Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 156-163    https://doi.org/10.1007/s11705-020-1986-x
RESEARCH ARTICLE
Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties
Lifeng Zhang1,2(), Yifei Song1, Weiping Wu2(), Robert Bradley3,4,5, Yue Hu1, Yi Liu1, Shouwu Guo1,6()
1. School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
2. Department of Electrical and Electronic Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, London, EC1V 0HB, UK
3. Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
4. MatSurf Technology Ltd., The Old Stables Marion Lodge, Cumbria, CA10 1NW, UK
5. School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA
6. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1005 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Unique self-assembled iron(II) molybdenum(IV) oxide (Fe2Mo3O8) mesoporous hollow spheres have been facilely constructed via the bubble-template-assisted hydrothermal synthesis method combined with simple calcination. The compact assembly of small nanoparticles on the surface of the hollow spheres not only provides more active sites for the Fe2Mo3O8, but also benefits the stability of the hollow structure, and thus improved the lithium storage properties of Fe2Mo3O8. The Fe2Mo3O8 mesoporous hollow spheres exhibit high initial discharge and charge capacities of 1189 and 997 mA∙h∙g1 respectively, as well as good long-term cycling stability (866 mA∙h∙g1 over 70 cycles) when used as a lithium-ion battery anode. This feasible material synthesis strategy will inspire the variation of structural design in other ternary metal molybdates.

Keywords molybdates      Fe2Mo3O8      hollow spheres      lithium ion batteries      anodes     
Corresponding Author(s): Lifeng Zhang,Weiping Wu,Shouwu Guo   
Just Accepted Date: 28 September 2020   Online First Date: 17 November 2020    Issue Date: 12 January 2021
 Cite this article:   
Lifeng Zhang,Yifei Song,Weiping Wu, et al. Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties[J]. Front. Chem. Sci. Eng., 2021, 15(1): 156-163.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1986-x
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/156
Fig.1  Schematic illustration of the general synthesis strategy for Fe2Mo3O8 hollow spheres.
Fig.2  (a) SEM, (b) locally magnified SEM, (c) TEM, (d) HRTEM images, (e) XRD pattern, and (f) schematic structure of the self-assembled iron(II) molybdenum(IV) oxide (Fe2Mo3O8) hollow spheres.
Fig.3  XPS spectra of the Fe2Mo3O8 hollow spheres: (a) survey spectrum, and high-resolution XPS scan spectra of (b) Fe 2p, (c) Mo 3d and (d) O 1s.
Fig.4  The electrochemical performances of Fe2Mo3O8 hollow spheres: (a) CV curves at 0.1 mV?s-1; (b) discharge-charge voltage profiles; (c) rate performance; (d) electrochemical impedance spectroscopy (EIS) profiles; (e) cycling performance and Coulombic efficiency of the Fe2Mo3O8 electrode.
1 T Kurumaji, Y Takahashi, J Fujioka, R Masuda, H Shishikura, S Ishiwata, Y Tokura. Electromagnon resonance in a collinear spin state of a polar antiferromagnet Fe2Mo3O8. Physical Review. B, 2017, 95(2): 20405–20421
https://doi.org/10.1103/PhysRevB.95.020405
2 H H Ou, Q T P Tran, P H Lin. A synergistic effect between gluconate and molybdate on corrosion inhibition of recirculating cooling water systems. Corrosion Science, 2018, 133: 231–239
https://doi.org/10.1016/j.corsci.2018.01.014
3 Y Li, H Xu, H Huang, C Wang, L G Gao, T L Ma. One-dimensional MoO2-Co2Mo3O8@C nanorods: a novel and high efficient oxygen evolution reaction catalyst derived from metal organic framework composite. Chemical Communications, 2018, 54(22): 2739–2742
https://doi.org/10.1039/C8CC00025E
4 L Zhang, S S Zheng, L L Wang, H Tang, H G Xue, G X Wang, H Pang. Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small, 2017, 13(33): 1700917–1700936
https://doi.org/10.1002/smll.201700917
5 S S Gao, Y K Tang, Y Gao, Y Liu, H Y Zhao, X H Li, X Z Wang. Highly crystalized Co2Mo3O8 hexagonal nanoplates interconnected by coal-derived carbon via the molten-salt-assisted method for competitive Li-ion battery anodes. ACS Applied Materials & Interfaces, 2019, 11(7): 7006–7013
https://doi.org/10.1021/acsami.8b20366
6 S Petnikot, S K Marka, V V S S Srikanth, M V Reddy, B V R Chowdari. Elucidation of few layered graphene-complex metal oxide (A2Mo3O8, A= Co, Mn and Zn) composites as robust anode materials in Li ion batteries. Electrochimica Acta, 2015, 178: 699–708
https://doi.org/10.1016/j.electacta.2015.08.066
7 L Zhang, W He, Y Liu, M Ling, P Zheng, S Guo. 3D hierarchical flower of copper molybdate Cu3Mo2O9: synthesis, nanostructure and lithium storage properties. Journal of Alloys and Compounds, 2017, 723: 512–519
https://doi.org/10.1016/j.jallcom.2017.06.175
8 Y M Sun, X L Hu, W Luo, J Shu, Y H Huang. Self-assembly of hybrid Fe2Mo3O8-reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(14): 4468–4474
https://doi.org/10.1039/c3ta01409f
9 Y Y Chu, X Y Shi, Y Wang, Z Q Fang, Y J Deng, Z X Liu, Q S Dong, Z M Hao. High temperature solid-state synthesis of dopant-free Fe2Mo3O8 for lithium ion batteries. Inorganic Chemistry Communications, 2019, 107: 107477–107481
https://doi.org/10.1016/j.inoche.2019.107477
10 H Maseed, P Petnikota, V V S S Srikanth, M Srinivasan, B V R Chowdari, M V Reddy, S Adams. Fe2Mo3O8/exfoliated graphene oxide: solid-state synthesis, characterization and anodic application in Li-ion batteries. New Journal of Chemistry, 2018, 42(15): 12817–12823
https://doi.org/10.1039/C8NJ01847B
11 L Zhang, K Shen, W He, Y Liu, L Yin, S Guo. Hierarchical nanorods constructed by Mn2Mo3O8@reduced graphene oxide nanosheet arrays with enhanced lithium storage properties. Journal of Physics and Chemistry of Solids, 2018, 121: 71–77
https://doi.org/10.1016/j.jpcs.2018.05.012
12 J Liang, X Yu, H Zhou, H B Wu, S J Ding, X W Lou. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angewandte Chemie International Edition, 2014, 53(47): 12803–12807
https://doi.org/10.1002/anie.201407917
13 Y He, Y Zhang, F Ding, X Li, Z Wang, Z Lü, X Wang, Z Liu, X Huang. Formation of hollow nanofiber rolls through controllable carbon diffusion for Li metal host. Carbon, 2020, 157: 622–630
https://doi.org/10.1016/j.carbon.2019.10.082
14 L J Wang, F H Liu, Y S Ning, R Bradley, C B Yang, K Yong, B Y Zhao, W P Wu. Biocompatible mesoporous hollow carbon nanocapsules for high performance supercapacitors. Scientific Reports, 2020, 10(1): 4306
https://doi.org/10.1038/s41598-020-61138-4
15 S J Lu, Z T Wang, X H Zhang, Z J He, H Tong, Y J Li, J C Zheng. In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(2): 2671–2678
https://doi.org/10.1021/acsami.9b18931
16 J W Lu, L Lan, X T T Liu, N Wang, X L Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671
https://doi.org/10.1007/s11705-019-1815-2
17 L W Liang, X Sun, J Y Zhang, L H Hou, J F Sun, Y Liu, S G Wang, C Z Yuan. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Advanced Energy Materials, 2019, 9(11): 1802847
https://doi.org/10.1002/aenm.201802847
18 T F Liu, Y P Zhang, Z G Jiang, X Q Zeng, J P Ji, Z H Li, X H Gao, M H Sun, Z Lin, M Ling, J Zheng, C Liang. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy & Environmental Science, 2019, 12(5): 1512–1533
https://doi.org/10.1039/C8EE03727B
19 L Zhang, W He, M Ling, K Shen, Y Liu, S Guo. Cu@MoO2@C nanocomposite with stable yolk-shell structure for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 768: 714–721
https://doi.org/10.1016/j.jallcom.2018.07.301
20 G A Rossetti, J L Burger, R D Sisson. Characterization of mixed cobalt-molybdenum oxides prepared by evaporative decomposition of solutions. Journal of the American Ceramic Society, 1989, 72(10): 1811–1815
https://doi.org/10.1111/j.1151-2916.1989.tb05983.x
21 H A Eschenauer, V V Kobelev, A Schumacher. Bubble method for topology and shape optimization of structures. Structural Optimization, 1994, 8(1): 42–51
https://doi.org/10.1007/BF01742933
22 C Nie, W Zeng, X Jing, H Ye. NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing. Journal of Materials Science Materials in Electronics, 2018, 29(9): 7480–7488
https://doi.org/10.1007/s10854-018-8739-3
23 C Ding, D Yan, Y Zhao, Y Z Zhao, H P Zhou, J B Li, H B Jin. Bubble-template approach to assemble Ni-Co oxide hollow microspheres with enhanced electrochemical performance as anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016, 18(37): 25879–25886
https://doi.org/10.1039/C6CP04097G
24 X X Zuo, K Chang, J Zhao, Z Z Xie, H W Tang, B Li, Z R Chang. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(1): 51–58
https://doi.org/10.1039/C5TA06869J
25 R J Chen, T Zhao, W P Wu, F Wu, L Li, J Qian, R Xu, H M Wu, H M Albishri, A S Al-Bogami, D A El-Hady, J Lu, K Amine. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Letters, 2014, 14(10): 5899–5904
https://doi.org/10.1021/nl502848z
26 Z Kozakova, I Kuritka, N E Kazantseva, V Babayan, M Pastorek, M Machovsky, P Bazant, P Saha. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Transactions (Cambridge, England), 2015, 44(48): 21099–21108
https://doi.org/10.1039/C5DT03518J
27 S E Skrabalak, B J Wiley, M Kim, E V Formo, Y N Xia. On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081
https://doi.org/10.1021/nl800910d
28 Y Zhou, H Yao, Q Zhang, J Gong, S Liu, S Yu. Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorganic Chemistry, 2009, 48(3): 1082–1090
https://doi.org/10.1021/ic801806r
29 L Zhang, X Cao, Y Ma, X Chen, Z Xue. Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. CrystEngComm, 2010, 12(1): 207–210
https://doi.org/10.1039/B912555H
30 L Zhang, K Shen, Y Li, T Zha, Y Song, Y Liu, S Guo. Top-down tailoring of nanostructured manganese molybdate enhances its lithium storage properties. CrystEngComm, 2019, 21(36): 5374–5381
https://doi.org/10.1039/C9CE01023H
31 L B Tang, B Zhang, C S An, H Li, B Xiao, J H Li, Z J He, J C Zheng. Ultrahigh-rate behavior anode materials of MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene for sodium-ion batteries. Inorganic Chemistry, 2019, 58(12): 8169–8178
https://doi.org/10.1021/acs.inorgchem.9b00971
32 B Das, M V Reddy, S Tripathy, B V R Chowdari. A disc-like Mo-metal cluster compound, Co2Mo3O8, as a high capacity anode for lithium ion batteries. RSC Advances, 2014, 4(64): 33883–33889
https://doi.org/10.1039/C4RA05620E
33 Y Zhu, Y Zhong, G Chen, X Deng, R Cai, L Li, Z Shao. Hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52(60): 9402–9405
https://doi.org/10.1039/C6CC05252E
34 B Das, M V Reddy, C Krishnamoorthi, S Tripathy, R Mahendiran, G V S Rao, B V R Chowdari. Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 2009, 54(12): 3360–3373
https://doi.org/10.1016/j.electacta.2008.12.049
35 H Kim, W Choi, J Yoon, J H Um, W Lee, J Kim, J Cabana, W S Yoon. Exploring anomalous charge storage in anode materials for next generation Li rechargeable batteries. Chemical Reviews, 2020, 120(14): 6934–6976
https://doi.org/10.1021/acs.chemrev.9b00618
36 J C Zheng, Z Yang, Z J He, H Tong, W J Yu, J F Zhang. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy, 2018, 53: 613–621
https://doi.org/10.1016/j.nanoen.2018.09.014
37 B Xiao, W Zhang, P Wang, L B Tang, C An, Z He, H Tong, J Zheng, B Wang. An C S, He Z J, Tong H, Zheng J C, Wang B. V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries. Electrochimica Acta, 2019, 306: 238–244
https://doi.org/10.1016/j.electacta.2019.03.133
38 D H Zuo, S C Song, C S An, L B Tang, Z J He, Z C Zheng. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy, 2019, 62: 401–409
https://doi.org/10.1016/j.nanoen.2019.05.062
[1] FCE-20046-OF-ZL_suppl_1 Download
[1] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[2] Xiaojing ZHANG, Weixin ZHANG, Zeheng YANG, Zhao ZHANG. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery[J]. Front Chem Sci Eng, 2012, 6(3): 246-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed