Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (2) : 163-182    https://doi.org/10.1007/s11705-015-1520-8
RESEARCH ARTICLE
Heat Integration retrofit analysis—an oil refinery case study by Retrofit Tracing Grid Diagram
Andreja NEMET1,Jiří Jaromír KLEMEŠ1,*(),Petar Sabev VARBANOV1,Valter MANTELLI2
1. Centre for Process Integration and Intensification CPI2, Faculty of Information Technology, Egyetem utca 10, 8200 Veszprém, Hungary
2. IPLOM SpA, Via C. Navone 3B, 16012 Busalla, Genoa, Italy
 Download: PDF(2789 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heat Integration has been established over the last decades as a proven chemical engineering methodology. Two design implementations are often used in the industry: grassroots and retrofit. Although various methods have been developed for retrofit, it still needs more development to ensure simultaneously thermodynamic feasibility and economic viability. In this paper, a novel graphical approach has been developed to facilitate the understanding of the current situation and scope of improvement. The Retrofit Tracing Grid Diagram presents all streams and heat exchangers in temperature scale and the heat exchangers are clearly separated from each other, enabling clear visualisation of the current state. The tool incorporates the previously developed Cross-Pinch Analysis as well as path approach for retrofit. Additionally, the non-vertical heat transfer can be evaluated. The application of the developed tool has been validated on an oil refinery case study. The applicability of the tool is evident as it can reveal additional options for modification that none of the previous methods considered.

Keywords Heat Integration      retrofit      Pinch Analysis      thermodynamic approach      oil refinery     
Corresponding Author(s): Ji?í Jaromír KLEME?   
Issue Date: 14 July 2015
 Cite this article:   
Andreja NEMET,Ji?í Jaromír KLEME?,Petar Sabev VARBANOV, et al. Heat Integration retrofit analysis—an oil refinery case study by Retrofit Tracing Grid Diagram[J]. Front. Chem. Sci. Eng., 2015, 9(2): 163-182.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1520-8
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I2/163
Fig.1  The plus-minus principle for heat integration
Fig.2  Algorithm of data reconciliation
Variables Measurements
1 2 m
X1 x11 x12 x1m
X2 x21 x22 xm1
Xn xn1 xn2 xnm
Tab.1  Example of data arrangement
Fig.3  Area-Energy plot (after [4])
Fig.4  Possible violation of heat recovery pinch
Fig.5  Path in HEN [10]
Fig.6  Cross-pinch heat transfer
Fig.7  Possible modification of the HE with Cross-Pinch heat transfer
Fig.8  Non-vertical heat transfer
Fig.9  Possible modification of the heat exchanger with non-vertical heat transfer
Fig.10  Retrofit tracing grid diagram
Fig.11  Utility path in graphical representation, when the non-integrated part of hot stream is a) above and b) below temperature of the integrated part
Fig.12  a) Re-sequencing options in graphical representation and b) the proposed modification
Fig.13  Identification of enhancing heat recovery opportunities by applying a new HE
Fig.14  Possible modification in case of a) highly non-vertical heat transfer via b) removing one of HEs (with possibility of re-using it) and applying a new HE
Fig.15  Hot water and steam generation options
Fig.16  GCC for Unit 1900 when a) ΔTmin = 10 °C and b) ΔTmin = 20 °C
Fig.17  Current HEN in Unit 1900
Fig.18  Heat transfer across the pinch in Unit 1900 for scenario HSS
Fig.19  Utility path in Unit 1900 in scenario HSS
Scenario HSS HSW LSS LSW
Pinch point /°C 212.1 / 192.1 210.4 / 190.4 190 / 170 253.8 / 233.8
Cross pinch heat transfer
Heat match / heat load Hot stream Cold stream ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
4\E-1902C H49 C19 421.8 422.5 0 1,925.0
14\ E-1915 H52 MP 189.9 57.7 60.78 ?
22\E-1903 H55 C23 856.1 1,163.5 577.6 783.9
23\E-1904 H55 C24 756.5 644.3 1182 ?
Tab.2  Pinch point and heat transfer across the pinch in Unit 1900 for each scenario
Fig.20  Possible modification involving streams H55-C28, H55-C23 or H55-C24, H53-C23 or H53-C24
Heat match/heat load ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H55-C28 176.3 159.5, 128.8 187.3
H55-C23 or C24 1,047.3 782.1 1,381.5 962.7
H53-C23 176.3 159.5, 128.8 187.3
Hot utility reduction 176.3 159.5 128.8 187.3
Tab.3  Results of modification H55-C28, H55-C23 or C24, H53-C23 or C24
Heat match/ heat load ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H55-C28 105 107 66 114
H55-C24 1,654 1,681 1,541 1,598
H53-C24 105 107 66 114
Hot utility reduction 105 107 66 114
Tab.4  Results of modification H55-C28, H55-C23 or C24, H53-C23 or C24
Heat match/ scenario ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H55-C20 359.9 267.6 1,061.0 463.6
H55-C23 863.2 674.1 449.3 686.4
H53-C23 359.9 267.6 128.8 463.6
Hot utility reduction 359.9 267.6 128.8 463.6
Tab.5  Results of modification H55-C20, H55-C23, H53-C23
Fig.21  Possible modification involving streams H49-C19, H64-C19 and H64-C27
Heat match/ scenario ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H64-C19 106 412.8 396.8 253.3
H49-C19 3,881.0 2,800 3,580.8 3,625.8
H49-C27 106 412.8 396.8 253.3
Hot utility reduction 106 412.8 396.8 253.3
Tab.6  Results of modification H49-C19, H64-C19 and H64-C27
Heat match/scenario ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H64-C19 560 886 969 812
H49-C19 3,427 2,327 3,008 3,067
H49-C20 560 886 969 812
Hot utility reduction 560 886 969 812
Tab.7  Results of modification H49-C19, H64-C19 and H64-C20
Heat transfer ΔHLSW/ kW ΔHLSS/ kW ΔHHSW/ kW ΔHHSS/ kW
Modification option H64 and C20
H64-C20 206 316 583 393
Modification option H64 and C28
H64-C28 227 210 180 272
Modification options H64, C28 and C20
H64-C20 206 316 583 396
H64-C28 155.7 145.8 86 156
Total 361.7 461.8 672 552
Tab.8  Heat transfer of new HE between H64-C20
Option Involved steams Involved heat exchangers Not compatible with Heat recovery /kW
ΔHLSW/kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
1 H53?C23?H55?C28 HE 22 2,3 176.3 159.5 128.8 187.3
2 H53?C24?H55?C28 HE 23 1,3 176.3 159.5 128.8 187.3
3 H53?C23?H55?C20 HE 22 1,2,5 359.9 267.6 128.8 463.6
4 H64?C19?H49?C27 HE 4 5,6,7,8 106.0 412.8 396.8 253.3
5 H64?C19?H49?C20 HE 4 4,6,7,8 560.0 886.0 969.0 812.0
6 H64?C20 ? 4,5,7,8 206.0 316.0 583.0 396.0
7 H64?C28 ? 4,5,6,8 227.0 210.0 186.0 282.0
8* H64?C20+ C28 ? 4,5,6,7 361.7 461.8 672.0 552.0
Tab.9  Summary of the possible modification for enhancing heat recovery
Fig.22  Hot water and steam generation options in Unit 1900
Stream/heat load ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H64 560 886 970 812
H53 1,121 946 1,297 853
H52 850.8 742 442 718
H51 482 574 669 718
H54 534 750 1,094 747
H57 2,225 2,647 3,140 2,389
64.3b-64.4 73 0 41 42
Total 5,991 6,545 7,653 6,279
H59 (conditionally) 359 398 353 389
H56 (conditionally) 62 48 85 19
H50 (conditionally) 46 55 44 70
H61 (conditionally) 23 9 49 32
Total 490 510 531 510
Tab.10  Hot water generation options in Unit 1900
Stream/heat load ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H64 560.0 886.0 970.0 812.0
H53 480.5 301.9 426.5 432.9
Total 1,040.5 1,187.9 1,396.5 1,244.9
Tab.11  LP steam generation potential
Stream/heat load ΔHLSW /kW ΔHLSS /kW ΔHHSW /kW ΔHHSS /kW
H64 560.0 886.0 970.0 812.0
H53 117.8 34.3 19.8 63.2
Total 677.8 920.3 989.8 875.2
Tab.12  MP steam generation options in Unit 1900
Option Involved stream Involved HE ΔHav,red/kW cS/€ HE modification A/m2 cmod/€ ROI /y
1 H53–C23–H55–C28 HE 22 163 61,942=58,533+3,409 2 new+1 exist. 6.6 (new)+16.2 (exist)+1.6 (new) 93,804 1.51
2 H53–C24–H55–C28 HE 23 98 37,242=35,192+2,050 2 new+1 exist. 5.7 (new)+20 (exist)+1.1 (new) 93,496 2.51
3 H53–C23–H55–C20 HE 22 305 115,905=109,526+6,379 2 new+1 exist. 100.3 (new)+19.6 (exist)+19.8 (new) 118,422 1.02
4 H64–C19–H49–C27 HE 4 292 104,857 2 new+1 exist. 7.2 (new)+59.1 (exist.)+68.8(new) 108,720 1.04
5 H64–C19–H49–C20 HE 4 807 289,794 2 new+1 exist 17.3 (new)+66.7 (exist.) +20.3 (new) 100,272 0.35
6 H64–C20 375 134,665 New 44.1 (new) 55,702 0.41
7 H64–C28 226 81,157 New 15.6 (new) 49,432 0.61
8 H64–C20+ C28 512 183,859 2 new 44.1 (new)+9.6 (new) 103,814 0.56
Tab.13  Economic assessment of modifications proposed for enhancing heat recovery
Stream/heat load ΔHav,red/kW cin + cS/€ HE modifi. A /m2 cmod/€ ROI
H64 807 474,516 New 10 48,200 0.10
H53 1,054 641,798=619,752+ 22,046 Repiping 20 17,640 0.03
H52 321 195,462=188,748+ 6,714 Repiping 6.2 16,577 0.08
367 223,472=215,796+ 7,676 Repiping 15 17,255 0.08
H51 611 359,268 New 40 54,800 0.15
H54 781 459,228 New 150 79,000 0.17
H57 2,600 1,528,800 New 277 106,940 0.07
H59* 375 220,500 New 43 55,460 0.25
Tab.14  Economic assessment of hot water generation options
1 Kleme? J J, ed. Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions. Cambridge: Woodhead/Elsevier, 2013, 127–350
2 Kleme? J J, Kravanja Z. Forty years of heat integration: Pinch analysis (PA) and mathematical programming (MP). Current Opinion in Chemical Engineering, 2013, 2(4): 461–474
3 Kleme? J J, Friedler F, Bulatov I, Varbanov P. Sustainability in the process industry: Integration and Optimization. New York: McGraw-Hill, 2010, 11–43
4 Tjoe T N, Linnhoff B. Using pinch technology for process retrofits. Chemical Engineering, 1986, 93: 47–60
5 Gundersen T. A process integration primer—Implementing agreement on process integration. Trondheim, Norway: International Energy Agency, SINTEF Energy Research, 2000, 34–47
6 Linnhoff B. Thermodynamic analysis of the cement burning process. Dissertation for the Doctoral Degree. Switzerland: ETH Zurich, 1972 (in German)
7 Zhu X X, Asante N D K. Diagnosis and optimization approach for heat exchanger network retrofit. AIChE Journal, 1999, 45(7): 1488–1503
8 Smith R, Jobson M, Chen L. Recent development in the retrofit of heat exchanger networks. Applied Thermal Engineering, 2010, 30(16): 2281–2289
9 van Riesen J L B, Grievink J, Polley G T, Verheijen P J T. The placement of two-stream and multi-stream heat-exchangers in an existing network through path analysis. Computers & Chemical Engineering, 1995, 19(1): S143–S148
10 Varbanov P S, Kleme? J J. Rules for paths construction for HENs debottlenecking. Applied Thermal Engineering, 2000, 20(15-16): 1409–1420
11 Piacentino A. Thermal analysis and new insights to support decision making in retrofit and relacation of heat exchanger networks. Applied Thermal Engineering, 2011, 31(16): 3479–3499
12 Lakshmanan R, Ba?ares-Alcántara R. A novel visualisation tool for heat exchanger network retrofit. Industrial & Engineering Chemistry Research, 1996, 35(12): 4507–4522
13 Yong J Y, Varbanov P S, Kleme? J J. Shifted retrofit thermodynamic diagram: A modified tool for retrofitting on heat exchanger network. Chemical Engineering Transactions, 2014, 39: 97–102
14 Shokoya C G. Retrofit of heat exchanger networks for debottlenecking and energy savings. Ph.d. Thesis. Manchester, UK: University of Manchester Institute of Science and Technology, UK, 1992
15 Carlsson A, Franck P ?, Berntsson T. Design better heat exchanger network retrofits. Chemical Engineering Progress, 1993, 3: 87– 96
16 Nordman R, Berntsson T. Use of advanced composite curve for assessing cost-effective HEN retrofit I: Theory and concepts. Applied Thermal Engineering, 2009, 29(2-3): 275–281
17 Nordman R, Berntsson T. Use of advanced composite curve for assessing cost-effective HEN retrofit II: Case studies. Applied Thermal Engineering, 2009, 29(2-3): 282–289
18 Gadalla M A. A new graphical method for pinch analysis applications: Heat exchanger network retrofit and energy integration. Energy, 2015, 81: 159–174
19 Kleme? J, Lutcha J, Va?ek V. Resent extension and development of design integrated system-DIS. Computers & Chemical Engineering, 1979, 3(4): 357–361
20 Ponton J W, Kleme? J. Alternatives to neural networks for inferential measurement. Computers & Chemical Engineering, 1993, 17(10): 991–1000
21 Linnhoff B, Flower J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE Journal, 1978, 24(4): 633–642
22 Walker V. Designing a process flowsheet. Chemical Engineering Progress, 2009, 5: 15–21
23 Kleme? J J, Varbanov P S. Implementation and pitfalls of process integration. Chemical Engineering Transactions, 2010, 21: 1369–1374
24 Wan Alwi S R, Lee C K M, Lee K Y, Manan Z A, Fraser D M. Targeting the maximum heat recovery for systems with heat losses and heat gains. Energy Conversion and Management, 2014, 87: 1098–1106
25 Narasimhan S, Jordache C. Data Reconciliation & Gross Error Detection. An Intelligent Use of Process Data. Houston, USA: Gulf Publishing Company, 2000, 59–83
26 Fazekas G. Project EFENIS User’s Guide University of Pannonia, Veszprém, Hungary. 2014
27 Linnhoff B, O’Young D L. The three components of cross pinch heat flow in constrained heat exchanger networks. AIChE Annual Meeting, New York, USA, 1987
28 Asante N D K, Zhu X X. An automated approach for heat exchanger network retrofit featuring minimal topology modifications. Computers & Chemical Engineering, 1996, 20: S7–S12
29 Nemet A, Kleme? J J, Kravanja Z. Optimising entire lifetime economy of heat exchanger networks. Energy, 2013, 57: 222– 235
30 Yong J Y, Varbanov P S, Kleme? J J. Heat exchanger network retrofit supported by extended grid diagram and heat path development. Applied Thermal Engineering, 2015, doi: 10.1016/j.applthermaleng.2015.04.025
[1] Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth. Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures[J]. Front. Chem. Sci. Eng., 2020, 14(5): 913-927.
[2] Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš. Automated retrofit targeting of heat exchanger networks[J]. Front. Chem. Sci. Eng., 2018, 12(4): 630-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed