q, Tong A Y, Su Y G. Isobaric vapor-liquid equilibrium for NH3-CO2-H2O system. Gaoxiao Huaxue Gongcheng Xuebao , 1990, 4(3): 196–206 (in Chinese)
5 Badger E H M, Wilson D S. Vapour pressures of ammonia and carbon dioxide in equilibrium with aqueous solutions. Part VI. Journal of the Society of Chemical Industry , 1947, 66(3): 84–86
doi: 10.1002/jctb.5000660305
6 Otsuka E, Yoshimura S, Yakabe M, Inoue S. Equilibrium of the NH3-CO2-H2O. Kogyo Ka gaku Zasshi , 1960, 62: 1214–1218
7 Alain V, Antonin C, Christophe C, Patrice P, Dominique R. Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modeling from 278.2 to 318.2K. Fluid Phase Equilibria , 2004, 226(10): 333–344
8 Kaj T, Peter R. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems. Chemical Engineering Science , 1999, 54(12): 1787–1802
doi: 10.1016/S0009-2509(99)00019-6
9 Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research , 2001, 40(4): 1244–1260
doi: 10.1021/ie0003887
10 Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating system. Industrial & Engineering Chemistry Research , 2002, 41(22): 5510–5515
doi: 10.1021/ie010954d
11 Saul M L, Mario G R T, Pieter J, van D. An empirical thermodynamic model for the ammonia-water-carbon dioxide system at urea synthesis conditions. Journal of Applied Chemistry and Biotechnology , 1973, 23(1): 63–76
12 Thorin E, Dejfors C, Svedberg G. Thermodynamic properties of ammonia-water mixtures for power cycles. International Journal of Thermophysics , 1998, 19(2): 501–510
doi: 10.1023/A:1022525813769
13 Zeng J J, Yang J M, Zhang W, Hao M L. HAO Z J, Lü J. Vapor-liquid equilibrium model for ammonia-water system. Chemical Industry and Engineering Process , 2010, 29: 87–90 (in Chinese)
14 Smolen T M, Manley D B, Poling B E. Vapor-liquid equilibrium data for the NH3-H2O systems and its description with a modified cubic equation of state. Journal of Chemical & Engineering Data , 1991, 36(2): 202–208
doi: 10.1021/je00002a017
15 HoSeok P.Young M J, Jong K Y, Won H H, Kim J N. Analysis of the CO2 and NH3 reaction in an aqueous solution by 2D IR COS: Formation of bicarbonate and carbonate. Journal of Physical Chemistry A , 2008, 112(29): 6558–6562
doi: 10.1021/jp800991d
16 Nichola M, Duong P, Wang X G, William C, Robert B, Moetaz A, Graeme P, Marcel M. Kinetics and mechanism of carbonate formation from CO2 (aq), carbonate species, and monoethanolamine in aqueous solution. Journal of Physical Chemistry A , 2009, 113(17): 5022–5029
doi: 10.1021/jp810564z
17 Hsunling B, An C Y. Removal of CO2 greenhouse gas by ammonia scrubbing. Industrial & Engineering Chemistry Research , 1997, 36(6): 2490–2493
doi: 10.1021/ie960748j
18 Alice H E, Andrew M D, Craig P S, Janel S U, David P, Richard J S. On the hydration and hydrolysis of carbon dioxide. Chemical Physics Letters , 2011, 514(4–6): 187–195
doi: 10.1016/j.cplett.2011.08.063
19 Zuo Y X, Guo T M. Description of vapor-liquid equilibrium for weak electrolyte NH3-CO2-H2O system using a new equation of state. Journal of Chemical Industry and Engineering (China) , 1990, 41(2): 162–170 (in Chinese)
20 Jadwiga K. New approach to simplify the equation for the excess Gibbs free energy of aqueous solutions of electrolytes applied to the modeling of the NH3-CO2-H2O vapour-liquid equilibria. Fluid Phase Equilibria , 1999, 163(2): 209–229
doi: 10.1016/S0378-3812(99)00225-3
21 Ghaemi A. shahhoseini S, Ghannadi M M, and Farrokhi M. Prediction of vapor- liquid for aqueous solution of electrolytes using artificial neural networks. Journal of Applied Sciences , 2008, 8(4): 615–621
doi: 10.3923/jas.2008.615.621
22 Bernardis M, Carvoli G, Delogu P. NH3-CO2-H2O VLE calculations using an extended unique equation. AIChE Journal. American Institute of Chemical Engineers , 1989, 35(2): 314–317
doi: 10.1002/aic.690350217
23 Victor D, Willy J M W, Erling H S, Kaj T. Modeling of carbon dioxide absorption by aqueous solutions using the extended UNIQUAC model. Industrial & Engineering Chemistry Research , 2010, 49(24): 12663–12674
doi: 10.1021/ie1009519
24 Pazuki G R, Pahlevanzadeh H A, Mohseni A. Solubility of CO2 in aqueous ammonia solution at low temperature. Fluid Phase Equilibria , 2006, 24(2): 57–64
doi: 10.1016/j.fluid.2006.01.002
25 Wei S A, Zhang H J. Calculation of H2O-NH3-CO2 Vapor liquid equilibria at high concentration conditions. Chinese Journal of Chemical Engineering , 2004, 12(1): 134–136
26 Hanna K, Erik T H, Inna K, Tore H W, Hallvard F S. Vapor liquid equilibrium in the sodium carbonate sodium bicarbonate-water-CO2 system. Chemical Engineering Science , 2010, 65(6): 2218–2226
doi: 10.1016/j.ces.2009.12.024
27 Zhang L Y. Chemical Engineering Process Simulation Using Aspen Plus. 1st ed. Beijing: Chemical Industry Press, 2012, 22 (in Chinese)
28 Que H L, Chen C C. Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model. Industrial & Engineering Chemistry Research , 2011, 50(11): 11406–11421
doi: 10.1021/ie201276m
29 Chen C C, Song Y H. Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE Journal , 2004-8, 50 (8): 1928–1942
30 Jaretun G A, Aly G. New local composition model for electrolyte solution: Multicomponent, system. Fluid Phase Equilibria , 2000, 175(1–2): 213–228
doi: 10.1016/S0378-3812(00)00450-7
31 Tian Y L, Han M, Chen L, Feng J J. Qin Ying. Study on vapor-liquid phase equilibria for CO2-C2H5OH system. Acta Physico-Chimica Sinica , 2001, 17(2): 155–160 (in Chinese)
32 Hsieh C M, Lin S T. Prediction of liquid-liquid equilibrium from the Peng-Robinson+COSMOSAC equation of state. Chemical Engineering Science , 2010, 65(6): 1955–1963
doi: 10.1016/j.ces.2009.11.036
33 Claudio A, Faúndez J O V. Low pressure vapor-liquid equilibrium in ethanol+congener mixtures using the Wong-Sandler mixing rule. Thermochimica Acta , 2009, 490(1–2): 37–42
doi: 10.1016/j.tca.2009.02.007
34 Rizvi S S H, Hdidemann R A. Vapor-liquid equilibria in the ammonia-water system. Journal of Chemical & Engineering Data , 1987, 32(2): 183–191
doi: 10.1021/je00048a017
35 Zhao Q, Wang S, Qin F, Chen C. Composition analysis of CO2-NH3-H2O system based on Raman spectra. Industrial & Engineering Chemistry Research , 2011, 50(9): 5316–5325
doi: 10.1021/ie1010178
36 Guo J S. Phase diagram law guidance for bicarbonate production. Henan Chemical Engineering , 1987, 4: 33–37 (in Chinese)
[1] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[2] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[3] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[4] Stefania Moioli,Laura A. Pellegrini. Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis[J]. Front. Chem. Sci. Eng., 2016, 10(1): 162-175.
[5] Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS. Review of solvent based carbon-dioxide capture technologies[J]. Front. Chem. Sci. Eng., 2015, 9(2): 125-141.
[6] Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid[J]. Front. Chem. Sci. Eng., 2015, 9(1): 57-63.
[7] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[8] Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front Chem Sci Eng, 2014, 8(1): 123-131.
[9] Ang LI, Hua WANG, Jinyu HAN, Li LIU. Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction[J]. Front Chem Sci Eng, 2012, 6(4): 381-388.
[10] Rui YAO, Hua WANG, Jinyu HAN. Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions[J]. Front Chem Sci Eng, 2012, 6(3): 239-245.
[11] M. A. WAHAB, Huijun ZHAO, X. D. YAO. Nano-confined ammonia borane for chemical hydrogen storage[J]. Front Chem Sci Eng, 2012, 6(1): 27-33.
[12] Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN. A review on transport of coal seam gas and its impact on coalbed methane recovery[J]. Front Chem Sci Eng, 2011, 5(2): 139-161.
[13] Maryam Takht Ravanchi, Saeed Sahebdelfar, Farnaz Tahriri Zangeneh. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions[J]. Front Chem Sci Eng, 2011, 5(2): 173-178.
[14] Yingdi CHEN, Peng XU, Jian CHENG. Supercritical carbon dioxide extraction of CLA-ethyl ester[J]. Front Chem Sci Eng, 2011, 5(1): 102-106.
[15] Liangnian HE, Ya Du, Chengxia MIAO, Jinquan WANG, Xiaoyong DOU, Ying WU. Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts[J]. Front Chem Eng Chin, 2009, 3(2): 224-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed